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Abstract

Reaction systems are a qualitative formalism for modeling systems of biochemical reactions char-
acterized by the non-permanency of the elements: molecules disappear if not produced by any en-
abled reaction. Moreover, reaction systems execute in an environment that provides new molecules
at each step. Brijder, Ehrenfeucht and Rozenberg investigated dynamic causalities in reaction sys-
tems by introducing the idea of predictors. A predictor of a molecule s, for a given n, is the set of
molecules to be observed in the environment in order to determine whether s is produced or not
by the system at step n.

In this paper, we continue the investigation on dynamic causalities by defining an abstract in-
terpretation framework containing three different notions of predictor: Formula based predictors,
that is a propositional logic formula that precisely characterizes environments that lead to the pro-
duction of s after n steps; Multi-step based predictors, that consists of n sets of molecules to be
observed in the environment, one for each step; and Set based predictors, that are those proposed
by Brijder, Ehrenfeucht and Rozenberg, and consist of a unique set of molecules to be observed in
all steps.

For each kind of predictor we define an effective operator that allows predictors to be computed
for any molecule s and number of steps n. The abstract interpretation framework allows us to
compare the three notions of predictor in terms of precision, to relate the three defined operators
and to compute minimal predictors. We also discuss a generalization of this approach that allows
predictors to be defined independently of the value of n, and a tabling approach for the practical use
of predictors on reaction systems models. As an application, we use predictors, generalization and
tabling to give theoretical grounds to previously obtained results on a model of gene regulation.

Keywords: Reaction systems, Dynamic causalities, Abstract interpretation.

1. Introduction

In the last decades, the mechanisms underlying the functioning of living cells have been the
source of inspiration of many formalisms and notations in the field of Natural Computing [1, 2].
Many of these formalisms are based on rewriting approaches. This is due to the similarity between
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rewrite rules and chemical reactions (that govern the functioning of living cells) and to the fact that
rewriting approaches can be studied from the viewpoint of computing power with techniques that
are typical of the theory of formal languages.

Among the proposed formalisms based on rewriting we mention [3, 4, 5]. Each of them deals
with a different peculiar aspect of the function of living cells, that is exploited as the main comput-
ing feature. Membrane systems [3, 4], for instance, exploit maximal parallelism in the application
of rewrite rules and the hierarchical membrane structure of living cells. On the other hand, Spik-
ing Neural P Systems [5] exploit neuron signaling mechanisms. In addition to these, a number of
variants of the membrane systems formalisms have been investigated [6, 7, 8, 9, 10, 11, 12].

Reaction systems [13, 14] have been introduced by Ehrenfeucht and Rozenberg as a novel
model for the description of biochemical processes driven by the interaction among reactions
in living cells. Reaction systems are based on two opposite mechanisms, namely facilitation
and inhibition. Facilitation means that a reaction can occur only if all its reactants are present,
while inhibition means that the reaction cannot occur if any of its inhibitors is present. A rewrite
rule of a reaction system (called reaction) is hence a triple (R, I, P), where R, I and P are sets
of objects representing reactants, inhibitors and products of the modeled chemical reaction. A
reaction system is represented by a set of reactions having such a form, together with a (finite)
support set S containing all of the objects that can appear in a reaction.

The state of a reaction system consists of a finite set of objects, describing the biological
entities that are present in the real system being modeled. In particular, the presence of an object
in the state expresses the fact that the corresponding biological entity, in the real system being
modeled, is present in a number of copies as high as needed. This is called the threshold supply
assumption and characterizes reaction systems as a qualitative modeling formalism.

A reaction system evolves by means of the application of its set of reactions. A reaction is
applicable if its reactants are present and its inhibitor are not present in the current state of the
system. The threshold supply assumption ensures that the application of different reactions never
compete for their reactants, and hence all the applicable reactions in a step are always applied. The
result of the application of a set of reactions results in the introduction of all of their products in the
next state of the system. Reaction systems assume the non permanency of the elements, namely
unused elements are never carried over to the next state. In particular, the next state consists only
of the products of the reactions applied in the current step. This is one of the most original bio-
inspired features of reaction systems that distinguishes it from the other formalisms mentioned
above.

The overall behavior of a reaction system model is driven by the (set of) contextual elements
which are received from the external environment at each step. Such elements join the current state
of the system and, as the other objects in the system state, can enable or disable reactions. The
computation of the next state of a reaction system is a deterministic procedure. However, since the
contextual elements that can be received at each step can be any subset of the support set S , the
overall system dynamics is non deterministic.

Reaction systems have been used to model various features which are useful both for the
modeling of computational devices and for the modeling of biological systems. For example,
binary counters [13] form the basis for the inclusion of a notion of time [15]. In [16] an extension
with duration of reaction systems is presented. Theoretical aspects of reaction systems have been
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studied in [17, 18, 19, 20, 21, 22, 23]. From the biological viewpoint, a model of the lac operon
has been presented in [24].

In [18] Brijder, Ehrenfeucht and Rozenberg initiate an investigation of causalities in reaction
systems, i.e. the ways that entities of a reaction system influence each other. Both static/structural
causalities as well as dynamic causalities are discussed, introducing the idea of predictor. Assume
that one is interested in a particular object s ∈ S and in knowing if that object s will be present
after n steps of execution of the reaction system. Since the only source of non-determinism are the
contextual elements received at each step, knowing which objects will be received at each step can
allow the creation of s after n steps to be predicted. The concept of predictor is based on the idea
that, in general, not all contextual elements are relevant for determining if s will be produced after
n steps. Indeed, for given s and n, there might be a subset Q of S which is the part of S that it is
essential to observe in contextual elements for predicting whether s will be produced after n steps
or not. Such set Q can then be used to concentrate uniquely on the relevant part of the contextual
elements received from the external environment at each step, ignoring all elements that are surely
not involved in the production of s in n steps. If two different sequence of contextual sets become
equal after dropping elements not in Q, we can be sure that they both determine either the presence
or the absence of s after n steps. In other words, Q is a subset of S which is a cause for s to be
uniformly either present or absent after n steps. Brijder et al. define such Q the predictor of s in
n steps, since knowing the behavior of the system with a sequence of contextual element, allows
us to predict the behavior of such system with any other sequence having the same sets of relevant
contextual elements.

Following these ideas, predictors can be profitably used to decide whether s will appear or not
after n steps, without executing the reaction system, by following an approach based on tabling.
Given a reaction system and a predictor for it, a table can be constructed that contains one line for
every possible sequence of contextual sets consisting only of elements of the predictor. Each line
should indicate whether for such a sequence the symbol for which the predictor has been defined
is actually produced after n steps or not. Then, when an observed system has to be evaluated, this
should be done by considering the sequence of objects it receives from the context restricted to
the elements of the predictor. The obtained sequence can then be used to access the previously
constructed table and predict whether the object of interest will be produced or not.

We believe that the concept of predictor is very interesting and therefore deserves further and
deeper investigation. In this paper we push forward the previous idea of a predictor by defin-
ing three different notions of predictor for Reaction Systems. The first notion is that of formula
based predictors, namely predictors that consist in a propositional logic formula to be satisfied
by contextual elements of a given reaction system. This is the most precise predictor that can be
considered: satisfaction (or not) of the logic formula will discriminate the cases in which s will be
produced after n steps from those in which it will not be produced.

The second notion of predictor we define is that of multi-step based predictors, namely predic-
tors that consists of sets of objects to be observed in contextual elements at each step of execution
of the reaction system. Predictors of this kind are more accurate than predictors as defined in [18]
since they require one to consider only those contextual objects that are relevant for that particular
step of the computation. Multi-step based predictors are, however, less precise than formula based
predictors since there can be two sequences of contextual elements that both lead to the production
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(or non-production) of the considered object but behave differently as regards the observed objects
at each step.

Finally, we define set based predictors, a revised version of the notion of predictor as defined
in [18]. These are the least precise kind of predictor since they require the same set of objects to
be observed in all steps of the computation of the reaction system.

To relate the three kinds of predictor and their properties we introduce a formal framework
based on the Abstract Interpretation theory [25, 26]. This approach allows us to introduce the
notions of predictor by successive approximations and to define abstraction functions between
the corresponding domains which model the loss of information (i.e. the approximation) in a
formal way. As expected, set based predictors can be obtained as abstraction of multi-step based
predictors, that, in turn, can be obtained as abstraction of formula based predictors. Moreover, for
any kind of predictor, we define a corresponding operator that allows it to be effectively computed.
We show that minimal predictors exist for a given object s and a number of steps n and we give a
way to systematically compute them.

It is worth noting that the gain in precision of the newly introduced notions of predictor has a
great influence on the practical application of predictors that is to determine whether an object s
will appear after n steps using a tabling approach. Indeed, while the table to be constructed in the
case of the original proposal of predictors by Brijder et al. contains a very high number of rows,
that is exponential in the number of steps n multiplied by the cardinality of the predictor Q, our
new concepts of formula and multi-step based predictors can result in tables that are significantly
smaller. As an example consider the following quite simple reaction system consisting of the
following reactions:

a1 = ({A}, {}, {B}) a2 = ({C}, {}, {D}) a3 = ({E}, {}, {F})
a4 = ({B, D}, {}, {G, H}) a5 = ({F}, {B}, {G}).

According to the definition of predictor given by Brijder et al., a (set based) predictor of G in 2
steps is the set Q = {A, B, C, D, E, F}. Consequently, in order to use the tabling approach it would be
necessary to construct a table with 26×2 = 4196 rows. As we will show, by using our new notion
of multi-step predictor, in this example, the number of rows for such table is drastically reduced to
26 = 64. Furthermore, by using the most precise notion of predictor we propose, namely formula
based predictor, such a number of rows becomes even smaller since it is equal to 6. Such a big
difference in the numbers of rows is an indicator of the difference in precision (less rows means
higher precision) and practical usability of the different notions of predictor.

Finally, note that the notion of predictor has a great limitation, it is related to the production of
an object s ∈ S in a fixed number of steps n. In principle, if the number of steps of interest varies,
it would be necessary to compute a different predictor for each possible value of such a parameter.
We claim that this limitation can be partially overcome by our formula based predictors. Indeed,
they have a great advantage, that is, in many cases they can be easily generalized in order to obtain
a parametric formula expressing predictors for arbitrary numbers of steps.

In order to illustrate the interest of the concepts introduced in the paper we consider a rather
complex biological example, the lac operon expression in the E. coli bacterium a model presented
in [24]. We apply the three kinds of predictor (and the generalization technique) to give a for-
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mal ground to the conclusion reached in [24], and we show how the generalization and tabling
approaches can be applied to this example of biological system.

The paper is organized as follows. Section 2 contains the background material on Abstract
Interpretation and Reaction Systems. Section 3 presents some formal concepts that are used in
all the definitions of predictors. The new notion of formula based predictor and all the related
properties can be found in Section 4. In Section 5 we propose the new notion of multi-step based
predictor and we prove all its properties. Section 6 contains the notion of set based predictor (a
revised version of the notion of predictor proposed in [18]). In Section 7 we discuss two aspects
of the practical use of predictors on reaction systems. More specifically, Section 7.1 considers the
generalization of predictors while Section 7.2 illustrates the tabling approach. Section 8 presents
the application of our approach to the biological system presented in [24]. Finally, our conclusions
can be found in Section 9.

For the sake of readability, all proofs have been moved to the Appendix.

2. Background

2.1. Abstract Interpretation
Abstract Interpretation is a well-known theory [25, 26] which has been proposed in order to

design abstract semantics and static analysis and to formally reason about the concept of approxi-
mation.

The abstract interpretation theory has been successfully used for formally comparing different
semantics of program languages, systematically define new semantics at different level of abstrac-
tion and construct hierarchy where well known semantics were related with each other by means
of abstract and concretization functions.

In order to formally reason about the approximation relation between elements of different
domains, the guiding idea is that of approximating properties on the exact (concrete) domain with
elements of an approximate (abstract) domain. That approximation relation can be formalized by
introducing a pair of functions, the abstraction α and the concretization γ, which provide a Galois
connection between the concrete and the abstract domains.

Let (C,≤C) be a partially ordered domain and (A,≤A) be an abstract partially ordered domain,
the abstraction α is a mapping associating an element α(c) of (A,≤A) to each concrete element c of
(C,≤C). Since in this theory the partial order specifies the precision degree of any abstract object,
we have that if α(c) ≤A a, then a is also a correct approximation, although in general less precise,
abstract approximation of c. More formally we have the following definition.

Definition 2.1 (Galois Insertion). Let (C,≤C) and (A,≤A) be two posets. A Galois Connection is a
pair of maps α : C → A and γ : A→ C such that

1. α and γ are monotone, that is c1 ≤C c2 implies α(c1) ≤A α(c2), and a1 ≤A a2 implies
γ(a1) ≤C γ(a2),

2. for each c ∈ C, c ≤C γ(α(c)) and
3. for each a ∈ A, α(γ(a)) ≤A a.

A Galois Insertion is a Galois connection where, γ is injective; or equivalently for each a ∈ A,
α(γ(a)) = a.
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Let f be an operator on the concrete domain (C,≤C), the corresponding abstract operator on
the abstract domain (A,≤A), can be systematically obtained using the Galois connection.

Definition 2.2. Let (α, γ) be a Galois connection of (C,≤C) into (A,≤A) and f be a function D→ C
for a given set D. A monotone abstract function f : D → A is a correct approximation of f if, for
each d ∈ D,

α( f (d)) ≤A f (d).

Moreover, f : D→ A is an optimal (most precise) correct approximation of f if, for each d ∈ D,

α( f (d)) = f (d).

Moreover, abstract interpretation can be formalized in a hierarchical framework. In fact, given
the Galois connections (or insertions) (α1, γ1) between (C,≤C) and (A,≤A), and (α2, γ2) between
(A,≤A) and (B,≤B) it can be shown that (α, γ) is a Galois connection (or insertion) between (C,≤C)
and (B,≤B), where α := α2◦α1 and γ := γ1◦γ2. Therefore abstract interpretations can be designed
by successive approximations.

2.2. Reaction Systems
In this section we recall the basic definition of reaction systems [13, 14]. Let S be a finite set

of symbols, called objects (or entities). A reaction is formally a triple (R, I, P) with R, I, P ⊆ S ,
composed of reactants R, inhibitors I, and products P. We assume reactants and inhibitors to be
disjoint (R∩ I = ∅), otherwise the reaction would never be applicable. The reactants and inhibitors
R ∪ I of a reaction are collectively called the resources of this reaction. The set of all possible
reactions over a set S is denoted by rac(S ). Finally, a reaction system is a pairA = (S , A), with S
being a finite background set, and A ⊆ rac(S ) being its set of reactions.

The state of a reaction system is described by a set of objects. Regarding the dynamics of
a reaction system, reaction systems are based on the “threshold supply” assumption which, in
words, means that if an object is present in the state then it is assumed to be available in any
arbitrary number of copies as needed. In fact, reaction systems can be seen as a qualitative model,
rather than a quantitative one.

Let a = (Ra, Ia, Pa) be a reaction and T a set of objects. The result resa(T ) of the application
of a to T is either Pa, if T separates Ra from Ia (i.e. Ra ⊆ T and Ia ∩ T = ∅), or the empty set ∅
otherwise. Because of the threshold supply assumption, the application of multiple reactions at the
same time occurs without any competition for the used reactants. Therefore, each reaction which
is not inhibited can be applied, and the result of application of multiple reactions is cumulative.
Formally, given a reaction system A = (S , A), the result of application of A to a set T ⊆ S is
defined as resA(T ) = resA(T ) =

⋃
a∈A resa(T ).

The dynamics of a reaction system is driven by the contextual objects, namely the objects
which are supplied to the system by the external environment at each step. An important char-
acteristic of reaction systems, which distinguishes them from most other biologically-inspired
computational models, is the assumption about the non-permanency of objects. Under such an
assumption the objects carried over to the next step are only those objects which are produced
by reactions. On the other hand, all the other objects vanish, even if they are not “used” by any
reaction, i.e. unused objects are never carried over to the next step.
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Formally, the dynamics of a reaction system A = (S , A) is defined as an interactive process
π = (γ, δ), with γ and δ being finite sequences of sets of objects called the context sequence
and the result sequence, respectively. The sequences are of the form γ = C0,C1, . . . ,Cn and
δ = D0,D1, . . . ,Dn for some n ≥ 1, with Ci,Di ⊆ S , and D0 = ∅. Each set Di, for i ≥ 1, in the result
sequence is obtained from the application of reactions A to a state composed of both the results of
the previous step Di−1 and the objects Ci−1 from the context; formally Di = resA(Ci−1 ∪ Di−1) for
all 1 ≤ i ≤ n. Finally, the state sequence of π is defined as the sequence W0,W1, . . . ,Wn, where
Wi = Ci ∪ Di for all 1 ≤ i ≤ n. In the following we say that γ = C0,C1, . . . ,Cn is a n-step context
sequence.

