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Abstract 
Cabozantinib is an oral once-daily multitarget tyrosine kinase inhibitor of MET, VEGFR2, RET, acting against 
KIT, AXL, FLT3 and Tie-2. Cabozantinib has shown anti-cancer effects in preclinical and clinical models of 
cancers derived from both epithelial and mesenchymal origins [prostate cancer, non small lung cancer, 
medullary thyroid cancer (MTC) and differentiated thyroid cancer (DTC), renal cell carcinoma, etc.]. In a 
phase III clinical study, cabozantinib improved PFS (11.2 months versus 4.0 months in the placebo group) of  
patients with MTC (independently of age, bone metastases, RET status and prior treatment). Cabozantinib 
was approved in 2012 by FDA for metastatic MTC and in 2013 by EMA. Cabozantinib has been also 
evaluated in metastatic DTC patients, because they have activation on tyrosine kinases, including MET, 
VEGFR2 and RET, suggesting the possible use of cabozantinib in metastatic DTC. Actually, two phase II 
trials of cabozantinib in DTC patients resistant to RAI are ongoing. To increase the antineoplastic effect of 
cabozantinib, and to overcome the occurence of drug resistance, combination studies with other anticancer 
agents are ongoing. In  conclusion cabozantinib has shown to exert an important therapeutic effect in 
patients with MTC improving PFS. In DTC patients cabozantinib has shown promising results. 
 
Keywords: Cabozantinib; differentiated thyroid carcinoma; epidermal growth factor receptor; medullary 
thyroid cancer; papillary thyroid cancer; RET; tyrosine kinase inhibitors; vascular endothelial growth factor. 
 
Introduction 
 
Thyroid cancer (TC) is the most frequent endocrine tumor and its incidence increased in the last decades, 
especially for papillary carcinoma (PTC). The causes of increased incidence of TC are a topic still debated 
[1]. Certainly, the widespread use of ultrasound and fine-needle aspiration (FNA) resulted in increased 
number of TC diagnoses, also recognizing small TC [2]. Exposure to ionizing radiation is a well-documented 
risk factor for TC; particularly, the incidence of TC is increased after exposure to nuclear explosions 
(Chernobyl) especially in children [3]. Iodine deficiency, autoimmune thyroiditis and also dietary factors and 
environmental pollutants are known risk factors [4-8], and new ones are emerging in the last decades [9,10]. 
While the incidence of PTC is increasing, the mortality rate has not changed [11,12]. 
The main histologic types of TC are: a) differentiated TC of follicular origin (DTC): papillary (PTC, 80%), 
follicular (FTC, 11%) and Hürthle cells TC; b) medullary TC (MTC) [derived from C cells (2-5% of all TCs)], 
that can be sporadic (75%), or hereditary (25%). Hereditary MTC includes Familial MTC (FMTC), MEN 2A, 
MEN 2B [13]; c) anaplastic TC (ATC) (2% of all TCs) [14]. 
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Differentiated thyroid carcinoma 
 
Oncogenic pathways in DTC 
 
Several oncogenic pathways are involved in the development of TC. The main are RAS/RAF/mitogen-
activated protein kinase (MAPK) and phosphatidylinositide 3-Kinase (PI3K)/Akt pathways [15]. 
RAS (“Rat Sarcoma”) genes (H-RAS, K-RAS, N-RAS) encode for intracellular G-proteins involved in 
activation of several intracellular signaling pathways, responsible for the cell growth, differentiation and 
survival. RAS mutations are found especially in FTCs (40-50%), but also in ~10% of PTCs and 50% of 
ATCs. It has been shown that RAS mutations are related to more aggressive tumor pathways [16, 17].  
 
Activated RAS recruits BRAF, member of RAF family proteins which phosphorylating MEK, activates MAPK 
cascade. BRAF V600E (substitution of valine to glutamate at residue 600) is the most common point 
mutation [45% of PTC, 10-20% of poorly differentiated TC (PDTC), 20% of ATC, infrequently in FTC], and it 
is associated with tumor recurrence, loss of radioiodine (RAI) uptake ability and worse prognosis [18-20]. 
Other BRAF mutations or rearrangements (as AKP9/BRAF) are less frequent. 
 
Rearrangement of PAX8/peroxisome proliferator-activated receptor (PPAR)γ leads to the overexpression of 
a protein that inhibits tumor suppressor activity of PPARγ. This mutation is found in 30-40% of FTC, 1-5% of 
follicular variants of PTC and 2-13% of follicular adenomas [21]. 
 
