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INTEGRAL FOLIATED SIMPLICIAL VOLUME OF

ASPHERICAL MANIFOLDS

ROBERTO FRIGERIO, CLARA LÖH, CRISTINA PAGLIANTINI,
AND ROMAN SAUER

Abstract. Simplicial volumes measure the complexity of fundamental
cycles of manifolds. In this article, we consider the relation between
simplicial volume and two of its variants – the stable integral simplicial
volume and the integral foliated simplicial volume. The definition of
the latter depends on a choice of a measure preserving action of the
fundamental group on a probability space.

We show that integral foliated simplicial volume is monotone with
respect to weak containment of measure preserving actions and yields
upper bounds on (integral) homology growth.

Using ergodic theory we prove that simplicial volume, integral fo-
liated simplicial volume and stable integral simplicial volume coincide
for closed hyperbolic 3-manifolds and closed aspherical manifolds with
amenable residually finite fundamental group (being equal to zero in the
latter case).

However, we show that integral foliated simplicial volume and the
classical simplicial volume do not coincide for hyperbolic manifolds of
dimension at least 4.

1. Introduction

Simplicial volume is a homotopy invariant of manifolds, measuring the
complexity of singular fundamental cycles with R-coefficients. The simplicial
volume of an oriented closed connected n-manifold M is defined as

‖M‖ := inf
{
|c|1

∣∣ c ∈ Cn(M ;R), ∂c = 0, [c] = [M ]R
}
∈ R>0,

where |c|1 denotes the ℓ1-norm of the singular chain c with respect to the
basis of all singular n-simplices inM . Despite its topological definition, sim-
plicial volume carries geometric information and allows for a rich interplay
between topological and geometric properties of manifolds [10, 21].

A long-standing purely topological problem on simplicial volume was for-
mulated by Gromov [11, p. 232][13, 3.1. (e) on p. 769]:

Question 1.1. Let M be an oriented closed connected aspherical manifold.
Does ‖M‖ = 0 imply χ(M) = 0? Does ‖M‖ = 0 imply the vanishing of
L2-Betti numbers of M?

A possible strategy to answer Question 1.1 in the affirmative is to replace
simplicial volume by a suitable integral approximation, and then to use a
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Poincaré duality argument to bound (L2)-Betti numbers in terms of this in-
tegral approximation. Finally, one should relate the integral approximation
to the simplicial volume on aspherical manifolds.

One instance of such an integral approximation is stable integral simplicial
volume. The stable integral simplicial volume of an oriented closed connected
manifold M is defined as

‖M‖∞Z := inf
{1
d
· ‖M‖Z

∣∣∣ d ∈ N and M →M is a d-sheeted covering
}
,

where the integral simplicial volume ‖M‖Z is defined like the ordinary sim-
plicial volume but using Z-fundamental cycles.

Another instance of this strategy is integral foliated simplicial volume.
A definition of integral foliated simplicial volume and a corresponding L2-
Betti number estimate was suggested by Gromov [12, p. 305f] and confirmed
by Schmidt [33]. Integral foliated simplicial volume

M = infα
Mα is

defined in terms of fundamental cycles with twisted coefficients in L∞(X,Z),
where α = π1(M) y X is a probability space with a measure preserving
action of the fundamental group ofM (see Section 2 for the exact definition).

For all oriented closed connected manifolds M these simplicial volumes
fit into the sandwich [23]

‖M‖ 6
M 6 ‖M‖∞Z .

This leads to the following fundamental problems [23, Question 1.7, Ques-
tion 7.2, Question 4.21]:

Question 1.2. Do simplicial volume and integral foliated simplicial volume
coincide for aspherical manifolds?

Question 1.3. Do integral foliated simplicial volume and stable integral
simplicial volume coincide for aspherical manifolds with residually finite fun-
damental group?

Question 1.4. How does integral foliated simplicial volume depend on the
action on the probability space? If it does, is it an interesting dynamical
invariant of the action? Which role is played by the Bernoulli shift?