Reaction systems can be simplified by using the method proposed in [24]. Simplification of
reaction systems is based on a simplification method for boolean expressions, and allows the
number of reactions to be potentially reduced by obtaining a functionally equivalent [13] reaction
system.

Given a reaction system, a predictor [18] of an object s ∈ S after n steps is a set of objects
Q ⊆ S that includes all of those that are essential to determine whether s is produced or not at step
n of the execution of the system. More formally, Q ⊆ S is a predictor of s at step n if for any two
n-steps interactive processes π1 = (γ1, δ1) and π2 = (γ2, δ2) the following holds: if the projections
on Q of γ1 and γ2 are equal1, then either s is in both in the n-th sets of δ1 and δ2, or in none of
them. In [18] it is shown that for every reaction system, object s ∈ S and value n ∈ IN, there exists
a unique minimal (w.r.t. set inclusion) predictor for s in n steps.

3. Preliminaries

We start with defining some notions that will be used in all of the three definitions of predictor
we will give. We adopt propositional logic formulas parametric with respect to propositional
symbols.

Definition 3.1 (Logic Formulas). Let P be a set of propositional symbols. The set FP of proposi-
tional logic formulas on P is inductively defined as follows:

• true, f alse ∈ FP,

• if p ∈ P then p ∈ FP,

• if f ∈ FP then ¬ f , ( f ) ∈ FP,

• if f1, f2 ∈ FP then f1 ∨ f2, f1 ∧ f2 ∈ FP.

In the following ≡l stands for the logical equivalence on propositional formulas FP. Moreover,
given a formula f ∈ FP we use atom( f ) to denote the set of propositional symbols that appear in f
and simpl( f ) to denote the simplified version of f . The simplified version of a formula is obtained
by applying the standard formula simplification procedure of propositional logic converting a for-
mula to Conjunctive Normal Form. We recall that for any formula f ∈ FP the simplified formula

1The projection of γ = C0,C1, . . . ,Cn on a set of objects Q is defined as γ′ = C0 ∩ Q,C1 ∩ Q, . . . ,Cn ∩ Q.
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simpl( f ) is equivalent to f , it is minimal with respect to the propositional symbols and unique up
to commutativity. Thus, we have f ≡l simpl( f ) and atom(simpl( f )) ⊆ atom( f ) and there exists no
formula f ′ such that f ′ ≡l f and atom( f ′) ⊂ atom(simpl( f )) .

In order to describe the causes of a given object we use objects of reaction systems as proposi-
tional symbols. First of all we define the applicability predicate of a reaction a as a propositional
logic formula on S describing the requirements for applicability of a, namely that all reactants
have to be present and inhibitors have to be absent. This is represented by the conjunction of
all atomic formulas representing reactants and the negations of all atomic formulas representing
inhibitors of the considered reaction.

Definition 3.2. Let a = (R, I, P) with R, I, P ⊆ S for a finite set of objects S . The applicability
predicate of reaction a, denoted by ap(a), is the following propositional logic formula:

ap(a) =

∧
sr∈R

sr

 ∧
∧

si∈I

¬si

 .
Given a reaction system, we can now define the causal predicate of a given object s. The

causal predicate is a logic formula on S representing the conditions for the production of s in one
step, that is the fact that at least one reaction having s as a product has to be applicable (as specified
by the applicability predicate of such reactions).

Definition 3.3. Let A = (S , A) be a r.s. and s ∈ S . The causal predicate of s in A, denoted by
cause(s,A) (or cause(s), whenA is clear from the context), is defined as follows.

cause(s,A) =
∨

{a∈A|a=(R,I,P),s∈P}

ap (a) .

Note that, since as usual the disjunction of zero clauses is false, we have that cause(s) = f alse
if there is no (R, I, P) ∈ A such that s ∈ P.

We introduce simple two reaction systems as running examples.

Example 3.1. LetA1 = ({A, B, C, D, E, F, G, H}, {a1, a2, a3, a4, a5}) be a reaction system with reaction
rules

a1 = ({A}, {}, {B}) a2 = ({C}, {}, {D}) a3 = ({E}, {}, {F})
a4 = ({B, D}, {}, {G, H}) a5 = ({F}, {B}, {G}).

The applicability predicates of the reactions are

ap(a1) = A ap(a2) = C ap(a3) = E

ap(a4) = B ∧ D ap(a5) = F ∧ ¬B.

Thus, the causal predicates of the objects are

cause(A) = f alse cause(B) = A cause(C) = f alse
cause(D) = C cause(E) = f alse cause(F) = E

cause(H) = B ∧ D cause(G) = (F ∧ ¬B) ∨ (B ∧ D).

Note that cause(A) = f alse given that A can not be produced by any reaction. An analogous
reasoning holds for objects C and E.
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Example 3.2. LetA2 = ({I, L, M, N, O}, {a6, a7, a8, a9}) be a reaction system with reaction rules

a6 = ({I}, {}, {L}) a7 = ({M}, {}, {L})
a8 = ({N}, {O}, {I}) a9 = ({N}, {}, {M}).

In this case the applicability predicates of the reactions are

ap(a6) = I ap(a7) = M

ap(a8) = N ∧ ¬O ap(a9) = N.

Thus, the corresponding causal predicates are

cause(I) = N ∧ ¬O cause(L) = I ∨ M cause(M) = N

cause(N) = f alse cause(O) = f alse.

Given a set of objects S , we consider a corresponding set of labelled objects S × IN. Labelled
objects will be used to relate objects with execution steps of a reaction systems. For example,
we may use the labelled object (s, 3) to denote the presence of object s in the element C3 of a
context sequence (that is the context of the reaction system at the third step of execution). For the
sake of legibility, we denote (s, i) ∈ S × IN simply as si and we introduce S n =

⋃n
i=0 S i where

S i = {si | s ∈ S }.

4. Formula Based Predictors

We introduce formula based predictors, namely predictors that consist in a propositional logic
formula to be satisfied by context sequences of a given reaction system. We prove that minimal
formula based predictors exist with respect to an approximation order on formulas. Finally, we
define an operator to calculate in a systematic way a minimal formula based predictor for a given
object s at step n + 1.

Labelled objects will be used in propositional logic formulas describing properties of context
sequences. Specifically, a logic formula on labelled objects S n describes the properties of n-step
context sequences. A labelled object si represents the presence (or the absence, if negated) of
object s in the i-th element Ci of the context sequence γ = C0,C1, . . .Cn. This is formalized by the
following definition that relates context sequences and propositional formulas.

Definition 4.1. Let γ = C0,C1, . . .Cn a context sequence and f ∈ FS n a propositional logic for-
mula. We say that γ satisfies f if and only if γ |= f where the satisfaction relation |= is inductively
defined as follows:

• γ |= true;

• γ |= si iff s ∈ Ci;

• γ |= ( f ′) iff γ |= f ′;

• γ |= ¬ f ′ iff γ 6|= f ′ (as usual, γ 6|= f holds if it is not the case that γ |= f );
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• γ |= f1 ∨ f2 iff γ |= f1 or γ |= f2;

• γ |= f1 ∧ f2 iff γ |= f1 and γ |= f2.

As an example, let us consider the context sequence γ = C0,C1 where C0 = {A, C} and C1 = {B}.
We have that γ satisfies the formula A0 ∧ B1 (i.e. γ |= A0 ∧ B1) while γ does not satisfy the formula
A0 ∧ (¬B1 ∨ C1) (i.e. γ 6|= A0 ∧ (¬B1 ∨ C1)).

Based on the previous notion, we introduce an equivalence relation between context sequences.

Definition 4.2. Let γ1 and γ2 be n-step context sequences and f ∈ FS n a propositional logic
formula. We say that γ1 ≈

n
f γ2 iff

γ1 |= f ⇔ γ2 |= f .

The equivalence relation ≈n
f equates n-step context sequences that have the same behavior with

respect to formula f (either both satisfy it, or both do not satisfy it). This equivalence relation is
useful to define the notion of formula based predictor for reaction systems: a formula f is a
predictor for object s in n + 1 steps if two context sequence equated by ≈n

f will either both lead or
both not lead to the production of object s in n + 1 steps.

Definition 4.3 (Formula based Predictor). LetA = (S , A) be a reaction system, s ∈ S and f ∈ FS n

a propositional logic formula. We say that f f-predicts s in n + 1 steps if for all n-step context
sequences γ1 = C1

0, . . . ,C
1
n and γ2 = C2

0, . . . ,C
2
n ,

γ1 ≈
n
f γ2 ⇐⇒

(
s ∈ D1

n+1 ⇐⇒ s ∈ D2
n+1

)
where δ1 = D1

0, . . . ,D
1
n and δ2 = D2

0, . . . ,D
2
n are the result sequences corresponding to γ1 and γ2

and where D1
n+1 = resA(C1

n ∪ D1
n) and D2

n+1 = resA(C2
n ∪ D2

n).

It is worth noting that the definition of formula based predictor requires not only that γ1 ≈
n
f γ2

implies s ∈ D1
n+1 ⇐⇒ s ∈ D2

n+1, but also that the inverse implication holds. This is necessary to
avoid that the predictor of s in the particular cases in which it is either always or never produced, is
any formula. As a consequence of this definition, in order for f to be a predictor it has to partition
the set of context sequences by separating those that lead to the production of s from those that
do not. Hence, in the particular cases considered above, only formulas that are always equivalent
either to true or to false can be predictors. Apart from these particular cases, the⇐ implication is
a consequence of the⇒ implication and the definition of ≈n

f .
Note that if a formula f f-predicts object s in n + 1 steps the equivalence relation ≈n

f induces
a partition of all context sequences in two sets: on the one hand, the set of context sequences that
ensure that s will appear after n + 1 steps; on the other hand the set of context sequences that
ensure that s will not appear in n + 1 steps. Since by Definition 4.2 it holds γ1 ≈

n
f γ2 iff γ1 ≈

n
¬ f γ2,

if f f-predicts s in n + 1 steps then also ¬ f f-predicts s in n + 1 steps. Moreover, for the same
reason any other formula f ′ that is equivalent either to f or to ¬ f f-predicts s in n + 1 steps. These
properties are formally stated by the following theorems.

Theorem 4.1. LetA = (S , A) be a reaction system. If two formulas f , f ′ ∈ FS n f-predict s ∈ S in
n + 1 steps, then either f ≡l f ′ or f ≡l ¬ f ′ .
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Theorem 4.2. LetA = (S , A) be a reaction system and f ∈ FS n be a formula such that f f-predicts
s ∈ S in n + 1 steps. Then any formula f ′ ∈ FS n such that either f ′ ≡l f or f ′ ≡l ¬ f f-predict s in
n + 1 steps.

We introduce an approximation order v f on formula based predictors that allows us to compare
two formula based predictors in terms of precision. The approximation ordering on formulas is
fundamental for reasoning on the minimality of formula based predictors and for supporting the
definition of the Abstract Interpretation framework (that will be presented in Sections 5 and 6).

Definition 4.4 (Approximation Order). Given f1, f2 ∈ FS n we say that

1. f1 v f f2 if and only if: (i) either f1 ≡l f2 or f1 ≡l ¬ f2; and (ii) atom( f1) ⊆ atom( f2);
2. f1 ≡ f f2 if and only if f1 v f f2 and f2 v f f1.

It is worth noting that, as a consequence of the previous definition, we have that f1 @ f f2,
namely f1 v f f2 and f1 . f f2, if and only if either (i) f1 ≡l f2 or f1 ≡l ¬ f2 and (ii) atom( f1) ⊂
atom( f2). The definition of the approximation order v f on f-predictors is based on the following
intuition. Condition (i) of point 1 relies on the properties of f-predictors stated by Theorems 4.1
and 4.2. By contrast, condition (ii) of point 1 is motivated by the definition of the abstraction
of formula based predictors, that will be presented in Section 5. In such a context the abstraction
depends on the labelled symbols that appear in the formula based predictor. As a consequence, two
formula based predictors f1 and f2 that are logically equivalent may lead to different abstractions.

The following result shows that there exists a unique equivalence class of formula based pre-
dictors that is minimal with respect to the previously introduced approximation order v f . An
equivalence class of minimal formulas with respect to v f can be obtained by applying a standard
formula simplification procedure. It should be clear that for each logic formula f it holds that
simpl( f ) v f f .

Theorem 4.3. LetA = (S , A) be a reaction system s ∈ S and let f1, f2 ∈ FS n be two propositional
logic formulas. If both f1 and f2 f -predict s in n + 1 steps, then there exists an f ∈ FS n such that
f v f f1, f v f f2 and f f -predicts s in n + 1 steps.

To better illustrate the notion of formula based predictor we consider the reaction systems of
Examples 3.1 and 3.2.

Example 4.1. Let us consider the reaction systemA1 = ({A, B, C, D, E, F, G, H}, {a1, a2, a3, a4, a5}) of
Example 3.1 with reaction rules,

a1 = ({A}, {}, {B}) a2 = ({C}, {}, {D}) a3 = ({E}, {}, {F})
a4 = ({B, D}, {}, {G, H}) a5 = ({F}, {B}, {G}).

We focus on the production of object G in two steps. The following logic formulas f-predict G
in two steps

f1 =
(
(F1 ∨ E0) ∧ ¬(B1 ∨ A0)

)
∨

(
(B1 ∨ A0) ∧ (D1 ∨ C0)

)
,

f2 =
(
(F1 ∨ E0) ∧ ¬B1 ∧ ¬A0

)
∨

(
(B1 ∨ A0) ∧ (D1 ∨ C0)

)
.
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Note that the formulas f1 and f2 are logically equivalent and express the properties of the
context sequences leading to the production of object G after two steps. Moreover, in this case the
formulas f1 and f2 are also equivalent with respect to ≡ f given that they contain exactly the same
set of labelled symbols. Thus both formula define a minimal formula based predictor for G in two
steps.

Example 4.2. Let us consider the reaction systemA2 = ({I, L, M, N, O}, {a6, a7, a8, a9}) of Example
3.2 with reaction rules,

a6 = ({I}, {}, {L}) a7 = ({M}, {}, {L})
a8 = ({N}, {O}, {I}) a9 = ({N}, {}, {M}).

We focus on the production of object L in two steps. The following logic formulas f-predict L
in two steps

f3 =
(
(I1 ∨ (N0 ∧ ¬(O0))) ∨ (M1 ∨ N0)

)
,

f4 =
(
I1 ∨ N0 ∨ M1

)
.

Note that similarly as in the previous case the formulas f3 and f4 are logically equivalent and
express the properties of the context sequences leading to the production of object L after two
steps. However, in this case the formulas f3 and f4 are not equivalent with respect to ≡ f given that
f4 @ f f3. In particular, the formula f4 is the simplified version of f3 (that is simpl( f3) = f4) and
is obtained removing the condition on labelled object O0. Therefore the minimal formula based
predictor for L in two steps is represented by a formula which does not contain any condition on
O0.

We now define an operator fbp that allows formula based predictors to be effectively com-
puted. The formula based predictor for an object s in n + 1 steps is obtained computing a formula
on labelled objects S n that is satisfied by a context sequence if and only if the object s will appear
in the system after n + 1 steps.

Definition 4.5 (Formula based Predictor Operator). LetA = (S , A) be a reaction system and s ∈ S .
We define a function fbp : S × IN→ FS n as follows:

fbp(s, n) = fbs(cause(s), n)

where we adopt the auxiliary function fbs : FS × IN → FS n with fbs( f , i) recursively defined as
follows:

fbs(s, 0) = s0

fbs(s, i) = si ∨ fbs(cause(s), i − 1) if i > 0
fbs( f1 ∧ f2, i) = fbs( f1, i) ∧ fbs( f2, i)
fbs( f1 ∨ f2, i) = fbs( f1, i) ∨ fbs( f2, i)

fbs(¬ f ′, i) = ¬fbs( f ′, i)
fbs(( f ′), i) = (fbs( f ′, i))
fbs(true, i) = true

fbs( f alse, i) = f alse
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Note that the definition of fbs for the case (s, i) could introduce some si ∨ f alse sub terms in
the formula when cause(s) = f alse. For the sake of readability, we will omit such disjunctions
with f alse in the examples in this paper.

The following theorem illustrates the main property of the function fbp presented in the previ-
ous definition. Any n-step context sequence satisfies the formula fbp(s, n) if and only if the object
s will appear in the system after n + 1-steps.