More recently, an increased expression of vascular endothelial growth factor (VEGF) has been 
shown in DTC [22]. The VEGF family stimulates angiogenesis, endothelial cell proliferation, migration, 
survival, and vascular permeability via VEGF receptors (VEGFR): VEGFR-1, VEGFR-2, and VEGFR-3 [23]. 
VEGF/VEGFR pathway is often constitutively activated in tumors; it induces angiogenesis and it is 
associated with a worse prognosis (increased risk of recurrence and decreased survival) [24,25]. In fact, 
depending on the tumor’s capability of inducing an imbalance between angiogenic stimulators and inhibitors, 
TC growth and metastasis formation occur, prevailing the first [26].  
Epidermal growth factor (EGF) stimulates growth and metastasis ability of the tumor, binding to EGF 
receptor (EGFR). It has been shown that EGFR is overexpressed in ATC and PDTC [27] and in lymph node 
metastasis in PTC [28]. In TC, the incidence of EGFR mutations is about 30% [29]. 
 
RET (REarranged during Transfection) is a proto-oncogene, located on chromosome 10, which encodes for 
a tyrosine kinase transmembrane receptor, which once activated, stimulates cell motility, reproduction and 
survival. RET is not present in thyroid follicular cells but its mutations are found in TC [30, 31]. Particularly, 
RET/PTC rearrangements (also present in thyroid adenomas and benign lesions) are found in 20-40% of 
sporadic PTC [32, 33]. RET/PTC rearrangements stimulate uncontrolled cell proliferation [34]. RET/PTC1 
and RET/PTC3 are the most common [35]. 
 
Cytokines and chemokines are molecules that influence activation, growth, and differentiation of several 
target cells, and are involved in the tumorigensis of TC, or can generate antitumor response [36,37]. 
Cytokines and chemokines (that are usually involved in autoimmune disorders [38,39]), are expressed in TC 
cells, and they can be targets of new drugs, or they can be used for evaluating the inhibitory effects of 
different therapies [37,40-43]. 
 
DTC therapy (Table 1) 
 
Generally, patients with DTC have a good prognosis (5 year survival rate is 97.8%), when early treated [44]. 
Large primary tumor size, old age, extrathyroidal extension, nodal metastases, and distant metastases 
(present at diagnosis in 5% of cases) are poor prognostic factors for DTC [45]. For PTCs and FTCs, surgery 
(total thyroidectomy) is the first-line treatment, with subsequent RAI ablation in intermediate to high-risk TC 
patients, while levothyroxine therapy is indicated in all patients [46, 47]. After treatment, long-term follow-up 
is very important, dosing thyroglobulin (Tg) and neck ultrasonography [46-48]. 
 
Some patients with recurrent (10-15% of cases) or metastasic cancer cannot be treated with surgery and/or 
RAI. Indeed, during progression, tumor cells lose RAI uptake ability, becoming resistant [49-51]. 
 
In metastatic cancer, the NCCN Thyroid Carcinoma Panel recommends localized therapy depending on 
tumor location. For patients with symptomatic and/or progressive cancer (untreatable with RAI), systemic 
and/or locoregional therapy (external-beam radiation therapy, resection, stereotaxic radiotherapy) may be 
recommended (although not curative) [44]. 
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Systemic therapy, such as chemotherapeutic agents and kinase inhibitors, can be used in unresectable, 
progressive or not responsive to RAI tumors [52].  
 
Systemic chemotherapy using doxorubicin (but also radiotherapy) is poorly effective in patients with 
aggressive cancer and has a significant toxicity [53, 54]. 
Kinase inhibitors are an alternative therapy in progressive and aggressive cancers [55]. Actually, only 
sorafenib and lenvatinib are approved by US Food and Drug Administration (FDA) and European Medicines 
Agency (EMA) for the treatment of aggressive DTC.  
 
Medullary thyroid cancer 
 
Oncogenic pathways in MTC 
 
Germline or somatic point mutations in RET are the main responsible for MTC [56]. Particularly, activating 
mutations of RET have been found in almost all cases of hereditary MTC and about 50% of sporadic MTC 
[57]. The substitution of methionine by threonin at codon 918 (M918T) is the most common mutation in 
sporadic MTC [58]; also somatic RET mutations are linked to advanced MTC at diagnosis and a worse 
prognosis [59]. Germline gain of function RET mutations are found in 98% MEN2A (often, mutation of RET is 
in cysteine 634), 85% FMTC and more than 98% MEN2B (the most common are M918T and A883F) [60-
62]. For its key-role in the development of MTC, RET is an important therapeutic target for MTC [63] and 
novel compounds (inhibitors of RET) are used for therapy of cancers with increased RET kinase activity 
[64,65]. 
In sporadic MTC without RET mutations, other mutations can be responsible for the development of MTC, 
such as somatic H-RAS ones, which is present in 56% of cases, but also KRAS, or rarely NRAS [66-69].  
 
Furthermore, an increased expression of VEGF-A, VEGF-C, VEGFR-1, -2, -3 are found in MTC [70], and 
particularly, an overexpression of VEGFR-2 in MTC correlate with metastasis [71]. Several antiangiogenic 
molecules which block VEGF are studied, but often antiangiogenic therapy alone does not induce durable 
remission [72].  
 