In this article, we contribute (partial) solutions to these questions. On
the one hand, we show that integral foliated simplicial volume is compati-
ble with weak containment of measure preserving actions. In combination
with results from ergodic theory this shows that integral foliated simplicial
volume and stable integral simplicial volume coincide in various cases, e.g.,
for amenable residually finite or free fundamental group. Moreover, we give
a geometric proof of the fact that stable integral simplicial volume, integral
foliated simplicial volume, and simplicial volume all are zero for aspherical
manifolds with amenable fundamental group.

On the other hand, we show that integral foliated simplicial volume and
classical simplicial volume do not coincide for hyperbolic manifolds of di-
mension at least 4. Since hyperbolic manifolds are aspherical, this answers
Question 1.2 in the negative (even when restricting to manifolds with resid-
ually finite fundamental group).

We now describe these results in more detail.
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1.1. Integral foliated simplicial volume and weak containment. The
measure preserving actions used to define integral foliated simplicial volume
are organized into a hierarchy by means of weak containment (see Section 3.1
for the definitions). Integral foliated simplicial volume is compatible with
this hierarchy in the following sense (Theorem 3.3):

Theorem 1.5 (monotonicity of integral foliated simplicial volume). Let M
be an oriented closed connected manifold with fundamental group Γ, and let
α = Γ y (X,µ) and β = Γ y (Y, ν) be free non-atomic standard Γ-spaces
with α ≺ β (i.e., α is weakly contained in β). Then

Mβ
6
Mα.

In combination with results from ergodic theory, we obtain the following
consequences for integral foliated simplicial volume: Bernoulli shift spaces
give the maximal (whence bad) value among free measure preserving actions
(Corollary 3.4). If the fundamental group satisfies the universality prop-

erty EMD* (Definition 3.5) from ergodic theory, then integral foliated sim-
plicial volume and stable integral simplicial volume coincide (Corollary 3.6).
For instance, this applies to free fundamental groups (Corollary 3.8) and to
residually finite amenable fundamental groups (Corollary 3.7).

1.2. Integral foliated simplicial volume and bounds on homology.

A chain in a group Γ is a descending sequence Γ = Γ0 > Γ1 > Γ2 > . . . of
finite index subgroups. We associate to a chain a measure preserving action
on the coset tree, i.e., the inverse limit of the Γ/Γi (see Subsection 2.1).
We denote the torsion subgroup of a finitely generated abelian group A
by torsA; it is a finite abelian group.

Theorem 1.6 (homology bounds). Let n ∈ N. Let M be an oriented closed
connected n-manifold with fundamental group Γ, let (Γi)i be a chain of Γ,
and letMi →M be the finite covering associated to Γi. Let α be the standard
Γ-action on the coset tree of (Γi)i. Then for every k ∈ N and for every
principal ideal domain R we have (where rkR denotes the R-dimension of
the free part of finitely generated R-modules)

lim sup
i→∞

log | torsHk(Mi;Z)|

[Γ : Γi]
≤ log(n+ 1) · 2n+1 ·

Mα;

lim sup
i→∞

rkRHk(Mi;R)

[Γ : Γi]
≤
Mα.

We note that by Lück’s approximation theorem

lim sup
i→∞

dimQHk(Mi;Q)

[Γ : Γi]
= lim

i→∞

dimQHk(Mi;Q)

[Γ : Γi]

equals the k-th L2-Betti number of M provided (Γi)i is a residual chain,
which means that Γi < Γ is normal and the intersection of all Γi is the
trivial group.
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1.3. Closed hyperbolic manifolds. Let us now recall what is known
about the three types of simplicial volume that we are dealing with for
closed hyperbolic manifolds.

A celebrated result by Gromov and Thurston states that the simplicial
volume of a closed hyperbolic manifold is equal to the Riemannian volume
divided by the volume vn of the regular ideal geodesic n-simplex in the
hyperbolic space Hn [10, 34]. Notice that the regular ideal geodesic n-
simplex is unique up to isometry.