Theorem 4.4. Let A = (S , A) be a reaction system and s ∈ S . For any n-step context sequence
γ = C0,C1, . . . ,Cn it holds:

s ∈ Dn+1 ⇐⇒ γ |= fbp(s, n)

where δ = D0,D1, . . . ,Dn is the result sequence corresponding to γ and Dn+1 = resA(Cn ∪ Dn) .

Lemma 4.5. Let A = (S , A) be a reaction system, s ∈ S and f ∈ FS n be a propositional logical
formula. If for all n-step context sequences γ = C0,C1, . . .Cn it holds (s ∈ Dn+1 ⇐⇒ γ |= f ) then
f f -predicts s in n + 1 steps, where Dn+1 = resA(Cn ∪ Dn) .

As a consequence of Theorem 4.4 and Lemma 4.5, we can conclude that the formula fbp(s, n)
f-predicts s in n + 1 steps.

Corollary 4.6. Let A = (S , A) be a reaction system. For any object s ∈ S , the formula fbp(s, n)
f-predicts s in n + 1 steps.

In the general case the function fbp may give a formula based predictor that it is not minimal
with respect to approximation order v f . Therefore, the calculation of a minimal formula based
predictor requires the application of a standard simplification procedure to the obtained logic for-
mula.

Corollary 4.7. LetA = (S , A) be a reaction system. For any object s ∈ S the formula simpl(fbp(s, n))
is a minimal (w.r.t. the v f order on FS n) formula that f-predicts s in n + 1 steps.

We illustrate the application of the operator fbp considering the reaction systems presented in
the Examples 3.1 and 3.2.

Example 4.3. Let us consider the reaction systemA1 = ({A, B, C, D, E, F, G, H}, {a1, a2, a3, a4, a5}) of
Example 3.1 with reaction rules,

a1 = ({A}, {}, {B}) a2 = ({C}, {}, {D}) a3 = ({E}, {}, {F})
a4 = ({B, D}, {}, {G, H}) a5 = ({F}, {B}, {G}).

In order to calculate the logic formula that f-predicts G in two steps we apply the function fbp

as follows,

fbp(G, 1) = fbs
(
(F ∧ ¬B) ∨ (B ∧ D), 1

)
=

(
fbs(F, 1) ∧ ¬fbs(B, 1)

)
∨

(
fbs(B, 1) ∧ fbs(D, 1)

)
=

(
(F1 ∨ fbs(E, 0)) ∧ ¬(B1 ∨ fbs(A, 0)

)
∨

(
B1 ∨ fbs(A, 0) ∧ (D1 ∨ fbs(C, 0)

)
=

(
(F1 ∨ E0) ∧ ¬(B1 ∨ A0)

)
∨

(
B1 ∨ A0) ∧ (D1 ∨ C0)

)
= f1

13



According to Theorem 4.4 a context sequence satisfies the formula fbp(G, 1) if and only if the
execution of the reaction system leads to the production of object G after two execution steps.
Furthermore, in this case the obtained formula is also minimal with respect to the approximation
order v f , given that it coincides with the formula f1 as discussed in Example 4.1.

Example 4.4. Let us consider the reaction systemA2 = ({I, L, M, N, O}, {a6, a7, a8, a9}) of Example
3.2 with reaction rules,

a6 = ({I}, {}, {L}) a7 = ({M}, {}, {L})
a8 = ({N}, {O}, {I}) a9 = ({N}, {}, {M}).

In order to calculate the logic formula that f-predicts L in two steps we apply the function fbp

as follows

fbp(L, 1) = fbs(I ∨ M, 1)
= fbs(I, 1) ∨ fbs(M, 1)
=

(
(I1 ∨ fbs(N ∧ ¬O, 0)) ∨ (M1 ∨ fbs(N, 0))

)
=

(
(I1 ∨ (N0 ∧ ¬(O0))) ∨ (M1 ∨ N0)

)
= f3

In this case, differently from the previous one, the formula fbp(L, 1) f-predicts L in two steps
but it not minimal with respect to the approximation order v f . Indeed, the operator reports the
formula f3 discussed in Example 4.2.

Thus, in this case, we have to apply the logical simplification to the obtained formula fbp(L, 1),
obtaining

simpl(fbp(L, 1)) = simpl( f3) =
(
I1 ∨ N0 ∨ M1

)
= f4

The formula f4 is a minimal f-predictor for L in two steps. It is worth noting that the reaction
system A2 constitutes a simplified reaction system according to definitions in [24]. Nonetheless,
the computation of a minimal formula based predictor requires to apply the standard simplification
procedure simpl.

5. Multi-step Based Predictors

In this section we define multi-step based predictors, namely predictors based on sets of objects
to be observed in the context of a reaction system at each execution step. Multi-step based predic-
tors are less precise than formula based predictors since there can be two context sequences that
both lead to the production (or non-production) of the considered object but behave differently as
regards the observed objects at each step. To relate formula based predictors with multi-step based
predictors we use an Abstract Interpretation approach introducing a Galois Insertion between the
corresponding domains. In this framework we show that multi-step based predictors can be ob-
tained in a systematic way as abstraction of formula based predictors. Finally, we introduce an
operator mbp to effectively compute multi-step based predictors, defined as an abstract version of
the operator fbp for formula based predictors (presented in Definition 4.5). We compare in terms
of precision the abstract operator mbp with the abstraction of the corresponding operator fbp.
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A multi-step based predictor is represented as a set of labelled objects in which labels represent
execution steps. For example, the set of labelled objects Q̂ = {A1, B1, C2} ⊆ S 2 describes the
properties of 2-step context sequences and says that: in the initial context there is no object to be
observed whereas the objects A and B have to be observed at the first execution step and the object
C has to be observed in the second step.

Observing a labelled object si in the context sequence of a reaction system means checking
whether the object s is present or not in the context sequence at the position i. Thus, two n-step
context sequences are equivalent with respect to a set of labelled objects Q̂ ⊆ S n if and only
if every observed object in Q̂ is either present or absent in both the context sequences. This is
formalized by the following definition of equivalence relation on context sequences.

Definition 5.1. Let γ1 = C1
0,C

1
1, . . .C

1
n and γ2 = C2

0,C
2
1, . . .C

2
n be two n-step context sequence.

Given a set of labelled objects Q̂ ⊆ S n we say that γ1 '
n
Q̂
γ2 iff for each i ∈ {0, .., n},

(C1
i ∩ {s | si ∈ Q̂}) = (C2

i ∩ {s | si ∈ Q̂}).

A set of labelled objects Q̂ is a multi-step based predictor for object s in n + 1 steps if any two
context sequences that are equated by 'n

Q̂
either both lead or both not lead to the production of

object s in n + 1 steps.

Definition 5.2 (Multi-step based Predictor). Let A = (S , A) be a reaction system, s ∈ S and Q̂ ⊆
S n. We say that Q̂ m-predicts s in n+1 steps if for all n-step context sequences γ1 = C1

0,C
1
1, . . . ,C

1
n

and γ2 = C2
0,C

2
1, . . . ,C

2
n such that γ1 '

n
Q̂
γ2 we have that

s ∈ D1
n+1 ⇐⇒ s ∈ D2

n+1

where δ1 = D1
0,D

1
1, . . . ,D

1
n and δ2 = D2

0,D
2
1, . . . ,D

2
n are the result sequence corresponding to γ1

and γ2 and where D1
n+1 = resA(C1

n ∪ D1
n) and D2

n+1 = resA(C2
n ∪ D2

n).

Similarly as in the case of formula based predictors there exists a minimal multi-step based
predictor for a given object s at step n + 1. Given that multi step predictors are sets they can be
naturally ordered by means of set inclusion.

Theorem 5.1. Let A = (S , A) be a reaction system and s ∈ S . There exists exactly one minimal
(w.r.t. the set inclusion order) Q̂ ⊆ S n that m-predicts s in n + 1 steps.

We illustrate the notion of multi-step based predictor revisiting the reaction systems of Exam-
ples 3.1 and 3.2.

Example 5.1. Let A1 = ({A, B, C, D, E, F, G, H}, {a1, a2, a3, a4, a5}) be the reaction system of Exam-
ples 3.1 with reaction rules

a1 = ({A}, {}, {B}) a2 = ({C}, {}, {D}) a3 = ({E}, {}, {F})
a4 = ({B, D}, {}, {G, H}) a5 = ({F}, {B}, {G}).
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Similarly as in Examples 4.1 and 4.3 we consider again the production of object G in two steps.
The minimal multi-step based predictor of G in two steps is given by the following set of labelled
objects

Q̂1 = {A0, C0, E0, B1, D1, F1}.

It should be easy to see that we cannot find a smaller (w.r.t. set inclusion) m-predictor of G in
two steps. Assume, for example, that we remove B1 from Q̂1 considering Q̂′1 = Q̂1 \ {B1}. Moreover,
consider the context sequences γ1 = C1

0,C
1
1 with C1

0 = {C} and C1
1 = {B}, and γ2 = C2

0‘,C2
1 with

C2
0 = C1

0 and C2
1 = ∅. We have that γ1 and γ2 are equivalent with respect to Q̂′1, that is γ1 '

1
Q̂′1
γ2.

However, the execution of the reaction system with respect to context γ1 produces G after two
steps (G ∈ D1

2) while the execution with respect to context γ2 does not produces G after two steps
(G < D2

2). This shows that the set of labelled objects Q̂′1 does not m-predict G in two steps. Similar
arguments can be applied to show that any other labelled objects cannot be removed from Q̂1.

Example 5.2. Let A2 = ({I, L, M, N, O}, {a6, a7, a8, a9}) be a reaction system of Example 3.2 with
reaction rules

a6 = ({I}, {}, {L}) a7 = ({M}, {}, {L})
a8 = ({N}, {O}, {I}) a9 = ({N}, {}, {M}).

Similarly as in Examples 4.2 and 4.4 we consider again the production of object L in two steps.
The minimal multi-step based predictor of L in two steps is given by the following set of labelled
objects

Q̂2 = {N0, I1, M1}.

Note that it is not necessary to observe the object O in the initial context. Actually, the presence
of object N in the initial context guarantees that the object L will be produced after two steps. By
contrast, if the object N is not offered by the initial context then the production of object L depends
on the objects offered by the context sequence in the next steps.

The two previous examples clearly show that formula based predictors (Examples 4.1 and 4.2)
are more precise than multi-step based predictors. Actually, there can be two context sequences
that both lead to the production (or non-production) of the considered object but behave differently
with respect to the observed objects at each step. As an example, let us consider the reaction system
A1 of Example 3.1. In this case, a minimal formula based predictor for G in two steps is given by

f1 =
(
(F1 ∨ E0) ∧ ¬(B1 ∨ A0)

)
∨

(
(B1 ∨ A0) ∧ (D1 ∨ C0)

)
while the minimal multi-step based predictor for G in two steps is given by

Q̂1 = {A0, C0, E0, B1, D1, F1}.

Now we can consider the 1-step context sequences γ1 = C1
0,C

1
1 with C1

0 = {A, C} and C1
1 = {B}

and γ2 = C2
0,C

2
1 with C2

0 = C1
0 and C2

1 = C1
1 ∪ {D}. The two context sequences γ1 and γ2 are

equivalent with respect to formula f1 given that they both satisfy the formula and thus lead to the
production of G at the second execution step. By contrast, the context sequences γ1 and γ2 are
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not equivalent with respect to Q̂1 given that object D is observed in the first step of the context
sequence. Formally, we have γ1 ≈

1
f1
γ2 while γ1 ;

1
Q̂1
γ2.

Therefore, the number of equivalence classes of the set of context sequences induced by multi-
set based predictor is often bigger than the number of equivalence classes induced by formula
based predictors. This aspect significantly increases the computational cost of the corresponding
tabling approach (that will be discussed in Section 7.2).

Formula based predictors can be related to the multi-step predictors by using an Abstract In-
terpretation approach. First of all, we define an abstraction function that maps logical formulas
into sets of labelled objects. The abstraction of a formula f is given by the set of labelled objects
that appear in f . Let F =

⋃
i∈IN FS i , S =

⋃
i∈IN S i and ℘(S) denote the power set of S. We define

α̂1 : F → ℘(S) such that for each f ∈ F we have α̂1( f ) = atom( f ). Note that if f ∈ FS n then its
abstraction α̂1( f ) ⊆ S n.

Based on the abstraction function α̂1 it is immediate to derive a Galois Insertion [25] between
the corresponding domains. The abstraction function α1 computes the abstraction of a set of
formulas, considering the union of the abstraction of each formula contained in the set. The
concretization function γ1 reports the set formulas that are represented by a set of labelled objects.

Definition 5.3. We define the abstraction and concretization functions α1 : ℘(F ) → ℘(S) and
γ1 : ℘(S)→ ℘(F ) functions as follows,

1. for F ∈ ℘(F ), α1(F) =
⋃

f∈F α̂1( f );
2. for Q̂ ∈ ℘(S), γ1(Q̂) = { f | α̂1( f ) ⊆ Q̂}.

Theorem 5.2 (Galois Insertion). The pair of functions (α1, γ1) in Definition 5.3 is a Galois inser-
tion between (℘(F ),⊆) and (℘(S),⊆).

The abstraction function allows us to relate formula based predictors with multi-step based
predictors. Not only the abstraction of a formula based predictor is a multi-step based predictor but
also the abstraction of a minimal formula based predictor is a minimal multi-step based predictor.
This result relies on the following auxiliary property that relates the two notions of equivalence on
context sequences.

Lemma 5.3. Let γ1, γ2 be two n-step context sequences and f ∈ FS n be a propositional logic
formula. We have that

γ1 '
n
α̂1( f ) γ2 =⇒ γ1 ≈

n
f γ2.

Theorem 5.4. Let A = (S , A) be a reaction system, s ∈ S and f ∈ FS n be a propositional logic
formula. We have that

• if f f-predicts s in n + 1 steps then α̂1( f ) m-predicts s in n + 1 steps;

• if f is a minimal f-predictor of s in n + 1 steps then α̂1( f ) is a minimal m-predictor of s in
n + 1 steps.

As a consequence, the abstraction of the formula computed by the operator fbp (given in
Definition 4.5) is a multi-step based predictor for s in n + 1 steps.
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Corollary 5.5. LetA = (S , A) be a reaction system and s ∈ S . We have that

• α̂1(fbp(s, n)) m-predicts s in n + 1 steps;

• α̂1(simpl(fbp(s, n))) is the minimal m-predictor of s in n + 1 steps.

The previous result is very useful given that it can be applied to effectively derive a multi-step
based predictor from a formula based predictor, by preserving minimality if the formula based
predictor is minimal. The application of the abstraction simply requires one to collect all labelled
objects appearing in the corresponding formula based predictor. To illustrate the approach we
consider the reaction systems presented in the Examples 3.1 and 3.2.

Example 5.3. Let A1 = ({A, B, C, D, E, F, G, H}, {a1, a2, a3, a4, a5}) be the reaction system of Exam-
ples 3.1 with reaction rules

a1 = ({A}, {}, {B}) a2 = ({C}, {}, {D}) a3 = ({E}, {}, {F})
a4 = ({B, D}, {}, {G, H}) a5 = ({F}, {B}, {G}).

In order to calculate an m-predictor for object G in two steps we apply the abstraction function
to the corresponding formula based predictor calculated by the function fbp. Hence, using the
formula shown in Example 4.3 we derive

α̂1(fbp(G, 1)) = {A0, C0, E0, B1, D1, F1} = Q̂1

where

fbp(G, 1) = ((F1 ∨ E0) ∧ ¬(B1 ∨ A0)) ∨ ((B1 ∨ A0) ∧ (D1 ∨ C0)).

We recall that in this case the formula based predictor is minimal and consequently its ab-
straction provides the minimal multi-step based predictor Q̂1, commented in Example 5.1.

Example 5.4. Let A2 = ({I, L, M, N, O}, {a6, a7, a8, a9}) be a reaction system of Example 3.2 with
reaction rules

a6 = ({I}, {}, {L}) a7 = ({M}, {}, {L})
a8 = ({N}, {O}, {I}) a9 = ({N}, {}, {M}).

In this case differently from the previous one the function fbp gives a formula based predictor
for L in two steps that is not minimal. This is represented by the following formula commented in
Example 4.4

fbp(L, 1) =
(
(I1 ∨ (N0 ∧ ¬(O0))) ∨ (M1 ∨ N0)

)
.

Therefore, by applying the abstraction function we derive the following multi-step based pre-
dictor for L in two steps

α̂1(fbp(L, 1)) = {N0, O0, I1, M1} = Q̂3.