MET (Mesenchymal-epithelial transition) is a protoncogene coding for hepatocyte growth factor (HGF) 
receptor (HGFR or c-MET), having tyrosine kinase (TK) activity [73]. Mutations in c-MET or its 
overexpression are in several tumors, including MTC. Activated c-MET stimulates cell reproduction, 
migration and angiogenesis while inhibits apoptosis; in this way, it leads to tumor progression and metastatic 
ability [74]. Also, mutations in MET pathways have been correlated with poor clinical outcomes and drug 
resistance in patients with cancer [75]. An elevated coexpression of MET and HGF has been shown in a 
subgroup of MTCs [76,77]. MET has been recently investigated as a potential target in the treatment of TC 
and preliminary clinical benefits have been reported [78].  
 
Furthermore, overexpression of EGFR in some MTC and activation of the mammalian target of rapamycin 
intracellular signaling pathway in hereditary MTC have been shown [79, 80].  
 
MTC therapy (Table 1) 
 
MTC prognosis depends on tumor size and RET mutations. In fact, it is good for patients with MTC confined 
to the thyroid; however, in 50% of cases, at diagnosis, MTC are already metastatic or locally advanced. In 
these patients there is a worse prognosis (10-year survival rate 40%) [81, 82].  

 
The serum calcitonin (MTC marker) measurement has an important role for an early MTC diagnosis, 
because it has high diagnostic sensitivity and specificity [83]. 
 

In most cases, patients with sporadic MTC have a poorer prognosis because the diagnosis is made late; 
while MEN2A and FMTC are detected early. Three risk levels related RET mutations have been identified 
[32].  
 
In MTC without neck lymph node or distant metastases, ATA Guidelines recommend a total thyroidectomy 
and dissection of the lymph nodes in the central compartment, while the dissection of lymph nodes in the 
lateral compartments is performed after considering serum calcitonin levels; while in patients with MTC 
confined to the neck and cervical lymph nodes, a total thyroidectomy, dissection of the central lymph node 
compartment and resection of the involved lateral neck compartments should be performed [84]. C cells do 
not concentrate iodine, then radiotherapy has no effect on MTC [52]. 
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For locally advanced or metastatic progressive MTC, external beam radiotherapy, systemic chemotherapy 
(doxorubicin alone or in association with other agent such as 5FU and dacarbazine), and other nonsurgical 
therapies should be evaluated to reach tumor control. Chemotherapy treatment in MTC is poor effective. For 
these reasons, the development of new therapies was necessary [85].  
For recurrent or persistent aggressive MTC, tyrosine kinase inhibitors (TKIs) are actually recommended. 
Recently, several TKIs have been tested in phase I, II, and III clinical trials of patients with advanced MTC 
but only vandetanib (2011) and cabozantinib (2012) have been approved by FDA and EMA [84]. 
 
TKIs 
TKIs are molecules that compete with ATP on tyrosine kinase receptors (TKRs), blocking TK activation and 
then oncogenic pathways [86], like RAF, VEGFR, EGFR, MET, platelet-derived growth factor receptor 
(PDGFR), c-KIT, RET kinases. A TKI can block only one TK or several TKs (multikinase inhibitor), in fact 
TKIs have been tested on different cancers including TC [87].  
 
In the last decade, several studies have evaluated a possible use of axitinib, lenvatinib, motesanib, 
pazopanib, sorafenib, sunitinib, cabozantinib and vandetanib alone or in association, in aggressive DTC or 
MTC, but only a few have been approved [50,88,89]. 
 
Cabozantinib  
 
Cabozantinib is an oral once-daily multitarget TK inhibitor of MET, VEGFR2, RET and also acts against KIT 
(mast/stem cell growth factor), AXL, FLT3 (FMS-like tyrosine kinase 3) and Tie-2 (tunica interna endothelial 
cell kinase 2), involved in angiogenesis and cell proliferation [90,91]. Research about c-Met/VEGFR-2 dual 
inhibitor has made considerable progress, and there are several dual inhibitors in clinical research 
(CN103848838) [92]. 
 
All TKs are determinant in the development and progression of TC [93]; inhibiting TKs, cabozantinib avoids 
receptors phosphorylation and thus blocks cell proliferation, angiogenesis, growth and invasiveness of 
tumors [94,95]. 
 
Recently, an in vitro study showed that cabozantinib inhibited cell proliferation in a time-dependent and dose-
dependent manner and had effect on signal transduction pathways in PTC cells harboring RET/PTC1 
rearrangement. Then, it should be used to enhance the expression of iodide-handling genes and inhibit the 
expression of glucose transporter genes [96]. 
 