For closed hyperbolic surfaces, it is known that simplicial volume, stable
integral simplicial volume, and integral foliated simplicial volume all coin-
cide [23, Example 6.2].

For closed hyperbolic 3-manifolds, the integral foliated simplicial volume
is equal to the simplicial volume [23, Theorem 1.1], but the exact relation
with stable integral simplicial volume was unknown. In Section 3.3 we com-
plete the picture in dimension 3, showing that the three considered flavours
of simplicial volume are equal (Corollary 3.11).

Theorem 1.7. LetM be an oriented closed connected hyperbolic 3-manifold.
Then

‖M‖ =
M = ‖M‖∞Z .

This result basically answers a question [8, Question 6.5] in the affirmative
that was originally stated for stable complexity rather than stable integral
simplicial volume (but these very close notions basically play the same role
in all applications). The proof is based on Theorem 1.5. Indeed, the fun-

damental group of a closed hyperbolic 3-manifold has property EMD* (see
Definition 3.5). Hence, the equality of integral foliated simplicial volume

and stable integral simplicial volume for EMD* groups yield the conclusion.
Theorem 1.7 admits the following geometric interpretation. In their proof

of the Ehrenpreis conjecture [16], Kahn and Markovic showed that every
closed orientable hyperbolic surface S has a finite covering that decomposes
into pairs of pants whose boundary curves have length arbitrarily close to an
arbitrarily big constant R > 0. Theorem 1.7 provides a sort of 3-dimensional
version of this result. Namely, Theorem 1.7 is equivalent to the fact that, for
every ε > 0 and R ≫ 0, every closed hyperbolic 3-manifold M has a finite

covering M̂ admitting an integral fundamental cycle z
M̂

with the following
property: if N is the number of singular simplices appearing in z

M̂
, then at

least (1− ε)N simplices of z
M̂

are ε-close in shape to a regular simplex with
edge length bigger than R.

For closed hyperbolic manifolds of dimension at least 4, the stable integral
simplicial volume is not equal to the simplicial volume. More precisely,
Francaviglia, Frigerio, and Martelli proved that the ratio between stable
integral simplicial volume and simplicial volume is uniformly strictly bigger
than 1 [8, Theorem 2.1].

In Section 5, we generalize this result to integral foliated simplicial vol-
ume (Theorem 5.1), as vaguely suggested by Francaviglia, Frigerio, and
Martelli [8, Question 6.4]:

Theorem 1.8. For all n ∈ N>4 there is a constant Cn ∈ R<1 with the fol-
lowing property: For all oriented closed connected hyperbolic n-manifolds M
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we have

‖M‖ 6 Cn ·
M.

For the proof, we notice that in dimension at least 4, the dihedral angle
of the regular ideal simplex does not divide 2π and in the same spirit as
for stable integral simplicial volume [8] we show that foliated integral cy-
cles cannot be used to produce efficient fundamental cycles computing the
simplicial volume. Indeed, every fundamental cycle contains simplices with
volume significantly smaller than vn or there are overlappings producing loss
of volume. To prove our statement we need to carefully estimate this loss of
volume.

1.4. Closed amenable manifolds. We will now refer to an oriented closed
connected manifold with amenable fundamental group as closed amenable
manifold. It is well-known that the simplicial volume of closed amenable
manifolds vanishes [10, 15]. This result relies on bounded cohomology tech-
niques that cannot be exploited in the context of integral coefficients.

For finite fundamental groups, integral foliated simplicial volume and sta-
ble integral simplicial are equal (and non-zero) [23, Corollary 6.3]. Moreover,
if a manifold splits off an S1-factor, then the integral foliated simplicial vol-
ume vanishes [33, Chapter 5.2]. Sauer introduced an invariant related to
the integral foliated simplicial volume and provided an upper bound of this
invariant in terms of the minimal volume; moreover, for closed amenable
aspherical manifolds this invariant vanishes [31, Section 3].