As expected the set of labelled objects Q̂3 is not the minimal multi-step based predictor for L in
two steps. In this case we have to apply the simplification procedure to the corresponding formula
based predictor in order to obtain the minimal multi-step based predictor Q̂2 of Example 5.2. In
this way, we derive

α̂1(simpl(fbp(L, 1))) = α̂1(I1 ∨ N0 ∨ M1) = {N0, I1, M1} = Q̂2.
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Following an Abstract Interpretation approach we also introduce an operator mbp that calcu-
lates multi-step based predictors and that is obtained as the abstract variant of the operator fbp
(given in Definition 4.5). The abstract operator allows us to derive a multi-step based predictor in
a more efficient way without building the corresponding formula based predictor, as implied by
Corollary 5.5.

Definition 5.4 (Multi-step based Predictor Operator). Let A = (S , A) be a reaction system. We
define a function mbp : S × IN→ P(S n) as follows:

mbp(s, n) = mbs(cause(s), n)

where we adopt the auxiliary function mbs : FS × IN → P(S n) with mbs( f , i) recursively defined
as follows:

mbs(s, 0) = {s0}

mbs(s, i) = {si} ∪ mbs(cause(s), i − 1) if i > 0
mbs( f1 ∧ f2, i) = mbs( f1, i) ∪ mbs( f2, i)
mbs( f1 ∨ f2, i) = mbs( f1, i) ∪ mbs( f2, i)

mbs(¬ f ′, i) = mbs( f ′, i)
mbs(( f ′), i) = mbs( f ′, i)
mbs(true, i) = ∅

mbs( f alse, i) = ∅

We now compare the abstract operator mbp with the abstraction of the corresponding operator
fbp. More in details, we prove that the abstraction of the operator fbp coincides with the result of
the operator mbp.

Theorem 5.6. LetA = (S , A) be a reaction system and s ∈ S . Given n ∈ IN we have that

α̂1(fbp(s, n)) = mbp(s, n).

As a consequence, the set of labelled objects mbp(s, n) is a multi-step based predictor for object
s in n + 1 steps.

Corollary 5.7. LetA = (S , A) be a reaction system and s ∈ S . We have that mbp(s, n) m-predicts
s in n + 1 steps.

The previous result shows the main property of abstract operator mbp. Unfortunately, in the
general case the abstract operator mbp is not sufficiently precise to capture the minimal multi-step
based predictor.

To illustrate the abstract operator mbp we consider the reaction systems of Examples 3.1 and
3.2.
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Example 5.5. Let A1 = ({A, B, C, D, E, F, G, H}, {a1, a2, a3, a4, a5}) be the reaction system of Exam-
ples 3.1 with reactions

a1 = ({A}, {}, {B}) a2 = ({C}, {}, {D}) a3 = ({E}, {}, {F})
a4 = ({B, D}, {}, {G, H}) a5 = ({F}, {B}, {G}).

In order to calculate a multi-step predictor for object G in two steps we apply the abstract
operator mbp and we obtain

mbp(G, 1) = mbs
(
(F ∧ ¬B) ∨ (B ∧ D), 1

)
=

(
mbs(F ∧ ¬B, 1) ∪ mbs(B ∧ D, 1)

)
=

(
mbs(F, 1) ∪ mbs(¬B, 1)

)
∪

(
mbs(B, 1) ∪ mbs(D, 1)

)
=

(
mbs(F, 1) ∪ mbs(B, 1)

)
∪

(
mbs(B, 1) ∪ mbs(D, 1)

)
=

(
{F1} ∪ mbs(E, 0) ∪ {B1} ∪ mbs(A, 0) ∪ {B1} ∪ mbs(A, 0) ∪ {D1} ∪ mbs(C, 0)

)
= {A0, C0, E0, B1, D1, F1} = Q̂1

According to Theorem 5.6 we have that α̂1(fbp(G, 1)) = Q̂1 = mbp(G, 1) where the abstraction of
operator fbp gives the set of labelled objects Q̂1 commented in Example 5.3. We recall that Q̂1

is the minimal multi-step based predictor for G in two steps given that the corresponding formula
based predictor is also minimal.

Example 5.6. Let A2 = ({I, L, M, N, O}, {a6, a7, a8, a9}) be a reaction system of Example 3.2 with
reaction rules

a6 = ({I}, {}, {L}) a7 = ({M}, {}, {L})
a8 = ({N}, {O}, {I}) a9 = ({N}, {}, {M}).

In order to calculate a multi-step based predictor for object L in two steps we apply the abstract
operator mbp and we obtain

mbp(L, 1) = mbs(I ∨ M, 1)
= mbs(I, 1) ∪ mbs(M, 1)
=

(
{I1} ∪ mbs(N ∧ ¬O, 0) ∪ {M1} ∪ mbs(N, 0)

)
=

(
{I1} ∪ mbs(N, 0) ∪ mbs(¬O, 0) ∪ {M1} ∪ {N0}

)
=

(
{I1} ∪ {N0} ∪ mbs(O, 0) ∪ {M1} ∪ {N0}

)
= {N0, O0, I1, M1} = Q̂3

As we have already commented in Examples 5.2 and 5.4 the set of labelled objects Q̂3 is a multi-
step based predictor L in two steps but it is not minimal. Thus, in this case, differently from the
previous one, the abstract operator mbp is not able to capture the minimal m-predictor. As a
consequence, in order to derive the minimal multi-step based predictor, it is necessary to calculate
the corresponding minimal formula based predictor and to apply the abstraction function (as
illustrated in Example 5.4).
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6. Set Based Predictors

In this section we define set based predictors a revised version of the predictors originally
presented in [18]. Set based predictors require one to observe the same set of objects in all steps
of the computation of the reaction system. Consequently, they are less precise than multi-step
based predictors (and hence of formula based predictors). To relate set based predictors with the
other notions of predictors we use an Abstract Interpretation approach introducing a new Galois
Insertion between the corresponding domains. Moreover, similarly as in Section 5 we show that set
based predictors can be obtained in a systematic way as abstraction of multi-step based predictors.
Finally, we introduce an operator sbp to compute set based predictors, defined as an abstract
version of the corresponding operator mbp for multi-step based predictors (presented in Definition
5.4). We compare in terms of precision the abstract operator sbp with the abstraction of the
corresponding operator mbp.

We adapt the definition of predictor given in [18] to our Abstract Interpretation framework. A
set based predictor is modeled as a set of objects representing the elements that have to be observed
at each execution step of the reaction system. Thus, two n-step context sequences are equivalent
with respect to a set of objects Q ⊆ S if and only if every object in Q is either present or absent in
both context sequences. This is formalised by the following definition of equivalence relation on
context sequences.

Definition 6.1. Let γ1 = C1
0,C

1
1, . . .C

1
n, γ2 = C2

0,C
2
1, . . .C

2
n be two n-step context sequences. Given

a set of objects Q ⊆ S we say that γ1 ∼
n
Q γ2 iff for each i = {1, . . . , n},

(C1
i ∩ Q) = (C2

i ∩ Q).

A set of objects Q is a set based predictor for object s in n + 1 steps if two context sequences
that are equated by ∼n

Q either both lead or both not lead to the production of object s in n + 1 steps.

Definition 6.2 (Set based Predictor). Let A = (S , A) be reaction system, s ∈ S and Q ⊆ S . We
say that Q s-predicts s in n + 1 steps if for all n-step context sequences γ1 = C1

0,C
1
1, . . . ,C

1
n and

γ2 = C2
0,C

2
1, . . . ,C

2
n such that γ1 ∼

n
Q γ2 we have that

s ∈ D1
n+1 ⇐⇒ s ∈ D2

n+1

where δ1 = D1
0,D

1
1, . . . ,D

1
n and δ2 = D2

0,D
2
1, . . . ,D

2
n are the result sequence corresponding to γ1

and γ2 and where D1
n+1 = resA(C1

n ∪ D1
n) and D2

n+1 = resA(C2
n ∪ D2

n).

In [18] it is shown that there exists a unique minimal (w.r.t. set inclusion order) set based
predictor for s in n + 1 steps.

Theorem 6.1 ([18]). LetA = (S , A) be reaction system and s ∈ S . There exists a unique minimal
(w.r.t. the set inclusion order) Q ⊆ S that s-predicts s in n + 1 steps.

We illustrate the notion of set based predictor revisiting the reaction systems of Examples 3.1
and 3.2.
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Example 6.1. Let A1 = ({A, B, C, D, E, F, G, H}, {a1, a2, a3, a4, a5}) be the reaction system of Exam-
ples 3.1 with reaction rules

a1 = ({A}, {}, {B}) a2 = ({C}, {}, {D}) a3 = ({E}, {}, {F})
a4 = ({B, D}, {}, {G, H}) a5 = ({F}, {B}, {G}).

Similarly as in Examples 4.1 and 5.1 we are interested in the production of object G in two steps.
The minimal set based predictor of G in 2 steps is given by the following set of objects

Q1 = {A, C, E, B, D, F}.

Example 6.2. Let A2 = ({I, L, M, N, O}, {a6, a7, a8, a9}) be a reaction system of Example 3.2 with
reaction rules

a6 = ({I}, {}, {L}) a7 = ({M}, {}, {L})
a8 = ({N}, {O}, {I}) a9 = ({N}, {}, {M}).

Similarly as in Examples 4.2 and 5.2 we are interested in the production of object L in two
steps. The minimal set based predictor of L in 2 steps is given by the following set of objects

Q2 = {N, I, M}.

The two previous examples clearly show that multi-step based predictors (Examples 5.1 and
5.2) are more precise than set based predictors. Actually, there can be two context sequences that
are equivalent if a different set of objects is observed at each step, that cannot be considered as
equivalent if the same set of objects is observed at all steps. As an example, let us consider the
reaction systemA1 of Example 3.1. In this case, the minimal multi-step based predictor for G in 2
steps is given by the set of labelled objects,

Q̂1 = {A0, C0, E0, B1, D1, F1}

while the minimal set based predictor for G in 2 steps is given by the set of objects,

Q1 = {A, C, E, B, D, F}.

Now, we can consider the 1-step context sequences γ1 = C1
0,C

1
1 with C1

0 = {A, C, E} and C1
1 =

{B, D, F} while γ2 = C2
0,C

2
1 with C2

0 = C1
0 and C2

1 = C1
1 ∪ {A}. Given that object A is not observed at

the first execution step, we have that γ1 and γ2 are equivalent with respect to Q̂1 while they are not
equivalent with respect to Q1. Formally, we have γ1 '

1
Q̂1
γ2 while γ1 �1

Q1
γ2.

Therefore, the number of equivalence classes on the set of context sequences in the case of set
based predictors is often bigger than the number of equivalence classes in the case of multi-step
based predictors. This aspect significantly increases the computational cost of the corresponding
tabling approach (that will be discussed in Section 7.2).

Analogously as in Section 5 we relate set based predictors with multi-step based predictors by
using an Abstract Interpretation approach. First of all, we define a Galois Insertion between the
corresponding domains. The abstraction function α2 computes the abstraction of a set of labelled
objects, obtained by removing the indexes associated to objects. The concretization function γ2

reports the set labelled objects that are represented by a set of objects.
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Definition 6.3. We define the abstraction and concretization functions α2 : P(S) → P(S ) and
γ2 : P(S )→ P(S) functions as follows,

1. for Q̂ ∈ P(S), α2(Q̂) = {s | si ∈ Q̂, i ∈ IN};
2. for Q ∈ P(S ), γ2(Q) = {si | s ∈ Q, i ∈ {0, ..., n}}.

Theorem 6.2. The pair of functions (α2, γ2) in Definition 6.3 is a Galois insertion between (P(S),⊆
) and (P(S ),⊆).

The abstraction framework allows us to relate multi-step based predictors and set based pre-
dictors, analogously as in Section 5. Not only the abstraction of a multi-step based predictor is a
set based predictor but also the abstraction of the minimal multi-step based predictor is the mini-
mal set based predictor. This result relies on the following auxiliary property that relates the two
notions of equivalence on context sequences (corresponding to the property formalized by Lemma
5.3).

Lemma 6.3. Let γ1, γ2 be two n-step context sequences and Q̂ ⊆ S n. We have that

γ1 ∼
n
α2(Q̂)

γ2 ⇒ γ1 '
n
Q̂
γ2.

Theorem 6.4. LetA = (S , A) be a reaction system, s ∈ S and Q̂ ⊆ S n. We have that

• if Q̂ m-predicts s in n + 1 steps then α2(Q̂) s-predicts s in n + 1 steps;

• if Q̂ is the minimal multi-step based predictor of s in n + 1 steps then α2(Q̂) is the minimal
set based predictor of s in n + 1 steps.

As a consequence, we obtain the following properties for the abstraction functions.

Corollary 6.5. LetA = (S , A) be a reaction system and s ∈ S . We have that

• α2(mbp(s, n)) s-predicts s in n + 1 steps;

• α2(α̂1(simpl(fbp(s, n)))) s-predicts s in n + 1 steps and is minimal.

The previous main result is similar to the corresponding Corollary 5.5 for formula based and
multi-step based predictors. The property guarantees that the abstraction of mbp(s, n) is a set based
predictor for s in n+1 steps. However in this case the operator mbp may give a multi step predictor
that is not minimal. Thus in general the minimal set based predictor has to be calculated by
abstracting the corresponding minimal formula based predictor.

To illustrate the approach we consider the reaction systems presented in Examples 3.1 and 3.2.

Example 6.3. Let A1 = ({A, B, C, D, E, F, G, H}, {a1, a2, a3, a4, a5}) be the reaction system of Exam-
ples 3.1 with reaction rules

a1 = ({A}, {}, {B}) a2 = ({C}, {}, {D}) a3 = ({E}, {}, {F})
a4 = ({B, D}, {}, {G, H}) a5 = ({F}, {B}, {G}).
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In order to calculate a set based predictor for object G in 2 steps we apply the abstraction
function to the corresponding multi-step based predictor (illustrated in Example 5.5). Hence we
obtain

α2(mbp(G, 1)) = {A, C, E, B, D, F} = Q1

where

mbp(G, 1) = {A0, C0, E0, B1, D1, F1}.

Given that in this case the corresponding multi-step based predictor is minimal, its abstraction
gives the minimal set based predictor Q1, commented in Example 6.1.

Example 6.4. Let A2 = ({I, L, M, N, O}, {a6, a7, a8, a9}) be a reaction system of Example 3.2 with
reaction rules

a6 = ({I}, {}, {L}) a7 = ({M}, {}, {L})
a8 = ({N}, {O}, {I}) a9 = ({N}, {}, {M}).

In this case differently from the previous one the function mbp computes a multi-step based
predictor for L in 2 steps that is not minimal, as we have illustrated in Example 5.6. Thus, by
applying the abstraction function we obtain,

α2(mbp(L, 1)) = α2({N0, O0, I1, M1}) = {N, O, I, M} = Q3.

The set based predictor Q3 is not minimal. As commented in Example 6.2, in this case the min-
imal set based predictor has to be calculated by abstracting the corresponding minimal formula
based predictor. More in details, we can obtain the minimal set based predictor by considering
the simplified version of the formula reported by the operator fbp as follows,

α2(α̂1(simpl(fbp(L, 1)))) = α2({N0, I1, M1}) = {N, I, M} = Q2.

The corresponding formula based predictor and its abstraction are shown in the Examples 4.4 and
5.4.

Following the style of Section 5 we introduce an operator sbp that calculates set based pre-
dictors and is obtained as the abstract variant of the operator mbp (given in Definition 5.4). The
abstract operator allows us to derive a set based predictor in a more efficient way without building
the corresponding multi-step based predictor (or analogously formula based predictor).

Definition 6.4 (Set based Predictor Operator). Let A = (S , A) be a reaction system. We define a
function sbp : S × IN→ P(S ) as follows:

sbp(s, n) = sbs(cause(s), n)
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where we adopt the auxiliary function sbs : FS × IN→ P(S ) with sbs( f , i) recursively defined as
follows:

sbs(s, 0) = {s}
sbs(s, i) = {s} ∪ sbs(cause(s), i − 1) if i > 0

sbs( f1 ∧ f2, i) = sbs( f1, i) ∪ sbs( f2, i)
sbs( f1 ∨ f2, i) = sbs( f1, i) ∪ sbs( f2, i)

sbs(¬ f ′, i) = sbs( f ′, i)
sbs(( f ′), i) = sbs( f ′, i)
sbs(true, i) = ∅

sbs( f alse, i) = ∅

We now compare the abstract operator sbp with the abstraction of the corresponding operator
mbp, obtaining a result analogous to the one stated by Theorem 5.6. More in details, we prove that
the abstraction of the operator mbp coincides with the result of the operator sbp.

Theorem 6.6. LetA = (S , A) be a reaction system and s ∈ S . Given n ∈ IN we have that

α2(mbp(s, n)) = sbp(s, n).

As a consequence, the set of objects sbp(s, n) is a set based predictor for object s in n+1 steps.