Cabozantinib (Cometriq, XL184, Exelixis), known variously as N-(4-{[6,7-bis(methyloxy)quinolin-4-
yl]oxy}phenyl)-N'-(4- fluorophenyl)cyclopropane-l,l-dicarboxamide (WO2014165786), was approved in 
November 2012 by FDA for metastatic MTC and in December 2013 by EMA for progressive, unresectable 
locally advanced or metastatic MTC [97,98].  
 
Oral formulations exist: capsules (CN103830203) and dispersible tablets. These latter, compared with 
common tablets, have high solubility, bioavailability, rapid in in vivo distribution, are stable in quality, good in 
taste (CN103751140) [99,100].  
 
The recommended dose is 140 mg once daily (one 80 mg and three 20 mg capsules) and patients should 
not eat 2 hours before and at least 1 hour after intake of cabozantinib. The therapy may be continued until 
disease progression or unacceptable toxicity occurs [101]. 
 
Pharmacokinetic 
 
A phase I study has shown that, after oral administration of 175 mg of cabozantinib (corresponding to 140 
mg free base), a peak plasma concentration has reached, after 5 hours. The half-life was 91.3±33.3 hours 
and steady state plasma levels were reached by day 15. XL184 displayed a linear pharmacokinetic profile; 
175 mg is the maximum tolerated dose [102,103]. Cabozantinib binds to ≥ 99.7% of plasma protein [104].  
In vitro, cabozantinib is a substrate of cytochrome P450 (CYP) 3A4, and CYP2C8 is the CYP isoenzyme 
most potently inhibited by cabozantinib. For the key-role of CYP3A4 in cabozantinib metabolism, use of 
strong CYP3A4 inducers (e.g., phenytoin, carbamazepine, rifampicin, rifabutin, rifapentine, phenobarbital) 
and inhibitors (e.g., ketoconazole, itraconazole, clarithromycin, atazanavir, nefazodone, saquinavir, 
telithromycin, ritonavir, indinavir, nelfinavir, voriconazole) should be avoided when cabozantinib is 
administered. For patients to have therapy with CYP3A4 inhibitor or inducer, the daily dose of cabozantinib 
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may be, respectively, reduced or increased by 40 mg. For the same reason, the patients should no take 
foods or nutritional supplements inducing CYP450 activity [101].  
 
Cabozantinib is an inhibitor, but not a substrate, of P-glycoprotein (P-gp) and then, if co-administered 
substrates of P-gp, its plasma concentrations may increase [105,106]. 
Cabozantinib is not adviced in patients with moderate-to-severe liver impairment while there are no data to 
support its use in patients with a creatinine clearance below 30 mL/min [107].  
 
Preclinical studies 
 
Cabozantinib has shown anti-cancer effects in preclinical models of cancers derived from both epithelial and 
mesenchymal origins (brain, breast, lung, pancreatic and thyroid cancers) [108,109].  
 
A study, conducted on non-small-cell lung cancer (NSCLC) xenografts has demonstrated MET inhibition, 
after administration of oral cabozantinib, and also reduction tumor size with a dose-dependent mechanism 
[110]. 
 
In vitro, a study showed that cabozantinib at low doses (0.1-0.5µM), after four hours incubation, was able to 
inhibit MET phosphorylation and thus to block growth of malignant peripheral nerve sheath tumors and 
metastasis in severe combined immunodeficient (SCID) mice [111].  
 
Yakes et al. evaluated the action of cabozantinib against a panel of about 270 human kinases [90]. The 
results have shown a potent inhibition of MET and VEGFR2, as well as KIT, RET, AXL, TIE2, FLT3. Also, 
cabozantinib inhibits, in vitro, endothelial cell tubule formation (with an antiangiogenetic effect rather than 
cytotoxic). In vivo, XL184 inhibits MET and VEGFR2 phosphorylation and is able to induce hypoxia and 
apoptosis by tumor and endothelial cell death and disruption of tumor vessels. Inhibition of tumor growth (in 
several human tumor models) realizes in a dose dependent manner. Furthermore, unlike other VEGFR2-
targeting drugs, cabozantinib inhibits metastasis [90]. 
 
Another study, conducted in a model of pancreatic carcinoma on RIP-Tag2 transgenic mice, has shown that 
cabozantinib was able to reduce tumor size after 3 weeks (p < 0.05), more than vehicle-treated tumors or 
anti-VEGF antibody. Also, tumors treated with cabozantinib had regular borders, few projections into the 
acinar pancreas; they were less invasive resulting in poor development of liver metastases and a 
prolongated suvival. This study demonstrated that the simultaneous inhibition of VEGFR and c-MET, in 
contrast to the inhibition of VEGFR alone, reduces the metastasis and improves survival [112].  
 