Theorem 1.9. Let M be an oriented closed connected aspherical manifold
of non-zero dimension with amenable fundamental group Γ. Let α = Γ y

(X,µ) be a free standard Γ-space. Then
M =

Mα = 0.

The first statement of the next theorem is Corollary 3.7. The second
statement about vanishing is a combination of Theorem 1.9 applied to the
action of Γ on its profinite completion (cf. Subsection 2.1) and the fact that
MΓ̂ = ‖M‖∞Z (Theorem 2.6).

Theorem 1.10. Let M be an oriented closed connected manifold with resid-
ually finite amenable fundamental group Γ. Then

M =
MΓ̂ = ‖M‖∞Z .

where Γ̂ denotes the profinite completion of Γ. If, in addition, M is aspher-
ical, then

M =
MΓ̂ = ‖M‖∞Z = 0.

By Theorem 1.9 applied to the action of Γ on the coset tree associated to
a Farber chain (cf. Subsection 2.1) and by Theorem 1.6 we obtain:

Theorem 1.11. Let M be an oriented closed connected aspherical manifold
with amenable fundamental group Γ. Let (Γi)i be a Farber chain of Γ, and
let Mi →M be the finite covering associated to Γi. For every integer k ≥ 0
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and for every principal ideal domain R we have

lim sup
i→∞

log | torsHk(Mi;Z)|

[Γ : Γi]
= 0;

lim sup
i→∞

rkRHk(Mi;R)

[Γ : Γi]
= 0.

Using different methods, A. Kar, P. Kropholler and N. Nikolov recently
proved a more general form of the above theorem for simplicial complexes
that are not necessarily aspherical but whose k-th homology of the universal
covering vanishes [17]. Earlier, the above statement was shown for resid-
ual chains and under the assumption that Γ has a normal infinite elemen-
tary amenable subgroup by Lück [27] and for general amenable fundamental
groups and residual chains by Sauer [32].

Note that the middle equation in the above statement is a well known
result; it follows from Lück’s approximation theorem [26] and the vanishing
of L2-Betti numbers of amenable groups by Cheeger and Gromov [5].

In view of the original, motivating problem about simplicial volume and
the Euler characteristic it would be interesting to know the answer to the
following question:

Question 1.12. LetM be an oriented closed connected aspherical manifold
with ‖M‖ = 0. Does this imply

M = 0? If π1(M) is residually finite,
does this imply ‖M‖∞Z = 0?

1.5. Analogies between integral foliated simplicial volume and cost.

We draw an analogy between integral foliated simplicial volume and cost.
The latter invariant was introduced by Gaboriau [9].

Let α = Γ y (X,µ) be a standard Γ-action, and let M be an n-
dimensional closed aspherical manifold with π1(M) = Γ. Then

Mα can
be regarded as an invariant of α. There is no direct relation between

Mα

and the cost of α, nor between
M and the cost of Γ which is defined as

the infimum of the costs of all free standard Γ-actions. However, there are
similarities. The cost of Γ can be thought of as an ergodic-theoretic version
of the rank of Γ (i.e., the minimal number of generators or, equivalently,
the minimal number of Γ-orbits in a Caley graph of Γ). The integral fo-
liated simplicial volume can be thought of as an ergodic-theoretic version
of the minimal number of Γ-orbits of n-simplices in a simplicial model of
the classifying space of Γ. Theorem 1.5 was inspired by an analogous the-
orem for the cost by Abert and Weiss [2]. Gaboriau’s fixed price problem
asks whether the costs of two free standard Γ-actions always coincide. The
following analog is also a more specific instance of Question 1.4.

Question 1.13 (analog of fixed price problem). LetM be an oriented closed
connected aspherical manifold with fundamental group Γ. Let α and β be
free standard Γ-actions. Does

Mα =
Mβ hold?

Organization of this article. In Section 2, we recall the exact definition
of integral foliated simplicial volume. The behaviour of integral foliated
simplicial volume with respect to weak containment and applications thereof
are studied in Section 3. The homology bounds by integral foliated simplicial
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volume are discussed in Section 4. The higher-dimensional hyperbolic case
is treated in Section 5, the amenable aspherical case in Section 6.