Corollary 6.7. Let A = (S , A) be a reaction system and s ∈ S . We have that sbp(s, n) s-predicts
s in n + 1 steps.

The previous main result shows that the abstract operator sbp calculates a set based predictor.
Nevertheless, the abstract operator sbp is not sufficiently precise to capture the minimal set based
predictor in the general case. To illustrate the abstract operator sbp we consider the reaction
systems of Examples 3.1 and 3.2.

Example 6.5. Let A1 = ({A, B, C, D, E, F, G, H}, {a1, a2, a3, a4, a5}) be the reaction system of Exam-
ples 3.1 with reaction rules

a1 = ({A}, {}, {B}) a2 = ({C}, {}, {D}) a3 = ({E}, {}, {F})
a4 = ({B, D}, {}, {G, H}) a5 = ({F}, {B}, {G}).

In order to calculate a set based predictor for object G in two steps we apply the abstract
operator sbp. Thus, we obtain

sbp(G, 1) = sbs
(
(F ∧ ¬B) ∨ (B ∧ D), 1

)
=

(
sbs(F ∧ ¬B, 1) ∩ sbs(B ∧ D, 1)

)
=

(
sbs(F, 1) ∪ sbs(B, 1)

)
∪

(
sbs(B, 1) ∪ sbs(D, 1)

)
=

(
{F} ∪ sbs(E, 0) ∪ {B} ∪ sbs(A, 0) ∪ {B} ∪ sbs(A, 0) ∪ {D} ∪ sbs(C, 0)

)
= {A, C, E, B, D, F} = Q1

25



As expected sbp(G, 1) = Q1 is the minimal set based predictor for G in two steps, discussed in
Example 6.1. Indeed, in this case mbp(G, 1) gives the minimal multi-step based predictor for G in
two steps, as it is illustrated in Example 6.3. As a consequence its abstraction that coincides with
sbp(G, 1) is also minimal, according to Theorem 6.6.

Example 6.6. Let A2 = ({I, L, M, N, O}, {a6, a7, a8, a9}) be the reaction system of Example 3.2 with
reaction rules

a6 = ({I}, {}, {L}) a7 = ({M}, {}, {L})
a8 = ({N}, {O}, {I}) a9 = ({N}, {}, {M}).

In order to calculate a set based predictor for object L in two steps we apply the abstract
operator sbp. Thus, we obtain

sbp(L, 1) = sbs(I ∨ M, 1)
= sbs(I, 1) ∪ sbs(M, 1)
=

(
{I} ∪ sbs(N ∧ ¬O, 0) ∪ {M} ∪ sbs(N, 0)

)
=

(
{I} ∪ sbs(N, 0) ∪ sbs(¬O, 0) ∪ {M} ∪ {N}

)
=

(
{I} ∪ {N} ∪ sbs(O, 0) ∪ {M} ∪ {N}

)
= {N, O, I, M} = Q3

As we have already commented in Examples 6.2 the set of objects Q3 s-predicts L in two steps
but it is not minimal. Hence in this case differently from the previous one the abstract operator sbp
is not able to compute the minimal set based predictor. As a consequence, the calculation of the
minimal set based predictor requires one to apply the abstraction functions to the corresponding
minimal formula based predictor, following the methodology of Example 6.4.

7. Using predictors: generalization and tabling

In this section we discuss two aspects of the practical use of predictors on reaction systems.
The first aspect is related with the limitation on the number of steps contained in the definition
of predictor (of any of the three kinds). In particular, a predictor can evaluate the behavior of
a reaction systems for a specific number of steps n + 1. In principle, if the number of steps of
interest for an experiment could vary, it would be necessary to compute one predictor for each
possible value of such a parameter. We show, in Subsection 7.1, that in practice, in the case of
formula based predictors, this is not usually the case, since one or a few generalized formula
based predictors can easily be obtained for all values of n + 1 greater than some threshold value
m. Moreover, we can obtain generalized multi-step based predictors by applying the abstraction
function to the corresponding formula based predictors.

The second aspect we consider is related with the use one could make of predictors, as sug-
gested in [27]. Since predictors can only compare the behavior of two executions of a reaction
system, their use in practice should be based on a tabling approach. In particular, by focusing on
set based predictors, given a reaction system and a predictor for it, a table can be constructed that
contains one line for every possible context sequence consisting only of elements of the predictor.
Each line of the table indicates whether, for such a sequence, the symbol for which the predictor
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has been defined is actually produced or not. This information is calculated by executing the reac-
tion system with the context sequence corresponding to the row. Then, when an observed system
has to be evaluated, this should be done by considering the sequence of objects it receives from
the context restricted to the elements of the predictor. The obtained context sequence can then be
used to access the previously constructed table and predict whether the object of interest will be
produced or not.

The computational cost of such a tabling approach with set based predictors increases signifi-
cantly with the size of the predictor. We show in Subsection 7.2 that such a cost can be substantially
reduced by using multi-step or formula based predictors in place of set based predictors.

7.1. Discussion on generalization
In the previous sections we presented different notions of predictors of an element s in n +

1 steps, for a given n. However, it is worth noting that formula based predictors have a great
advantage, that is, in many cases they can be easily generalized in order to obtain a parametric
formula expressing predictors of s in n + 1 steps for any n such that n + 1 > m, for a certain m.
Intuitively, m should be chosen big enough so that all reactions involved in the production of object
s have been applied. Even when a unique parametric formula that predicts s in step n + 1 > m
cannot be found, it is possible to find several parametric formulas based on conditions on n + 1.

As an example of easy generalization consider the reaction system introduced in Example 3.1
A1 = ({A, B, C, D, E, F, G, H}, {a1, a2, a3, a4, a5}) with reaction rules

a1 = ({A}, {}, {B}) a2 = ({C}, {}, {D}) a3 = ({E}, {}, {F})
a4 = ({B, D}, {}, {G, H}) a5 = ({F}, {B}, {G}).

In Example 4.3 we have shown that the formula

fbp(G, 1) =
(
((F1 ∨ E0) ∧ ¬(B1 ∨ A0)) ∨ (

(
B1 ∨ A0) ∧ (D1 ∨ C0))

)
f-predicts G in two steps. Consider now the two formulas

fbp(G, 2) =
(
((F2 ∨ E1) ∧ ¬(B2 ∨ A1)) ∨ ((B2 ∨ A1) ∧ (D2 ∨ C1))

)
and

fbp(G, 3) =
(
((F3 ∨ E2) ∧ ¬(B3 ∨ A2)) ∨ ((B3 ∨ A2) ∧ (D3 ∨ C2))

)
.

Such formulas f-predicts G in 3 and 4 steps, respectively. It is immediate to see that fbp(G, 2)
and fbp(G, 3) are the same formula as fbp(G, 1) with all indexes incremented by one and two,
respectively. In both cases the predictor contains indexes that refer only to the two steps that
precede the (possible) appearance of G. This is due to the fact that the rules of the considered
reaction system produce G in exactly two steps, without any cyclic production of any intermediate
object (we will show an example of this below).

The absence of a such a cyclic production of objects, and consequently the fact that the number
of steps necessary to produce an object is finite, is a property that can be checked by constructing
the dependency graph of the reaction system. Such a graph has the objects of the reaction systems
as nodes, and relates by means of direct edges, each object with the reactants and the inhibitors of
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the reactions producing it. (It is the same as the influence graph defined in [18], but with inverted
edges.) If the subgraph of the dependency graph rooted at the object of interest does not contain
any cycle (i.e. it is a direct acyclic graph), then the number of steps necessary to produce such an
object is bounded, and the the bound is the depth of such a subgraph.

In such a situation, the formula based predictor can be easily generalized. For instance, we can
easily generalize the formula based predictor of G with the parametric formula

fbp(G, n) =
(
((Fn ∨ En−1) ∧ ¬(Bn ∨ An−1)) ∨ ((Bn ∨ An−1) ∧ (Dn ∨ Cn−1))

)
that represents all the formula based predictors of G in n + 1 steps with n ≥ 1.

Assume now to add the following reaction to the reaction systemA1:

a6 = ({C}, {}, {C}).

Reaction a6 expresses the fact that the element C once introduced always remains in the reaction
system. This, of course, influences the formula based predictors of G in 3 and 4 steps given before.
Indeed, now we have

fbp(G, 2) =
(
((F2 ∨ E1) ∧ ¬(B2 ∨ A1)) ∨ (

(
B2 ∨ A1) ∧ (D2 ∨ C1 ∨ C0))

)
,

fbp(G, 3) =
(
((F3 ∨ E2) ∧ ¬(B3 ∨ A2)) ∨ (

(
B3 ∨ A2) ∧ (D3 ∨ C2 ∨ C1 ∨ C0))

)
.

Moreover, the introduction of such a reaction changes also the dependency graph discussed
above by adding a cycle, since now C depends on itself (it is a reactant in a reaction producing
itself). Nevertheless, a quite easy generalization of the formula based predictor of G in n + 1 steps
with n ≥ 1 is still possible, by taking the cycle into account. The result in the example case is

fbp(G, n) =
(
((Fn ∨ En−1) ∧ ¬(Bn ∨ An−1)) ∨ ((Bn ∨ An−1) ∧ (Dn ∨

i≤n−1∨
i=0

Ci))
)

where the cycle on C has required to add a parametric disjunction.
The cycle we added in the previous example is trivial: one single cyclic reaction. Cycles can

be added in more complex ways, thus causing the generalized formula to become consequently
more complicated. Consider, for example, the reaction systemA1 consisting of reactions a1, ..., a5

to which we add reactions a7 and a8 defined as follows:

a7 = ({I}, {}, {C}) a8 = {{C}, {}, {I}.

In this case for the formula based predictors for G in 3 and 4 steps we obtain

fbp(G, 2) =
(
((F2 ∨ E1) ∧ ¬(B2 ∨ A1)) ∨ (

(
B2 ∨ A1) ∧ (D2 ∨ C1 ∨ I0))

)
,

fbp(G, 3) =
(
((F3 ∨ E2) ∧ ¬(B3 ∨ A2)) ∨ (

(
B3 ∨ A2) ∧ (D3 ∨ C2 ∨ I1 ∨ C0))

)
.

The introduction of the reactions a7 and a8 changes the dependency graph that now includes
a cycle between C and I, since C depends on I and vice versa. By considering such a graph, a
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generalization of the formula based predictor of G for n + 1 steps with n ≥ 1 is still possible,
but requires the definition of two different parametric formulas2, one for the case of n even, and
the other for the case of n odd. Let us define the predicates even(n) and odd(n) with the obvious
meaning. For n even , we obtain

fbp(G, n) =
(
((Fn ∨ En−1) ∧ ¬(Bn ∨ An−1)) ∨ ((Bn ∨ An−1) ∧ (Dn ∨

i≤n−1∨
{i | i≥1,odd(i)}

Ci ∨

i≤n−1∨
{i | i≥0,even(i)}

Ii))
)

while for n odd, we have

fbp(G, n) =
(
((Fn ∨ En−1) ∧ ¬(Bn ∨ An−1)) ∨ ((Bn ∨ An−1) ∧ (Dn ∨

i≤n−1∨
{i | i≥0,even(i)}

Ci ∨

i≤n−1∨
{i | i≥1,odd(i)}

Ii))
)
.

Although such a generalization can be more difficult to be found than in this example, note that the
finite nature of reaction systems (and consequently the finiteness of the dependency graph) should
always allow us to find a generalization.

The advantages of this approach based on generalization should be clear: it allows represent-
ing formula based predictors of an element regardless the number of steps with a few paramet-
ric formulas. Moreover, starting from such generalization, we can obtain also a generalization
of multi-step based predictors, simply by applying the abstraction function α̂1 that collects the
labelled objects appearing in the formula. For example, by considering again the last reaction
system consisting of reactions a1, ..., a5 and a7, a8, we can derive the parametric multi-step based
predictor of G for any number of steps n + 1 with n ≥ 1.

By applying the abstraction function for n even we obtain the set of labelled objects

{Fn, Bn, Dn, En−1, An−1} ∪

i≤n−1⋃
{i | i≥0,odd(i)}

{Ci} ∪

i≤n−1⋃
{i | i≥1,even(i)}

{Ii} ,

whereas for any n odd we obtain the set of labelled objects

{Fn, Bn, Dn, En−1, An−1} ∪

i≤n−1⋃
{i | i≥0,even(i)}

{Ci} ∪

i≤n−1⋃
{i | i≥1,odd(i)}

{Ii} .

7.2. Tabling
Given a reaction system and a context sequence γ, a predictor (of any of the three kinds) cannot

be used by itself to predict the appearance of a given object after n + 1 steps. It is necessary to
have another context sequence γ′ (equivalent to γ according to the definition of the predictor) for
which it is known whether the object appears after n + 1 steps or not.

Consequently, the way in which predictors could be used in practice (also proposed by Rozen-
berg in [27]) is by following a tabling approach. Given a predictor for object s in n + 1 steps,

2The two parametric formulas could be joined in a single more complex formula. We prefer this representation
into two different formulas for the sake of readability.
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the idea is to construct a table that contains one row for each equivalence class induced by the
equivalence relation associated with the predictor, and to store in each row the information about
the presence or absence of s after n + 1 steps. In the case of set based predictors, each row of
the table corresponds to a context sequence obtained by considering at each step a subset of the
element of the predictor itself. Given a new context sequence γ, in order to know whether it leads
to the production of s at step n + 1 it is enough to restrict it to the predictor objects and use the
result to access the previously constructed rows.

The table to be constructed in the case of set based predictors has a very high number of rows,
that is exponential in n + 1 multiplied by the size of the predictor. We claim that the new concepts
of formula and multi-step based predictors introduced in the previous sections can result in tables
that are significantly smaller than this.

In order to show how the tabling approach can be used, let us consider first the formula based
predictors presented in Section 4. The equivalence classes in this case would be two, one contain-
ing all the context sequences that satisfy the formula and the other one containing all the context
sequences that do not satisfy the formula. Therefore, the table could contain exactly two rows.
However, in order to make the table easier to access and consistent with the tables calculated for
the other predictors it is convenient to put the formula in disjunctive normal form. Then, the num-
ber of rows in the table are simply the number of different conjunctions of the disjunctive normal
form of the formula obtained as predictor.

Let us consider the reaction system A1 = ({A, B, C, D, E, F, G, H}, {a1, a2, a3, a4, a5}) of Example
3.1 that consists of the following reactions

a1 = ({A}, {}, {B}) a2 = ({C}, {}, {D}) a3 = ({E}, {}, {F})
a4 = ({B, D}, {}, {G, H}) a5 = ({F}, {B}, {G}).

As shown in Example 4.3 the following formula f-predicts G in two steps,

fbp(G, 1) =
(
((F1 ∨ E0) ∧ ¬(B1 ∨ A0)) ∨ (

(
B1 ∨ A0) ∧ (D1 ∨ C0))

)
.

We then need to put fbp(G, 1) in disjunctive normal form thus obtaining the following formula,

(F1 ∧ ¬B1 ∧ ¬A0) ∨ (E0 ∧ ¬B1 ∧ ¬A0) ∨ (B1 ∧ D1) ∨ (B1 ∧ C0) ∨ (A0 ∧ D1) ∨ (A0 ∧ C0).

Hence, the table (reported in Table 1) consists in this case of 6 rows. Note that each row states
which objects have to be present or absent at each step (irrelevant objects are not mentioned) and
that only the cases in which G is produced are listed.

For example, we can predict that the context sequence γ1 = {A, C}, {A, D} will lead to the pro-
duction of G at the second step since it satisfies the requirements of the fifth table row. On the other
hand, the context sequence γ2 = {B, C}, {A, D} will not lead to the production of G since it does not
satisfy any table row.

Let us now consider tabling based on multi-step based predictors, introduced in Section 5. In
this case, given a multi-step based predictor Q̂ ⊆ S n for n + 1 steps, the table has to contain one
row for each possible subset of Q̂. Hence, the number of rows in the table is 2|Q̂|, that comes from
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step 0 step 1 G at step 2?
¬A F,¬B yes
¬A, E ¬B yes

B, D yes
C B yes
A D yes
A, C yes

Table 1: Data table using formula based predictors

step 0 step 1 G at steps 2?
A, C, E B, D, F yes
¬A, C, E B, D, F yes
A,¬C, E B, D, F yes
A, C,¬E B, D, F yes
¬A,¬C, E B, D, F yes
¬A, C,¬E B, D, F yes
A,¬C,¬E B, D, F yes
¬A,¬C,¬E B, D, F yes
...

...
...

¬A, C, E B,¬D, F yes
A,¬C, E B,¬D, F no
A, C,¬E B,¬D, F yes
...

...
...