In another study, carried out in vitro in biochemical and cell-based assays, cabozantinib inhibited several 
forms of oncogenic RET kinase, known to be involved in MTC development, and blocked the proliferation of 
TT cells presenting a C634W activating mutation of RET frequently associated with MEN2A and familial 
MTC. In vivo, in MTC tumor model in nude mice, after oral administration of cabozantinib, the tumor was 
reduced dose-dependently, associated with reduced circulating plasma calcitonin levels. Furthermore, in 
vivo, cabozantinib decreased the levels of phosphorylated MET and RET, and tumor cellularity, proliferation, 
and vascularization [113]. In a study on brain lysates of non-tumor-bearing mice, central nervous system 
penetration of XL184 has been evidenced [114].  
 
More recently, a study showed that cabozantinib resolves bone scans in tumor-naïve mice harboring skeletal 
injuries, unlike axitinib or crizotinib [115].  
 
Clinical Trials 
 
Several clinical trials have tested cabozantinib on different tumor types, including prostate cancer, NSCLC, 
MTC and DTC, renal cell carcinoma, gliomas, hepatocellular carcinoma, gastric or gastroesophageal 
junction cancer, melanoma, ovarian cancer and primary peritoneal or fallopian tube carcinoma [116]. 
 
In a prospective phase II trial conducted on patients with RET fusion-positive NSCLCs treated with 
cabozantinib (NCT01639508), preliminary data showed partial response (PR) in 2 patients out of 3, and all 3 
patients remained progression-free on treatment [117].  
 
Several studies of cabozantinib in prostate cancer were carried out and drugs combination of cabozantinib 
and abiraterone have been developed (WO2014165779) [118].  
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A phase II study showed improvement in progression-free survival (PFS) in patients with castration-resistant 
prostate cancer (mCRPC) treated with cabozantinib (100mg daily oral dosing). Also, in these patients a 
reduction of soft tissue tumors and bone turnover markers was observed [119]. Recently, results of two trials 
(COMET-1 and COMET-2), in mCRPC patients, were published. COMET-1 analyzed cabozantinib versus 
prednisone in 1028 patients previously treated with docetaxel and abiraterone and/or enzalutamide and 
concluded that cabozantinib improved bone scan response (BSR) and PFS, but did not significantly increase 
overall survival (OS) [120]. 
 
COMET-2 study compared cabozantinib versus mitoxantrone/prednisone on pain palliation (primary 
endpoint) in mCRPC patients previously treated with docetaxel and abiraterone and/or enzalutamide. Final 
results have shown the failure to achieve the primary endpoint of improving pain response, while an 
improvement in BSR and OS was observed in cabozantinib-treated patients [121].  
Also, several association studies among cabozantinib and other drugs are ongoing. Among these: a) a 
phase I trial of cabozantinib and docetaxel and prednisone in patients with metastatic castration-resistant 
prostate cancer (NCT01683994); b) another study with cabozantinib and panitumumab is ongoing to identify 
the tolerability and maximum-tolerated dose (MTD) to treat KRAS Wild-Type Metastatic Colorectal Cancer 
(NCT02008383); c) also a trial of cabozantinib and gemcitabine in advanced pancreatic cancer 
(NCT01663272) is ongoing. 
 
Clinical trials in MTC 
 
Phase I trial 
 
In a phase I cohort dose escalation study, 25 patients with several advanced tumors were treated across 7 
dose levels of cabozantinib. The study concluded that cabozantinib has a good tolerability profile and 
antitumor activity was evidenced (not associated with toxicity), in patients with cancers including those with 
RET mutations (medullary thyroid) or MET (papillary renal) mutations. In three patients with MTC (one with 
RET mutation), the study showed a substantial reduction in plasma calcitonin [122]. 
 
In another important phase I non-randomized, open-label, uncontrolled, single-group, dose-escalation clinical 
trial, Kurzrock et al. [102] evaluated the safety, pharmacokineticks and MTD of cabozantinib in 85 patients 
with metastatic or unresectable solid tumors or lymphomas not responding to conventional therapy. A cohort 
of 37 metastatic, recurrent and/or local advanced MTC patients was included in the study, of which 22 with a 
somatic RET mutation and 3 with inherited MTC. Also, 16 MTC patients had received previous therapy with 
TKIs. Among patients there were one PTC and one FTC. The patients were administered with 13 dose levels 
with two different plans of administration (intermittent and daily) and formulations of cabozantinib. The MTC 
cohort received fixed daily dose of 175 mg (MTD), with capsules. Evaluation of response, using Response 
Evaluation Criteria in Solid Tumors (RECIST), was carried out in 77 patients, including 35 MTC. Among 
these last, 10 patients obtained a PR, and 3 of these 10 responses occurred in patients previously treated 
with TKIs, including vandetanib and sorafenib. Stable disease (SD) for at least 6 months was observed in 
41% of 37 MTC patients, and SD of at least 3 months in 38% of non-MTC patients. Also, decreased levels of 
calcitonin (from 3 to 99%, below baseline) were observed in 28/30 patients with tumor shrinkage (however 
no correlation has been displayed between size of tumor reduction and decrease of calcitonin levels); 
reduced phosphorylation of MET and RET was observed in skin biopsies from one patient with MTC. In one 
MTC patient, carrier of functioning BRAF mutation but not RET mutation, tumor progression was observed. 
Adverse events (AEs) were observed in 90% of patients; the most frequent grade 1 or 2 AEs were diarrhea, 
fatigue, lack of appetite, nausea, palmar plantar erytrodysesthesia, rash, increased aspartate transaminase, 
vomiting, mucositis, hypertension (14%); also, two cases of hypertension grade 3 and one case of 
pulmonary embolism grade 4 severity were observed. This trial showed effectiveness of treatment with 
cabozantinib in MTC patients, including those who arbor somatic RET mutations, with an acceptable safety 
profile and AEs similar to other TKIs. The reduction of tumor size was evidenced in patients with/without RET 
mutations, and SD and durable tumor shrinkage were observed in 12/15 MTC patients presenting a somatic 
M918T mutation in RET. The results of this trial suggested that the antitumor activity of cabozantinib was 
due to its action against MET and VEGFR2, in addition to RET [102].  
 