Acknowledgements. C.L. was supported by the CRC 1085 Higher In-
variants (Universität Regensburg, funded by the DFG) and is grateful to
the FIM at ETH Zürich for its hospitality. C.P. was supported by Swiss
National Science Foundation project 144373. The authors thank Alberto
Abbondandolo and Pietro Majer for useful conversations.

2. Integral foliated simplicial volume

Integral foliated simplicial volume mixes the rigidity of integral coefficients
with the flexibility of probability spaces [12, p. 305f][33]. In the following, we
recall the exact definition and collect some notation and terminology. More
background on integral foliated simplicial volume and its basic relations with
simplicial volume and stable integral simplicial volume can be found in the
literature [23].

2.1. Probability measure preserving actions. A standard Borel space
is a measurable space that is isomorphic to a Polish space with its Borel
σ-algebra. A standard Borel probability space is a standard Borel space
endowed with a probability measure. More information on the convenient
category of standard Borel spaces can be found in the book by Kechris [18].

Let Γ be a countable group. A standard Γ-space is a standard Borel
probability space (X,µ) together with a measurable µ-preserving (left) Γ-
action. If α = Γ y (X,µ) is a standard Γ-space, then we denote the action
of g ∈ Γ on x ∈ X also by gα(x). Standard Γ-spaces α = Γ y (X,µ) and
β = Γ y (Y, ν) are isomorphic, α ∼=Γ β, if there exist probability measure
preserving Γ-equivariant measurable maps X −→ Y and Y −→ X defined
on subsets of full measure that are mutually inverse up to null sets. A
standard Γ-space is (essentially) free or ergodic if the Γ-action is free on a
subset of full measure or ergodic respectively. We describe two important
examples of standard Γ-spaces: Bernoulli-shifts and profinite actions coming
from chains of subgroups.

Let B be a standard Borel probability space. The Bernoulli shift of Γ
with base B is the standard Borel space BΓ with the product probability
measure and the left translation action of Γ. If Γ is an infinite countable
group and B is non-trivial, then the Bernoulli shift BΓ is essentially free
and mixing (thus ergodic) [29, p. 58].

A chain in a group Γ is a descending sequence Γ = Γ0 > Γ1 > Γ2 > . . .
of finite index subgroups. The coset tree X of the chain is the inverse limit

X = lim
←−
i∈N

Γ/Γi

of the finite Γ-spaces Γ/Γi. Further, the profinite space X carries a Γ-
invariant Borel probability measure µ that is characterized by its pushfor-
ward to every Γ/Γi being the normalized counting measure. The Γ-action
on the standard Γ-space (X,µ) is ergodic [1, Chapter 3]. If the chain con-
sists of normal subgroups whose intersection is trivial (a so-called residual
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chain), then the Γ-action on X is essentially free. One calls the chain Far-
ber if the Γ-action on (X,µ) is essentially free; this notion also admits a
group-theoretic characterization [6, (0-1) in Theorem 0.3.].

More generally, instead of taking the inverse limit over a chain of sub-
groups, one can also take an inverse limit over a system of subgroups, di-

rected by inclusion. The profinite completion Γ̂ is defined as

Γ̂ := lim
←−
Λ∈S

Γ/Λ

where S is the directed system of all finite index subgroups of Γ. Then Γ̂ is
a profinite group. The unique Borel probability measure µ that is pushed
forward to the normalized counting measures on the finite quotients is the

normalized Haar measure of Γ̂. Similarly to the case of coset trees, one sees

that the left translation action of Γ on Γ̂ is ergodic; this action is essentially
free if and only if Γ is residually finite.

2.2. Parametrized fundamental cycles.

Definition 2.1 (parametrized fundamental cycles). Let M be an oriented
closed connected n-manifold with fundamental group Γ and universal cov-

ering M̃ −→M .