Table 2: Data table using multi-step based predictors

2|Q̂∩S 0 | × 2|Q̂∩S 1 | × .... × 2|Q̂∩S n |). We remark that although we could remove from the table the rows
corresponding to cases that do not lead to the creation of the predicted object (thus obtaining a
smaller table), such cases have anyway to be computed during the table construction requiring
the execution of the reaction system once for each context sequence. Finally note that even if we
consider only rows leading to the production on s in n + 1 steps, the table using the multi-step
based predictor will have a bigger number of rows than the one based on the more informative
formula based predictors.

Let us consider again the reaction system A1 of Example 3.1, previously commented. In this
case, as we have illustrated in Example 5.5 the following set of labelled objects

mbp(G, 1) = {A0, C0, E0, B1, D1, F1}

m-predicts G in two steps. Hence, the table in this case has 26 = 64 rows. A portion of such a table
is shown in Table 2.
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step 0 step 1 G at steps 2?
A, C, E, B, D, F A, C, E, B, D, F yes
¬A, C, E, B, D, F A, C, E, B, D, F yes
A,¬C, E, B, D, F A, C, E, B, D, F yes
A, C,¬E, B, D, F A, C, E, B, D, F yes
A, C, E,¬B, D, F A, C, E, B, D, F yes
A, C, E, B,¬D, F A, C, E, B, D, F yes
A, C, E, B, D,¬F A, C, E, B, D, F yes
...

...
¬A, C, E, B, D, F A, C, E, B,¬D, F yes
A,¬C, E, B, D, F A, C, E, B,¬D, F no
A, C,¬E, B, D, F A, C, E, B,¬D, F yes
...

...
...

Table 3: Data table using set based predictors

Finally, let us now consider tabling based on set based predictors, introduced in Section 6.
In this case, we observe that the table to be constructed is analogous to that of multi-step based
predictors, but with the same set of objects (the predictor) to be considered for all steps.

As an example, consider again the reaction systemA1 of Example 3.1, previously commented.
In this case, as we have shown in Example 6.5 the following set of objects

sbp(G, 1) = {A, C, E, B, D, F}

s-predicts G in two steps. Hence, the table in this case has 212 = 4196 rows. We show very few of
such rows in Table 3.

In the general case, given a set based predictor Q ⊆ S for an object s at n + 1 steps, the number
of rows in the table is 2(n+1)×|Q|, that is 2|Q| × 2|Q| × .... × 2|Q| = (2|Q|)n+1. Assume that Q̂ ⊆ S n is
a corresponding multi-step based predictor for the same object s and the same number of steps
n + 1. Since, for every 0 ≤ i ≤ n it holds α1(Q̂ ∩ S i) ⊆ Q, we have that the table for set based
predictors is always not smaller than that of multi-step based predictor. In practice, it is often the
case that each Q̂ ∩ S i is significantly smaller than Q, thus giving tables for multi-step predictors
that are very much smaller than those for the corresponding set based predictors.

It is worth noting that these tables can be reduced in size by pruning, for instance, all of the
rows that correspond to x absent, or by grouping together rows which differ in objects that are not
actually relevant. Alternatively, a table could be organized as an ordered binary decision diagram
(OBDD), the size of which can be significantly reduced by using efficient heuristic methods [28].
All of these approaches may allow the representation of the table of a set based predictor to be
reduced to a size similar to that obtained with the other notions of predictor. However, the con-
struction of such a potentially compact representation would anyway pass through the computation
of all the cases considered in the original table.

Finally, note that the generalization procedure presented in Section 7.1 could be combined with
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the tabling approaches described in Section 7.2 in order to obtain a tabling parametric techniques
based on the use of parametric generalized versions of formula based and multi-step predictors.

8. Application

In this section we introduce a more complex biological example, the lac operon expression in
the E. coli bacterium. In genetics, an operon is a functional unit of genomic DNA containing a
cluster of genes, which are all under the control of a specific regulatory signal.

The lactose operon in Escherichia coli is composed of a sequence of genes that are responsible
for producing three enzymes for lactose degradation, namely the lactose permease, which is incor-
porated in the membrane of the bacterium and actively transports the sugar into the cell, the beta
galactosidase, which splits lactose into glucose and galactose, and the transacetylase, whose role
is marginal. The signal which regulates the lac operon functionality depends on the integration of
two different control mechanisms, one mediated by lactose and the other by glucose. Since gene
expression is a energy consuming process, Escherichia coli synthesizes the proteins involved in the
metabolism of lactose when this nutrient is both present in the environment and the environment
does not provides glucose, which is a more readily available source of energy.

We borrow the formalization as a reaction system of this biological system from [24]. Let
A = (S , {a1, . . . , a10}) be the reaction system where the background set is

S = {lac, lacI, I, I-OP, cya, cAMP, crp, CAP, cAMP-CAP, lactose, glucose, Z, Y, A}

and the reaction rules are defined as follows

a1 = ({lac}, {}, {lac}) (lac operon duplication)
a2 = ({lacI}, {}, {lacI}) (repressor gene duplication)
a3 = ({lacI}, {}, {I}) (repressor gene expression)
a4 = ({I}, {lactose}, {I-OP}) (regulation mediated by lactose)
a5 = ({cya}, {}, {cya}) (cya duplication)
a6 = ({cya}, {}, {cAMP}) (cya expression)
a7 = ({crp}, {}, {crp}) (crp duplication)
a8 = ({crp}, {}, {CAP}) (crp expression)
a9 = ({cAMP,CAP}, {glucose}, {cAMP-CAP}) (regulation mediated by glucose)

a10 = ({lac, cAMP-CAP}, {I-OP}, {Z,Y, A}) (lac operon expression)

A schematic representation of the reaction system model is depicted in Figure 1. The three
genes of the operon LacI, PR and OP regulate the production of the enzymes, represented by Z, Y
and A. The genes for the three enzymes are represented, for short, by lac. The regulation process
is as follows: gene LacI encodes the lac repressor I, which, in the absence of lactose, binds to
gene OP (the operator). Transcription of structural genes into mRNA is performed by the RNA
polymerase enzyme, which usually binds to gene PR (the promoter) and scans the operon from left
to right by transcribing the three structural genes represented by lac into a single mRNA fragment.
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Figure 1: The lac operon.

When the lac repressor I is bound to gene OP (that is, the complex I-OP is present) it becomes
an obstacle for the RNA polymerase, and transcription of the structural genes is not performed.
On the other hand, when lactose is present inside the bacterium, it binds to the repressor thus
inhibiting the binding of I to OP. This inhibition allows the transcription of genes represented by
lac by the RNA polymerase.

Two more genes encode for the production of two particular proteins: cAMP and CAP. These
genes are called, respectively, cya and crp, and they are indirectly involved in the regulation of
the lac operon expression. When glucose is not present, cAMP and CAP proteins can produce the
complex cAMP-CAP which can increase significantly the expression of lac genes. Of course, also
in presence of the cAMP-CAP complex, the expression of the lac genes is inhibited by I-OP.

Note that the reactions {a1, a2, a5, a7} are needed to ensure the permanency of the genes in the
system while the reactions {a4, a9, a10} can only be enabled when the current state of the system
does not include the inhibitors specified in each reaction. Reaction a4 can be applied only in the
absence of lactose, reaction a9 only in the absence of glucose and reaction a10 only when the
repressor I is not bound to the operator OP.

In [24] the authors investigate the effects on the production of enzymes Z, Y and A when
the context provides both glucose and lactose, only glucose, only lactose, or none of them. The
genomic elements lac, lacI, cya and crp together with the proteins I, cAMP and CAP, that are
normally present in the bacterium, are supplied to the systems by the starting context C0. Then,
an example context sequence γ = C0, . . . ,C40 is considered, in which every element Ci with
1 < i <= 40 is a subset of {glucose, lactose}. Such a context sequence represents an environment in
which the supply of glucose and lactose varies over time. By observing the result states D1, . . . ,D40

obtained by executing the reaction system, the authors conclude that the enzymes Z, Y and A are
produced in a step i only if lactose was the only element provided to the system two steps before.
Formally, this can be expressed as follows:

Z,Y, A ∈ Di iff Ci−2 = {lactose}, with i > 3 .

This conclusion has been reached empirically, by observing a single execution of the system
with respect to an example context sequence. The conditions for the production of Z, Y and A can
instead be studied by applying the notions of predictor we defined in this paper. Consequently, in
what follows we use all three notions of predictors for (i) giving a formal ground to the conclusion
reached [24], and (ii) applying a tabling approach to this biological system.
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8.1. Formula based Predictor
Since the effects of all reactions can be observed after four steps we consider the formula based

predictors for the enzymes Z, Y and A in 4 steps. We obtain the following formula 3

fbp(Z, 3) =fbp(Y, 3) = fbp(A, 3) =

((lac3 ∨ lac2 ∨ lac1 ∨ lac0)
∧ (cAMPCAP3 ∨ ((cAMP2 ∨ cya1 ∨ cya0) ∧ (CAP2 ∨ crp1 ∨ crp0) ∧ ¬glucose2))
∧ ((¬IOP3 ∧ ¬I2 ∧ ¬lacI1 ∧ ¬lacI0) ∨ lactose2)).

The obtained formula is minimal with respect to the approximation order v f and therefore does
not require the application of simplification techniques. Moreover, the formula clearly describes
the properties to be satisfied by the context sequences leading to the production of Z, Y and A after
4 steps.

A quite simple generalization can be applied in order to derive a parametric formula following
the methodology described in Section 7.1. The formula based predictor of enzymes Z, Y and A in
n + 1 steps with n ≥ 3 is given by

fbp(Z, n) =fbp(Y, n) = fbp(A, n) =

(
i≤n∨
i=0

laci)

∧ (cAMPCAPn ∨ ((cAMPn−1 ∨

i≤n−2∨
i=0

cyai) ∧ (CAPn−1 ∨

i≤n−2∨
i=0

crpi) ∧ ¬glucosen−1))

∧ ((¬IOPn ∧ ¬In−1 ∧

i≤n−2∧
i=0

¬lacIi) ∨ lactosen−1)).

It is worth noting that from the generalized formula based predictors for Z, Y and A we derive a
much complete information with respect to the execution of the reaction system considered in [24].
Indeed, assuming the initial context C0 = {lac, lacI, cya, crp, I, cAMP,CAP} the formula can be
simplified into (cAMPCAPn ∨ ¬glucosen−1) ∧ lactosen−1. This formula is logically equivalent to
(cAMPCAPn ∧ lactosen−1) ∨ (¬glucosen−1 ∧ lactosen−1). Therefore, if the environment provides
only glucose and lactose as in the experiment of [24] the formula ensures exactly that the enzymes
Z, Y and A are produced at step n + 1 only if lactose was the only element provided to the system
two steps before. Moreover, the formula tells us that the production of enzymes Z, Y and A in
n + 1 steps is possible also if the environment provides lactose two steps before and cAMPCAP
one step before.

We also investigate the application of the tabling approach for formula based predictors, dis-
cussed in Section 7.2. For formula based predictors the rows correspond exactly to the number of

3All formula based predictors of this section were automatically computed by using the tool available here: [29]
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disjunctions of the disjunctive normal form of the formula based predictor. In order to build the
table we have to put the formula fbp(Z, 3) = fbp(Y, 3) = fbp(A, 3) in disjunctive normal form
obtaining

i≤3∨
i=0

(
(laci ∧ cAMPCAP3 ∧ ¬IOP3 ∧ ¬I2 ∧ ¬lacI1 ∧ ¬lacI0)

∨(laci ∧ cAMPCAP3 ∧ lactose2)
∨(laci ∧ cAMP2 ∧CAP2 ∧ ¬glucose2 ∧ ¬IOP3 ∧ ¬I2 ∧ ¬lacI1 ∧ ¬lacI0)
∨(laci ∧ cAMP2 ∧CAP2 ∧ ¬glucose2 ∧ lactose2)
∨(laci ∧ cAMP2 ∧ crp1 ∧ ¬glucose2 ∧ ¬IOP3 ∧ ¬I2 ∧ ¬lacI1 ∧ ¬lacI0)
∨(laci ∧ cAMP2 ∧ crp1 ∧ ¬glucose2 ∧ lactose2)
∨(laci ∧ cAMP2 ∧ crp0 ∧ ¬glucose2 ∧ ¬IOP3 ∧ ¬I2 ∧ ¬lacI1 ∧ ¬lacI0)
∨(laci ∧ cAMP2 ∧ crp0 ∧ ¬glucose2 ∧ lactose2)
∨(laci ∧ cya1 ∧CAP2 ∧ ¬glucose2 ∧ ¬IOP3 ∧ ¬I2 ∧ ¬lacI1 ∧ ¬lacI0)
∨(laci ∧ cya1 ∧CAP2 ∧ ¬glucose2 ∧ lactose2)
∨(laci ∧ cya1 ∧ crp1 ∧ ¬glucose2 ∧ ¬IOP3 ∧ ¬I2 ∧ ¬lacI1 ∧ ¬lacI0)
∨(laci ∧ cya1 ∧ crp1 ∧ ¬glucose2 ∧ lactose2)
∨(laci ∧ cya1 ∧ crp0 ∧ ¬glucose2 ∧ ¬IOP3 ∧ ¬I2 ∧ ¬lacI1 ∧ ¬lacI0)
∨(laci ∧ cya1 ∧ crp0 ∧ ¬glucose2 ∧ lactose2)
∨(laci ∧ cya0 ∧CAP2 ∧ ¬glucose2 ∧ ¬IOP3 ∧ ¬I2 ∧ ¬lacI1 ∧ ¬lacI0)
∨(laci ∧ cya0 ∧CAP2 ∧ ¬glucose2 ∧ lactose2)
∨(laci ∧ cya0 ∧ crp1 ∧ ¬glucose2 ∧ ¬IOP3 ∧ ¬I2 ∧ ¬lacI1 ∧ ¬lacI0)
∨(laci ∧ cya0 ∧ crp1 ∧ ¬glucose2 ∧ lactose2)
∨(laci ∧ cya0 ∧ crp0 ∧ ¬glucose2 ∧ ¬IOP3 ∧ ¬I2 ∧ ¬lacI1 ∧ ¬lacI0)
∨(laci ∧ cya0 ∧ crp0 ∧ ¬glucose2 ∧ lactose2)

)
As a consequence, the data table that describes all the context sequences leading to the pro-

duction of enzymes Z,Y and A after 4 steps has 80 horizontal lines.

8.2. Multi-step based Predictor
In the case of multi-step based predictor for the enzymes Z, Y and A we obtain the following

set of labelled objects (that turns out to be minimal)

mbp(Z, 3) =mbp(Y, 3) = mbp(A, 3) =

{lac0, cya0, crp0, lacI0, lac1, cya1, crp1, lacI1, lac2, cAMP2,CAP2, glucose2, I2, lactose2,

lac3, cAMPCAP3, IOP3}.
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Moreover, since we found a quite simple generalization of the formula based predictor of
enzymes Z, Y and A we can derive a corresponding generalized multi-step based predictor. To this
aim we have to apply the abstraction function to the parametric formula describing the formula
based predictor of Z, Y and A. Hence, we obtain

α̂1(fbp(Z, n) =α̂1(fbp(Y, n) = α̂1(fbp(A, n)) =

{cAMPn−1,CAPn−1, glucosen−1, In−1, lactosen−1, cAMPCAPn, IOPn} ∪

i≤n−2⋃
i=0

{cyai, crpi, lacIi} ∪

i≤n⋃
i=0

{laci}

The previous set of labelled objects defines the minimal multi-step based predictor for Z, Y and
A in n + 1 steps with n ≥ 3. Multi-step predictors are less precise than formula based predictors.
However, they provide relevant information for understanding the dynamic behavior of the system.
For example, we can deduce that both glucose and lactose has to be observed at n − 1 step only.
Therefore, their presence in the environment is not relevant in any other step.

As formula based predictors also multi-step based predictors can be used for recording in a
data table information on context sequences that lead (or not lead) to the production of X,Y and
A in 4 steps. In this case, the table has 217 rows given that it contains one row for each possible
subset of the predictor.

8.3. Set based Predictor
In the case of set based predictor for the enzymes Z, Y and A we obtain the following set of

object (that turns out to be minimal)

sbp(Z, 3) =sbp(Y, 3) = sbp(A, 3) =

{lac, cya, crp, lacI, cAMP,CAP, glucose, I, lactose, cAMPCAP, IOP}.

Set based predictors are less precise than multi-step based predictors. Actually, the information
given by the set based predictors says all the objects have to observed apart from Z, Y and A.

As in the case of multi-step based predictors also set based predictors can be used for recording
in a data table information on context sequences that lead (or not lead) to the production of X,Y
and A in 4 steps. In this case, the table has (211)4 rows given that it contains one row for each
possible combination of four subsets of the predictor.