Phase III trial 
 
An international, double-blind, randomized trial called EXAM, was conducted in 330 patients who had shown 
radiographic progression of metastatic MTC in the previous 14 months [123]. This study compared 140 
mg/day of cabozantinib with placebo, in a 2:1 ratio; patients were stratified by age (>65 years or ≤ 65 years) 
and prior TKIs therapy. In about 50% of patients, RET mutations were present, mainly M918T (74%), while 
mutation status was unknown in 39% of patients. PFS (primary endpoint) was 11.2 months in the 
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cabozantinib group versus 4.0 months in the placebo group (hazard ratio, 0.28; 95% CI, 0.19 to 0.40; p 
<0.001) with an improvement of PFS independent of age, bone metastases, RET status and prior treatment. 
Kaplan-Meier estimates of patients alive and progression-free at 1 year were 47.3% for cabozantinib, and 
7.2% for placebo. In the cabozantinib group of patients, response rate (partial) was 28% (duration of 
response of 14.6 months), and it was similar in RET + and RET- patients. A reduction of lesion size was 
observed in 94% of patients in the cabozantinib arm, versus 27% in the placebo arm. Moreover, a significant 
decrease of calcitonin and CEA levels were observed in the cabozantinib treated patients, from baseline to 
week 12, compared with an increase in the placebo group. This reduction was correlated to the reduction of 
the size of target lesions [123].  
 
At the American Society of Clinical Oncology (ASCO) 2013 meeting, data relating to RET mutation, were 
presented: PFS was significantly better in patients with RET mutation (60 weeks versus 20 weeks), with an 
improvement in OS in M918T patients [14]. In 69% of the cabozantinib group (33% of placebo), AEs grade 3 
or 4 severity were observed, such as diarrhea (15.9%), palmar plantar erythrodysesthesia (12.6%), fatigue 
(9.3%) and hyperthension (8.4%). Also, increase of thyroid-stimulating hormone level was shown in 57% of 
cabozantinib patients versus 19% of placebo patients. Grade 5 AEs (fistula, respiratory failure, hemorrhage, 
multiorgan failure and sepsis, hepatic failure, sudden death, cardiopulmonary failure, pneumonia and others) 
were reported in 7.9% of cabozantinib-treated patients and 7.3% of placebo-treated patients. The 
appearance of AEs has led to the need of reduction dose in 79% (9% in placebo) and interruption of 
cabozantinib therapy in 65% (versus 17%) of patients [123].  
 
Clinical trials in DTC 
 
Phase I trial 
More recently, the studies on cabozantinib were extended to patients with metastatic DTC, because often, 
they have activation on TKs, including MET (overexpressed in about 90% of PTC), VEGFR2 and RET. This 
suggests the possible use of cabozantinib in metastatic DTC [124,125]. 
 
Cabanillas et al. have studied cabozantinib tolerability, safety, and antitumor activity in DTC patients, in a 
single-arm open-label drug-drug interaction phase I trial [126]. The study involved 15 patients with 
progressive DTC resistant to RAI (7 with PTC, 5 with FTC and 3 with Hurthle cell carcinoma). Among 
patients with DTC, 11 were administered with prior VEGF pathway inhibitor therapy and one patient 
underwent prior chemotherapy. Patients received daily 140 mg free base (equivalent to 175 mg salt) of 
cabozantinib. PR occurred in 53% of patients (5 patients with PTC and 3 patients with FTC) with a duration 
from 2.0 to 14.5 months and SD occurred in 40% (in 4 patients SD for 6 months or more). Thirteen patients 
have reported at least one AE grade 3 or higher; among these the most frequent were diarrhea (20%) and 
hypertension (13%), but also lack of appetite, fatigue, vomiting, weigth decreased. Two patients had grade 4 
AEs (myocardial infarction and aspiration pneumonia) and one patient died for aorto-tracheal fistula. For the 
development of AEs, a dose reduction (3 patients reduced one dose level to 100 mg and 11 patients two 
dose levels to 60 mg) was necessary in all 14 evaluable patients. All patients with PR achieved their 
response after reduction dose of cabozantinib to 100 mg or 60 mg, maintaining the response with lower 
doses. Tumor regression, by magnetic resonance imaging or computed tomography scan, was observed in 
all 14 evaluable patients. Improvement of median PFS and median OS were not obtained, with a median 
follow-up, respectively of 12 and 26 months. This trial showed that cabozantinib was well tolerated also in 
advanced DTC showing in DTC a safety profile like the one of other VEGFR-TKIs [126]. 
 
Actually, two phase II trials of cabozantinib in DTC patients resistant to RAI are ongoing (NCT01811212 and 
NCT02041260).  
 
AEs  
 
Gastrointestinal AEs of cabozantinib include serious gastrointestinal perforations and fistulas, observed 
respectively in 3% and 1% of patients. For this reason, patients with perforations or fistulas should not take 
cabozantinib. 
 
Cabozantinib may cause serious and sometimes deadly hemorrhage, and increases risk of thrombotic 
events rather than placebo. Thromboembolic risk is greater in the venous district than in arterial (6% versus 
2%); in case of occurrence of thromboembolic arterial events or acute myocardial infarction, cabozantinib 
should be discontinued. Treatment should be interrupted at least 28 days before scheduled surgery. It’s also 
recommended blood pressure monitoring before and during treatment in patients treated with cabozantinib 
because an increased incidence of hypertension was observed in 61% of patients [101].  
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Other reported AEs are osteonecrosis of the jaw (1%) [127], hand–foot syndrome (50%) [128], proteinuria 
(2%), reversible posterior leukoencephalopathy syndrome; while, subcortical vasogenic edema occurred in 
one patient [129].  
Published data showed that cabozantinib may cause thyroid dysfunctions (93.1%), from subclinical 
hypothyroidism (predominant disease), to symptomatic thyrotoxicosis. Then, an assessment of thyroid 
function before therapy with cabozantinib and  during follow-up is needed [130]. 
 
Recently, a study in patients with urothelial carcinoma concluded that cabozantinib monotherapy is 
associated with 1 or more cutaneous AE in most patients (73%). In this study, AEs included hand-foot 
syndrome, hair depigmentation, xerosis, scrotal erythema/ulceration and nail splinter hemorrhages [131]. 
 
Drug resistance and limits 
 
The efficacy of cabozantinib in patients with DTC, even if promising, is limited by the occurrence of drug 
resistance, that might depend on the activation of different mitogenic signals [132].  
Inhibition of a single TKR can cause compensatory signaling that maintains cell growth; for example, 
targeting the VEGFR alone could promote tumor growth due to compensatory upregulation of MET. By 
targeting VEGF and MET, cabozantinib blocks the MET-driven resistance to agents that inhibit either target 
independently. These therapies cannot be administered to some patients, owing to specific RET mutations 
confering resistance (RET V804 confers resistance to vandetanib) that has not yet been shown with 
cabozantinib [133]. 
 
The combination with other drugs [docetaxel and prednisone (NCT01683994); panitumumab 
(NCT02008383); gemcitabine (NCT01663272)] has been recently proposed to overcome this resistance (see 
above). 
 
To personalize the cabozantinib therapy in each patient with MTC or DTC, attempts have been made on the 
basis of the genetic characterization of the tumor [134].  
 
More recently it has been suggested the possibility to evaluate the sensitivity of primary DTC or MTC cells 
from each subject to different TKIs to ameliorate the effectiveness of the treatment [135,136].  
In vitro drug screening, using primary human neoplastic cells, could predict the activity of clinical responses 
[137,138], preventing the administration of inactive drugs, potentially dangerous, to the patients. In fact, a 
positive (in vitro) chemosensitivity test (using primary human neoplastic cells) predicts in vivo effectiveness 
(in the same patient) in 60% of cases, while a negative (in vitro) is associated with a 90% of ineffectiveness 
of the therapy in vivo [137,138]. 
 
Primary human TC cell cultures can be obtained, from dedifferentiated PTC [139], from ATC [140], and also 
fom MTC [141,142], from surgical samples. However, more recently, it has been shown the possibility to 
establish primary cell cultures from FNA samples of TC opening the way to the use of FNA-cells to evaluate 
the preclinical sensitivity to different therapies in each patient [143-146]. 
 