9. Conclusions

In this paper we have presented three different notions of predictor using an abstract interpreta-
tion framework: (i) the formula based predictor, which precisely models the necessary conditions
for an object s to be produced in n steps, (ii) the multi-step based predictor, which models the
objects to be observed at each step for determining the production of s in n steps, and (iii) the set
based predictor, that is a revised version of the predictor proposed in [18]. Each notion of predictor
comes equipped with an effective operator able to compute a predictor of an object s in n steps.
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The relation between the different operators is formalized in the abstract interpretation framework
in terms of abstraction functions. Moreover, we have proved that each class of predictors has a
minimal element. In the case of formula based predictors such a minimum can be computed by
applying a simplification procedure to the boolean formula obtained by the corresponding oper-
ator. In the cases of multi-step and set based predictors, in general it is not possible to compute
the minimal element from the results of the corresponding operators. A minimal multi-step or set
based predictor can be obtained from the minimal formula based predictor by applying abstraction
functions. The tabling procedures based on the previous new notions of predictor have been illus-
trated and compared in terms of space occupied by the constructed tables. We have also proposed a
generalization of the concept of predictor by considering parametric formula based and multi-step
based predictors that enable prediction of the production of an object s ∈ S in a arbitrary number
of steps.

As future work we plan to define predictors that allow constraints on the context sequences
to be considered. For example, constraints could represent the constant absence of some objects
from the context sequence, or the appearance of some objects in the context after a given number
of steps, or the periodic appearance and disappearance of some objects from the context. Such
constraints will be expressed by means of a suitable temporal logic to be defined. Moreover, new
operators for the computation of these new kinds of predictor will be investigated.

Appendix A. Proofs of Theorems in Section 4

Theorem 4.1. LetA = (S , A) be a reaction system. If two formulas f , f ′ ∈ FS n f-predict s ∈ S in
n + 1 steps, then either f ≡l f ′ or f ≡l ¬ f ′ .

Proof. Note that ≈n
f determines a partition in two sets of all context sequences, since either a

context sequence γ models f or it does not model f . Each context sequence in the same subset of
the partition share the same behaviour w.r.t. the fact that s ∈ Dn+1 or s < Dn+1. It should be clear
that ≈n

f and ≈n
¬ f induce exactly the same partition on context sequences. Assume by contradiction

that f .l f ′ and f .l ¬ f ′. Hence, let us assume γ1 and γ2 such that γ1 satisfies both formulas
f and f ′, while γ2 satisfies only one of the two. Note that since f .l f ′ and f .l ¬ f ′, such
γ1 and γ2 exist. We have that γ1 ≈

n
f γ2 but γ1 0

n
f ′ γ2. Assume, without loosing generality, that

s ∈ D1
n+1. Since f f-predicts s in n + 1 steps, we can conclude that s ∈ D2

n+1. On the other hand
since γ1 0

n
f ′ γ2 and f ′ f-predicts s in n + 1 steps, we can conclude that s < D2

n+1. This gives a
contradiction.

Theorem 4.2. LetA = (S , A) be a reaction system and f ∈ FS n be a formula such that f f-predicts
s ∈ S in n + 1 steps. Then any formula f ′ ∈ FS n such that either f ′ ≡l f or f ′ ≡l ¬ f f-predict s in
n + 1 steps.

Proof. It follows from the observation that the equivalence relations ≈ f ′ and ≈ f , for f ′ ≡l f or
f ′ ≡l ¬ f , induce the same partition on all context sequences.

Theorem 4.3. LetA = (S , A) be a reaction system s ∈ S and let f1, f2 ∈ FS n be two propositional
logic formula. If both f1 and f2 f -predict s in n+1 steps, then there exist f ∈ FS n such that f v f f1,
f v f f2 and f f -predicts s in n + 1 steps.
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Proof. Let us assume first f1 ≡l f2. In this case we can consider f = simpl( f1) = simpl( f2). If
instead f1 ≡l ¬ f2, let f ′2 = ¬ f2. By the previous case we have f = simpl( f1) = simpl( f ′2) v f f ′2 .
By definition of v f this implies f v f f2. As a consequence of Theorem 4.2 in both the cases f
f -predicts s in n + 1 steps.

Theorem 4.4. Let A = (S , A) be a reaction system and s ∈ S . For any n-step context sequence
γ = C0,C1, . . . ,Cn it holds:

s ∈ Dn+1 ⇐⇒ γ |= fbp(s, n)

where δ = D0,D1, . . . ,Dn is the result sequence corresponding to γ and Dn+1 = resA(Cn ∪ Dn) .

Proof. By definition of fbpwhat we have to prove is actually s ∈ Dn+1 ⇐⇒ γ |= fbs(cause(s), n).
The proof is done by induction on n.

Base case: n = 0. We start by proving the⇒ implication, namely s ∈ D1 ⇒ γ |= fbs(cause(s), 0).
From s ∈ D1 it follows that there must exist inA at least a reaction av = (Rv, Iv, Pv) with s ∈ Pv

such that s ∈ resav(C0 ∪ D0), that is av has been applied in the first execution step of the reaction
system. Since, by definition, D0 = ∅ this implies that Rv ⊆ C0 and Iv ∩ (C0) = ∅. Hence, we are
sure that

γ |= (
∧
s′∈Rv

s′0) ∧ (
∧
s′′∈Iv

¬s′′0 ).

By definition of ap and of fbs, we have that :

γ |= fbs(ap(av), 0).

As a consequence,
γ |= fbs(ap(a1), 0) ∨ . . . ∨ fbs(ap(ak), 0)

where a1, . . . , ak are all the reactions having s1 as a product. By definition of cause and of fbs we
can conclude that

γ |= fbs(cause(s), 0) .

Now we prove the⇐ implication, namely s1 ∈ D1 ⇐ γ |= fbs(cause(s), 0). By definition of
cause and of fbs we have:

γ |= fbs(ap(a1), 0) ∨ . . . ∨ fbs(ap(ak), 0)

where a1, . . . , ak are the reactions having s1 as a product. Now, there exists v ∈ 1, . . . , k such that

γ |= fbs(lr(av), 0) .

By assuming av = (Rv, Iv, Pv) we obtain, by definition of ap and of fbs, the following result:

γ |= (
∧
s′∈Rv

s′0) ∧ (
∧
s′′∈Iv

¬s′′0 )

By definition of |= we have Rv ⊆ C0 and Iv ∩C0 = ∅. Hence, reaction av can be applied at the first
step of the execution of the reaction system giving s1 ∈ D1.
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Induction case: n > 0. We start by proving the ⇒ implication, namely s ∈ Dn+1 ⇒ γ |=
fbs(cause(s), n).

From s ∈ Dn+1 it follows that there must exist inA a reaction a = (R, I, P) with s ∈ P that has
been applied in the n + 1-th execution step of the reaction systems. This implies that R ⊆ Cn ∪ Dn

and I ∩ (Cn ∪ Dn) = ∅. As a consequence, there exist two disjoint sets RD and RC such that
R = RD ∪ RC, RD ⊆ Dn,RC ⊆ Cn and RD ∩Cn = ∅.

Now, under this hypothesis we have to prove that fbs(cause(s), n) is satisfied on γ. By defini-
tion of cause and fbs we have

fbs(cause(s), n) =
∨

ak∈{(Rk ,Ik ,Pk)∈A|s∈Pk}

fbs(ap(ak), n) .

Since there exist a value of k such that ak = a, the proof of γ |= fbs(cause(s), n) can be reduced to
the proof of γ |= fbs(ap(a), n).

By definition of ap we have

fbs(ap(a), n) = fbs((
∧
s′∈R

s′) ∧ (
∧
s′′∈I

¬s′′), n)

that is equivalent to
fbs((

∧
sd∈RD

sd) ∧ (
∧

sc∈RC

sc) ∧ (
∧
s′′∈I

¬s′′), n)

that, in turn, by definition of fbs, is equivalent to∧
sd∈RD

(sd
n∨fbs(cause(sd), n−1))∧

∧
sc∈RC

(sc
n∨fbs(cause(sc), n−1))∧

∧
s′′∈I

(¬(s′′n∨fbs(cause(s′′), n−1))) .

Since RD ∩Cn = ∅, RC ⊆ Cn and I ∩Cn = ∅, this formula can be simplified as follows:∧
sd∈RD

(fbs(cause(sd), n − 1)) ∧
∧
s′′∈I

(¬(fbs(cause(s′′), n − 1))) .

Now, by induction hypothesis we have s ∈ Dn ⇐⇒ γ |= fbs(cause(s), n − 1). Since RD ⊆ Dn

and I ∪ Dn = ∅, it follows that our simplified formula holds.
Now we prove the⇐ implication, namely s ∈ Dn+1 ⇐ γ |= fbs(cause(s), n). By definition of

fbs we can rewrite the right-hand side of the implication as follows:

γ |=
∨

ak∈{(Rk ,Ik ,Pk)∈A|s∈Pk}

fbs(ap(ak), n).

In order for the disjunction to hold, there must be at least one disjoint that is modeled by γ. By
definition, this implies that there exists at least one reaction a ∈ {(Rk, Ik, Pk) ∈ A | s ∈ Pk} such that
fbs(ap(a), n) is modeled by γ. Let us assume a = (R, I, P), we have

γ |= fbs(ap(a), n) .
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Now, the proof is reduced to proving that reaction a was applicable at step n of the execution of
the reaction system, causing s to be present in Dn+1. By definition of ap we have

fbs(ap(a), n) = fbs((
∧
s′∈R

s′) ∧ (
∧
s′′∈I

¬s′′), n) .

Let us consider the following partition of R, namely RC = R ∩ Cn and RD = R \ RC (that implies
RD ∩Cn = ∅).

We can now apply to fbs(ap(a), n) the same simplification as in the previous induction case,
namely we can rewrite fbs(ap(a), n) as follows:

fbs((
∧

sd∈RD

sd) ∧ (
∧

sc∈RC

sc) ∧ (
∧
s′′∈I

¬s′′), n)

that, by definition of fbs, is equivalent to∧
sd∈RD

(sd
n∨fbs(cause(sd), n−1))∧

∧
sc∈RC

(sc
n∨fbs(cause(sc), n−1))∧

∧
s′′∈I

(¬(s′′n∨fbs(cause(s′′), n−1))) .

Since γ models this formula, it follows I ∩ Cn = ∅ (each s′′n has to be false in the formula).
Conditions I ∩Cn = ∅, RC ⊆ Cn and RD ∩Cn = ∅ allow us to simplify the formula as follows:

γ |=
∧

sd∈RD

(fbs(cause(sd), n − 1)) ∧
∧
s′′∈I

(¬(fbs(cause(s′′), n − 1))) .

Consequently, we have that for each sd ∈ RD it holds γ |= fbs(cause(sd), n − 1), whereas for each
s′′ ∈ I it holds γ 6|= fbs(cause(s′′), n − 1). From this, by induction hypothesis we obtain RD ⊆ Dn

and I ∩ Dn = ∅. These conditions, together with conditions RC ⊆ Cn and I ∩ Cn = ∅, allow us to
conclude that R = RC ∪RD ⊆ Cn ∪Dn and I ∩ (Cn ∪Dn) = ∅. As a consequence, s ∈ resa(Cn ∪Dn),
that is s ∈ Dn+1.

Lemma 4.5. Let A = (S , A) be a reaction system, s ∈ S and f ∈ FS n be a propositional logical
formula. If for all n-step context sequences γ = C0,C1, . . .Cn it holds (s ∈ Dn+1 ⇐⇒ γ |= f ) then
f f -predicts s in n + 1 steps, where Dn+1 = resA(Cn ∪ Dn) .

Proof. Let us consider two n-step context sequences γ1 and γ2 such that γ1 ≈
n
f γ2. By definition

of the equivalence relation this means that γ1 |= f ⇔ γ2 |= f . Since, by hypothesis, for formula f
(s ∈ D1

n+1 ⇐⇒ γ1 |= f ) and (s ∈ D2
n+1 ⇐⇒ γ2 |= f ) hold, we can conclude that s ∈ D1

n+1 ⇐⇒

s ∈ D2
n+1. Conversely, if (s ∈ D1

n+1 ⇐⇒ γ1 |= f ) and (s ∈ D2
n+1 ⇐⇒ γ2 |= f ) we can deduce that

both γ1 |= f and γ2 |= f . Hence, γ1 |= f ⇔ γ2 |= f , which implies γ1 ≈
n
f γ2, by definition of the

equivalence relation.

Appendix B. Proofs of Theorems in Section 5

We first define the following well-founded order on IN × FS that will be used in some of the
following proofs.
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Definition B.1. Let the pairs (i, f ), ( j, f ′) ∈ IN × FS . We say that (i, f ) ≤c ( j, f ′) iff either i < j or
i = j and f is a sub-formula of f ′ (namely a fragment of formula f ).

Theorem 5.1. Let A = (S , A) be a reaction system and s ∈ S . There exists exactly one minimal
(w.r.t. the set inclusion order) Q̂ ⊆ S n that m-predicts s in n + 1 steps.

The following proof follows the lines of the proof of Theorem 1 of [18].

Proof. Assume, by contradiction, that there exists two distinct subsets Q̂1 and Q̂2 of S n that m-
predicts s in n + 1 steps and are minimal. Then consider Q̂3 = Q̂1 ∩ Q̂2. Since Q̂3 ⊆ Q̂1 and
Q̂3 ⊆ Q̂2 and Q̂1 and Q̂2 are minimal, then Q̂3 does not m-predicts s in n + 1 steps.

Hence, by definition of m-predictor, there exist two n-step context sequences γ1 = C1
0,C

1
1, . . .C

1
n

and γ2 = C2
0,C

2
1, . . .C

2
n such that γ1 '

n
Q̂3
γ2 but s ∈ D1

n+1 and s < D2
n+1. Let us consider the n-step

context sequence γ3 = C3
0,C

3
1, . . .C

3
n such that, for i ∈ {0, . . . , n}, C3

i = (C1
i ∩{s | si ∈ Q̂1})∪(C2

i ∩{s |
si ∈ Q̂2}). Now we want to show that γ3 '

n
Q̂1
γ1 and γ3 '

n
Q̂2
γ2.

In particular we show the case of γ3 '
n
Q̂1
γ1 (the case of γ3 '

n
Q̂2
γ2 is analogous). Note that, for

i ∈ {0, . . . , n}, we have

C3
i ∩ {s | si ∈ Q̂1} = (C1

i ∩ {s | si ∈ Q̂1}) ∪ (C2
i ∩ {s | si ∈ Q̂2 ∩ {s | si ∈ Q̂1}).

Now, for i ∈ {0, . . . , n} we have

(C2
i ∩ {s | si ∈ Q̂2} ∩ {s | si ∈ Q̂1}) = (C2

i ∩ {s | si ∈ (Q̂1 ∩ Q̂2)}) = (C2
i ∩ {s | si ∈ Q̂3}).

Moreover, since by hypothesis γ1 '
n
Q̂3
γ2 we have also for i ∈ {0, . . . , n},

(C2
i ∩ {s | si ∈ Q̂3} = (C1

i ∩ {s | si ∈ Q̂3}.

Now remember that Q̂3 ⊆ Q̂1 so that i ∈ {0, . . . , n}, we have (C1
i ∩{s | si ∈ Q̂3} ⊆ (C1

i ∩{s | si ∈ Q̂1})
and C3

i ∩ {s | si ∈ Q̂1} = (C1
i ∩ {s | si ∈ Q̂1}). Hence we can conclude that γ3 '

n
Q̂1
γ1.

On one hand, Q̂1 m-predicts s in n + 1 steps so that s ∈ D3
n+1 ⇔ s ∈ D1

n+1. On the other hand,
Q̂2 m-predicts s in n + 1 steps so that s ∈ D3

n+1 ⇔ s ∈ D2
n+1. Thus, we obtain a contradiction with

the assumption that s ∈ D1
n+1 and s < D2

n+1.

Theorem 5.2 (Galois Insertion). The pair of functions (α1, γ1) in Definition 5.3 is a Galois inser-
tion between (℘(F ),⊆) and (℘(S),⊆).

Proof. We show that the pair of functions (α1, γ1) is a Galois insertion. To this aim we need to
prove that :

• We have to prove that α1 : ℘(F ) → ℘(S) and γ1 : ℘(S) → ℘(F ) are monotone. Given
two sets of formulas F1, F2 ∈ ℘(F ), such that F1 ⊆ F2 we have α1(F1) =

⋃
f∈F1

α̂1( f ) =⋃
f∈F1

atom( f ) and α1(F2) =
⋃

f ′∈F2
α̂1( f ′) =

⋃
f ′∈F2

atom( f ′). Since F1 ⊆ F2 we can con-
clude that α1(F1) ⊆ α1(F2).