Cabozantinib in other cancers 
 
Cabozantinib is currently undergoing in clinical trials in a broad panel of other solid epithelial malignancies, 
including brain, ovary, bladder, melanoma, pancreas, prostate, and NSCLC tumors [130, 147-152]. 

 
Current & Future Developments 
 
Cabozantinib is an oral once-daily multitarget tyrosine kinase inhibitor (TKI) of MET, VEGFR2, RET, acting 
against KIT, AXL, FLT3 and Tie-2. Cabozantinib inhibits TKs, avoids receptors phosphorylation and blocks 
cell proliferation, angiogenesis, growth and invasiveness of tumors. Cabozantinib has shown anti-cancer 
effects in preclinical models of cancers derived from both epithelial and mesenchymal origins (brain, breast, 
lung, pancreatic and thyroid cancers). 
 
Several clinical trials tested cabozantinib on different tumor types [prostate cancer, NSCLC, MTC and DTC, 
renal cell carcinoma, etc.].  
 
In a phase III clinical study, cabozantinib improved PFS (11.2 months versus 4.0 months in the placebo 
group) of patients with MTC (independently of age, bone metastases, RET status and prior treatment). 
Cabozantinib was approved in 2012 by FDA for metastatic MTC and in 2013 by EMA. Cabozantinib has 
been also evaluated in metastatic DTC patients, because they have activation on TKs, including MET, 
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VEGFR2 and RET, suggesting the possible use of cabozantinib in metastatic DTC. Actually, two phase II 
trials of cabozantinib in DTC patients resistant to RAI are ongoing. 
 
To increase the antineoplastic effect of cabozantinib, and to overcome the occurence of drug resistance, 
combination studies with other anticancer agents are ongoing. To personalize the cabozantinib therapy in 
each patient with MTC or DTC, attempts have been made on the basis of the molecular characterization of 
the tumor. More recently, it has been suggested the possibility to evaluate the in vitro sensitivity of primary 
DTC or MTC cell cultures from each subject to different TKIs to ameliorate the effectiveness of the treatment, 
preventing the administration of inactive drugs, potentially dangerous, to the patients. 
 
In  conclusion cabozantinib has shown to exert an important therapeutic effect in patients with MTC 
improving PFS. In DTC patients, cabozantinib has shown promising results, suggesting that in the next 
future it will be an alternative to sorafenib in these patients. 
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Table 1. The different types of thyroid cancers and the classical treatments applied for each of them. 

 

Types of thyroid cancers	
   Applied treatments  

Differentiated thyroid cancer   
 
PTC and FTC 

	
  

	
  

	
  

	
  

	
  

	
  

 

Progressive and aggressive cancers (untreatable 
with RAI)	
  

 

 

Surgery (total thyroidectomy) is the first-line 
treatment, with subsequent RAI ablation in 
intermediate to high-risk TC patients, while 
levothyroxine therapy is indicated in all patients. 
After treatment, long-term follow-up is very 
important, dosing thyroglobulin (Tg) and neck 
ultrasonography 

 

Systemic (as chemotherapeutic agents and kinase 
inhibitors - sorafenib and lenvatinib are approved by 
FDA and EMA for the treatment of aggressive DTC) 
and/or locoregional therapy (external-beam radiation 
therapy, resection, stereotaxic radiotherapy) may be 
recommended (although not curative)	
  

 

Medullary thyroid cancer 

 

MTC without neck lymph node or distant metastases 

 

 

 

 

 

MTC confined to the neck and cervical lymph nodes 

 

 

 

Progressive, unresectable locally advanced or 
metastatic MTC  

 

 

 

 

	
  

	
  

 

 

ATA Guidelines recommend a total thyroidectomy 
and dissection of the lymph nodes in the central 
compartment, while the dissection of lymph nodes in 
the lateral compartments is performed after 
considering serum calcitonin levels 

 

A total thyroidectomy, dissection of the central lymph 
node compartment and resection of the involved 
lateral neck compartments should be performed 

 

External beam radiotherapy, systemic chemotherapy 
(doxorubicin alone or in association with other agent 
such as 5FU and dacarbazine), and other 
nonsurgical therapies should be evaluated to reach 
tumor control.  Chemotherapy treatment in MTC is 
poor effective and the development of new therapies 
was necessary. TKIs are actually recommended:  
vandetanib (2011) and cabozantinib have been 
approved by FDA (2012) and EMA (2013)	
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DTC differentiated thyroid cancer; EMA European Medicines Agency; FDA US Food and Drug 
Administration; FTC follicular thyroid cancer; MTC medullary thyroid cancer; PTC papillary thyroid cancer; 
RAI radioiodine; TC thyroid cancer; TKIs tyrosine kinase inhibitors. 

 

 

Anaplastic thyroid cancer	
  

	
  

Surgery (total thyroidectomy), external beam 
radiotherapy, systemic chemotherapy and other 
nonsurgical therapies should be evaluated (TKIs)	
  