Conversely, given two sets of labelled objects Q̂1, Q̂2 ∈ ℘(S) such that Q̂1 ⊆ Q̂2 we obtain
γ1(Q̂1) = { f | α̂1( f ) ⊆ Q̂1} = { f | atom( f ) ⊆ Q̂1} and γ1(Q̂2) = { f ′ | α̂1( f ′) ⊆ Q̂2} = { f ′ |
atom( f ′) ⊆ Q̂2}. Since Q̂1 ⊆ Q̂2 also in this case we can conclude that γ1(Q̂1) ⊆ γ1(Q̂2).
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• We have to prove that, for each F ∈ ℘(F ), F ⊆ γ1(α1(F)). We have that α1(F) =⋃
f∈F α̂1( f ) =

⋃
f∈F atom( f ) and therefore

γ1(α1(F)) = γ1(
⋃
f∈F

atom( f )) = { f ′ | α̂1( f ′) ⊆ (
⋃
f∈F

atom( f )) = { f ′ | atom( f ′) ⊆ (
⋃
f∈F

atom( f ))}.

We can conclude that F ⊆ γ1(α1(F)) given that the set of all possible formulas on the
symbols appearing in the formulas of F obviously contains the set of formulas F.

• We have to prove that, for each Q̂ ∈ ℘(S), α1(γ1(Q̂)) = Q̂. We have that γ1(Q̂) = { f |
α̂1( f ) ⊆ Q̂} and therefore

γ1(Q̂) = { f | α̂1( f ) ⊆ Q̂} = { f | atom( f ) ⊆ Q̂} = F.

Moreover, we have that

α1(F) =
⋃
f∈F

α̂1( f ) =
⋃
f∈F

atom( f ) =
⋃

f∈{ f ′ |atom( f ′)⊆Q̂}

atom( f ) = Q̂.

Lemma 5.3. Let γ1, γ2 be two n-step context sequences and f ∈ FS n be a propositional logic
formula. We have that

γ1 '
n
α̂1( f ) γ2 =⇒ γ1 ≈

n
f γ2.

Proof. Let γ1, γ2 be two n-step context sequences such that γ1 '
n
α̂1( f ) γ2 where α̂1( f ) = atom( f ).

By definition of the equivalence relation 'n
atom( f ) we have that each labelled object si ∈ atom( f ) is

either present or absent in both the i-th element of the context sequence γ1 and in the i-th element
of the context sequence γ2. This implies that f must either hold or not hold on both context
sequences, namely γ1 |= f ⇐⇒ γ2 |= f . By definition of the equivalence relation ≈n

f we derive
that γ1 ≈

n
f γ2.

Theorem 5.4. Let A = (S , A) be a reaction system, s ∈ S and f ∈ FS n be a propositional logic
formula. We have that

• if f f-predicts s in n + 1 steps then α̂1( f ) m-predicts s in n + 1 steps;

• if f is a minimal f-predictor of s in n + 1 steps then α̂1( f ) is a minimal m-predictor of s in
n + 1 steps.

Proof.

• By definition of f-predictor, for any two n-step context sequences γ1 and γ2 we have that
γ1 ≈

n
f γ2 implies s ∈ D1

n+1 ⇐⇒ s ∈ D2
n+1. By Lemma 5.3 we also have that γ1 '

n
α̂1( f ) γ2

implies γ1 ≈
n
f γ2. As a consequence, if γ1 '

n
α̂1( f )s γ2 then s ∈ D1

n+1 ⇐⇒ s ∈ D2
n+1. Thus,

α̂1( f ) m-predicts s in n + 1 steps.
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• Let us assume, by contradiction, that there exists a set Q̂ ⊆ S n that m-predicts s in n+1 steps
and such that Q̂ ⊂ α̂1( f ) where α̂1( f ) = atom( f ). Let γ1 = C1

0 . . .C
1
n, . . . , γw = Cw

0 . . .C
w
n be

all of the possible n-step context sequences on objects S . Furthermore, let D1
n+1, . . . ,D

w
n+1 be

the corresponding results at step n + 1, produced by the execution of the reaction system for
each 1 ∈ {1, . . . ,w}.

For each i ∈ {1, . . . ,w} we consider the set of labelled symbols Q̂i = Ci
0 ∪ . . . ∪ Ci

n and we
define the following formula

f ′ =
∨

{i∈{1,...,w}|s∈Di
n+1}

 ∧
s j∈(Q̂i∩Q̂)

s j ∧
∧

s j∈(Q̂\Q̂i)

¬s j

 .
It is easy to see that the formula f ′ f-predicts s in n + 1 steps. Moreover, we have that
atom( f ′) ⊂ atom( f ) since Q̂ ⊂ atom( f ). This contradicts the assumption that the formula f
f-predicts s in n + 1 steps and is minimal.

Corollary 5.5. LetA = (S , A) be a reaction system and s ∈ S . We have that

• α̂1(fbp(s, n)) m-predicts s in n + 1 steps;

• α̂1(simpl(fbp(s, n))) is the minimal m-predictor of s in n + 1 steps.

Proof.

• Follows from Corollary 4.6 and Theorem 5.4.

• Follows from Corollary 4.7 and Theorem 5.4.

Theorem 5.6. LetA = (S , A) be a reaction system and s ∈ S . Given n ∈ IN we have that

α̂1(fbp(s, n)) = mbp(s, n).

Proof. By definition we have that fbp(s, n) = fbs(cause(s), n) and analogously mbp(s, n) =

mbs(cause(s), n). Therefore it is enough to prove that α̂1(fbs( f , i)) = mbs( f , i) for each formula
f ∈ FS and for each i ∈ IN.

The proof proceeds by induction on the well-founded order ≤c of Definition B.1.
The base case is when i = 0 and either f = s where s a positive literal or f = true or

f = f alse. Assume first that f = s. Then, it is immediate to prove that α̂1(fbs(s, 0)) = α̂1(s0) =

{s0} = mbs(s, 0). For f = true, we have that α̂1(fbs(true, i)) = α̂1(true) = ∅ = mbs(true, i) for any
i ∈ IN, and, analogously for the case f = f alse.

Then, we have to prove that fbs( f , i) = α̂1(fbs( f , i)) holds, knowing that fbs( f ′, j) = α̂1(fbs( f ′, j))
for all f ∈ FS and j ∈ IN such that ( j, f ′) <c (i, f ).

We have the following different cases:
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• i > 0 and f = s where s is a positive literal. Then we have

α̂1(fbs(s, i)) = α̂1(si ∨ fbs(cause(s), i − 1)) = {si} ∪ α̂1(fbs(cause(s), i − 1)).

On the other hand we have mbs(s, i) = {si} ∪ mbs(cause(s), i − 1). We can conclude that
α̂1(fbs(s, i)) = mbs(s, i) given that by induction hypothesis we have α̂1(fbs(cause(s), i−1) =

mbs(cause(s), i − 1).

• f = f1 ∧ f2. Then, by definition, we have fbs( f1 ∧ f2, i) = fbs( f1, i) ∧ fbs( f2, i). Thus, by
applying the abstraction function we have,

α̂1(fbs( f1 ∧ f2, i)) = α̂1((fbs( f1, i) ∧ (fbs( f2, i))) = α̂1(fbs( f1, i)) ∪ α̂1(fbs( f2, i)).

On the other hand, we have mbs( f1 ∧ f2, i) = mbs( f1, i) ∪ mbs( f2, i). We can conclude that
mbs( f1∧ f2, i) = α̂1(fbs( f1∧ f2, i)) given that by induction hypothesis we have α̂1(fbs( f1, i)) =

mbs( f1, i) and α̂1(fbs( f2, i)) = mbs( f2, i).

• f = f1 ∨ f2. Then, by definition, we have fbs( f1 ∨ f2, i) = fbs( f1, i) ∨ fbs( f2, i). Thus, by
applying the abstraction function we have,

α̂1(fbs( f1 ∨ f2, i)) = α̂1((fbs( f1, i) ∨ (fbs( f2, i))) = α̂1(fbs( f1, i)) ∪ α̂1(fbs( f2, i)).

On the other hand, we have mbs( f1 ∨ f2, i) = mbs( f1, i) ∪ mbs( f2, i). We can conclude that
mbs( f1∨ f2, i) = α̂1(fbs( f1∨ f2, i)) given that by induction hypothesis we have α̂1(fbs( f1, i)) =

mbs( f1, i) and α̂1(fbs( f2, i)) = mbs( f2, i).

• f = ¬ f ′. Then then by definition we have fbs(¬ f ′, i) = ¬fbs( f ′, i). Thus, by applying the
abstraction function we have,

α̂1(fbs(¬ f ′, i)) = α̂1(¬(fbs( f ′, i))) = α̂1(fbs( f ′, i)).

On the other hand, we have mbs(¬ f ′, i) = mbs( f ′, i). We can conclude that mbs(¬ f ′, i) =

α̂1(fbs(¬ f ′, i)) given that by induction hypothesis we have α̂1(fbs( f ′, i)) = mbs( f ′, i).

• f = ( f ′) or f = true or f = f alse the proof is immediate reasoning analogously as in the
previous cases.

Corollary 5.7. LetA = (S , A) be a reaction system and s ∈ S . We have that mbp(s, n) m-predicts
s in n + 1 steps.

Proof. Follows from Theorem 5.6 and Corollary 5.5.
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Appendix C. Proofs of Theorems in Section 6

Theorem 6.1. LetA = (S , A) be reaction system and s ∈ S . There exists exactly a unique minimal
(w.r.t. the set inclusion order) Q ⊆ S that s-predicts s in n + 1 steps.

Proof. The proof of this theorem is in [18]

Theorem 6.2. The pair of functions (α2, γ2) in Definition 6.3 is a Galois insertion between (P(S),⊆
) and (P(S ),⊆).

Proof. Analogous to the proof of the Theorem 5.2.

Lemma 6.3. Let γ1, γ2 be two n-step context sequences and Q̂ ⊆ S n. We have that

γ1 ∼
n
α2(Q̂)

γ2 ⇒ γ1 '
n
Q̂
γ2.

Proof. Let γ1 = C1
0, . . . ,C

1
n and γ2 = C2

0, . . . ,C
2
n be two n-step context sequences such that

γ1 ∼
n
α2(Q̂)

γ2. By definition of ∼n
α2(Q̂)

it follows that i ∈ {0, . . . , n}, (C1
i ∩ α2(Q̂)) = (C2

i ∩ α2(Q̂)).

We now apply the definition of the abstraction function, obtaining that α2(Q̂) = {s | ∃s j ∈ Q̂)}.
As a consequence, we have that for each i ∈ {0, . . . , n}, (C1

i ∩{s | ∃s j ∈ Q̂)}) = (C2
i ∩{s | ∃s j ∈ Q̂)}).

Note that for each Q̂ it holds that {s | si ∈ Q̂} ⊆ {s | ∃ j, s j ∈ Q̂}. As a consequence we have also
that we can conclude that for each i ∈ {0, . . . , n}, (C1

i ∩ {s | ∃si ∈ Q̂)}) = (C2
i ∩ {s | ∃si ∈ Q̂)}).

Therefore, by applying the definition of the equivalence 'n
Q̂

we conclude that γ1 '
n
Q̂
γ2.

Theorem 6.4. LetA = (S , A) be a reaction system, s ∈ S and Q̂ ⊆ S n. We have that

• if Q̂ m-predicts s in n + 1 steps then α2(Q̂) s-predicts s in n + 1 steps;

• if Q̂ is the minimal multi-step based predictor of s in n + 1 steps then α2(Q̂) is the minimal
set based predictor of s in n + 1 steps.

Proof.

• By definition of m-predictor, for any two n-steps context sequences γ1 and γ2 we have that
γ1 '

n
Q̂
γ2 implies s ∈ D1

n+1 ⇐⇒ s ∈ D2
n+1. Moreover by Lemma 6.3 we also have that

γ1 ∼
n
α2(Q̂)

γ2 implies γ1 '
n
Q̂
γ2. As a consequence, γ1 ∼

n
α2(Q̂)

γ2 implies s ∈ D1
n+1 ⇐⇒ s ∈

D2
n+1. Thus, α2(Q̂) s-predicts s in n + 1 steps.

• Assume, by contradiction, that α2(Q̂) s-predicts s in n + 1 steps but it is not minimal. This
mean that there exists Q1 ⊆ S that s-predicts s in n + 1 steps and such that Q1 ⊂ α2(Q̂).

Consider now the set of labelled objects Q̂1 = {si | s ∈ Q1}. Given that Q1 s-predicts s in
n + 1 steps it is easy to see that also Q̂1 m-predicts s in n + 1 steps. Moreover, by applying
the abstraction function we have that α2(Q̂1) = {s | ∃ j s j ∈ Q̂1} = Q1.

By hypothesis Q̂ is a minimal m-predictor that is Q̂ ⊆ Q̂1. Moreover, by applying the ab-
straction function we have α2(Q̂) = {s | ∃ j s j ∈ Q̂}. As a consequence using the monotonic-
ity of the abstraction function we have α2(Q̂) ⊆ α2(Q̂1) = Q1. This gives a contradiction
with the assumption that Q1 ⊂ α2(Q̂).
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Theorem 6.6. LetA = (S , A) be a reaction system and s ∈ S . Given n ∈ IN we have that

α2(mbp(s, n)) = sbp(s, n).

Proof. The proof is similar to that of Theorem 5.6. In this case we have that sbp(s, n) = sbs(cause(s), n)
and analogously mbp(s, n) = mbs(cause(s), n). Therefore it is enough to prove that α2(mbs( f , i)) =

sbs( f , i) for each formula f ∈ FS and for each i ∈ IN.
The proof proceeds by induction on the well-founded order ≤c of Definition B.1.
The base case is when i = 0 and either f = s where s a positive literal or f = true or

f = f alse. Assume first that f = s. Then, it is immediate to prove that α2(mbs(s, 0)) = α2({s0}) =

{s} = sbs(s, 0).
. For f = true, we have that α2(mbs(true, i)) = α2(∅) = sbs(true, i) for any i ∈ IN, and, analogously
for the case f = f alse.

Then, we have to prove that sbs( f , i) = α2(mbs( f , i)) holds, knowing that sbs( f ′, j) = α2(mbs( f ′, j))
for all f ∈ FS and j ∈ IN such that ( j, f ′) <c (i, f ).

We have the following different cases:

• i > 0 and f = s where s is a positive literal. Then we have

α2(mbs(s, i)) = α2({si} ∪ mbs(cause(s), i − 1)) = {s} ∪ α2(mbs(cause(s), i − 1)).

On the other hand we have sbs(s, i) = {s} ∪ sbs(cause(s), i − 1). We can conclude that
α2(mbs(s, i)) = sbs(s, i) given that by induction hypothesis we have α2(mbs(cause(s), i −
1)) = sbs(cause(s), i − 1).

• f = f1 ∧ f2. Then by definition we have mbs( f1 ∧ f2, i) = mbs( f1, i) ∪ mbs( f2, i). Thus, by
applying the abstraction function we have,

α2(mbs( f1 ∧ f2, i)) = α2((mbs( f1, i) ∪ (mbs( f2, i))) = α2(mbs( f1, i)) ∪ α2(mbs( f2, i)).

On the other hand, we have sbs( f1 ∧ f2, i) = sbs( f1, i) ∪ sbs( f2, i). We can conclude that
sbs( f1∧ f2, i) = α2(mbs( f1∧ f2, i)) given that by induction hypothesis we have α2(mbs( f1, i)) =

sbs( f1, i) and α2(mbs( f2, i)) = sbs( f2, i).

• f = f1 ∨ f2. Then the proof is analogous to the previous case.

• f = ¬ f ′. Then then by definition we have mbs(¬ f ′, i) = mbs( f ′, i). Thus, by applying the
abstraction function we have,

α2(mbs(¬ f ′, i)) = α2((mbs( f ′, i))).

On the other hand, we have sbs(¬ f ′, i) = sbs( f ′, i). We can conclude that sbs(¬ f ′, i) =

α2(mbs(¬ f ′, i)) given that by induction hypothesis we have α2(mbs( f ′, i)) = sbs( f ′, i).
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• f = ( f ′) or f = true or f = f alse. Then the proof is immediate reasoning analogously as in
the previous cases.

Corollary 6.7. Let A = (S , A) be a reaction system and s ∈ S . We have that sbp(s, n) s-predicts
s in n + 1 steps.

Proof. It follows directly from Corollary 6.5 and Theorem 6.6.
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[3] G. Păun, Computing with membranes, Journal of Computer and System Sciences 61 (1) (2000) 108–143.
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