• If α = Γ y (X,µ) is a standard Γ-space, then we equip L∞(X,µ,Z)
with the right Γ-action

L∞(X,µ,Z) × Γ −→ L∞(X,µ,Z)

(f, g) 7−→ gα(f) :=
(
x 7→ f(gα(x))

)
.

and we write iαM for the change of coefficients homomorphism

iαM : C∗(M ;Z) ∼= Z⊗ZΓ C∗(M̃ ;Z) −→ L∞(X,µ,Z) ⊗ZΓ C∗(M̃ ;Z) =: C∗(M ;α)

1⊗ c 7−→ 1⊗ c

induced by the inclusion Z →֒ L∞(X,µ,Z) as constant functions.
• If α = Γ y (X,µ) is a standard Γ-space, then

[M ]α := Hn(i
α
M )([M ]Z) ∈ Hn

(
M ;α)

= Hn

(
L∞(X,µ,Z) ⊗ZΓ C∗(M̃ ;Z)

)

is the α-parametrized fundamental class of M . All cycles in the chain

complex C∗(M ;α) = L∞(X,µ,Z) ⊗ZΓ C∗(M̃ ;Z) representing [M ]α

are called α-parametrized fundamental cycles of M .

Integral foliated simplicial volume is the infimum of ℓ1-norms over all
parametrized fundamental cycles:

Definition 2.2 (integral foliated simplicial volume). Let M be an oriented
closed connected n-manifold with fundamental group Γ, and let α = Γ y

(X,µ) be a standard Γ-space.

• Let c =
∑k

j=1 fj ⊗ σj ∈ C∗(M ;α) be a chain in reduced form, i.e.,

the singular simplices σ1, . . . , σk on M̃ satisfy π ◦ σj 6= π ◦ σℓ for
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all j, ℓ ∈ {1, . . . , k} with j 6= ℓ (where π : M̃ −→ M is the universal
covering map). Then we define

cα :=


k∑

j=1

fj ⊗ σj


α

:=

k∑

j=1

∫

X

|fj| dµ ∈ R>0.

(Clearly, all reduced forms of a given chain lead to the same ℓ1-norm
because the probability measure is Γ-invariant.)
• The α-parametrized simplicial volume of M , denoted by

Mα, is
the infimum of the ℓ1-norms of all α-parametrized fundamental cy-
cles of M .
• The integral foliated simplicial volume of M , denoted by

M, is
the infimum of all

Mα over all isomorphism classes of standard
Γ-spaces α.

Remark 2.3. Notice that oriented closed connected manifolds have count-
able fundamental groups. IfM is an oriented closed connected manifold with
fundamental group Γ and if α and β are standard Γ-spaces with α ∼=Γ β,
then

Mα =
Mβ. Moreover, if Γ is a countable group, then the class

of isomorphism classes of standard Γ-spaces indeed forms a set [33, Re-
mark 5.26].

Remark 2.4. Let M be an oriented closed connected manifold with funda-
mental group Γ and let α = Γ y (X,µ) be a standard Γ-space. Let D ⊂ M̃

be a (set-theoretical, strict) fundamental domain for the Γ-action on M̃ by

deck transformations. Let c =
∑k

j=1 fj ⊗ σj ∈ C∗(M ;α) be a chain where

the (not necessarily distinct!) singular simplices σ1, . . . , σk all have their
0-vertex in D, and where f1, . . . , fk ∈ L

∞(X,µ,Z). Then

cα =


k∑

j=1

fj ⊗ σj


α

=


k∑

j=1

fj ⊗ σj


(X,µ)

,

where
·(X,µ) is the corresponding ℓ1-norm on L∞(X,µ,Z) ⊗Z C∗(M̃ ;Z).

I.e., for chains that do not contain different singular simplices from the same
Γ-orbit, we can compute the ℓ1-norm also in the non-equivariant chain com-
plex. This will be convenient below when considering potentially different
actions on the same probability space.

For the sake of completeness, we also describe the relation between para-
metrized fundamental cycles and locally finite fundamental cycles of the
universal covering.

Lemma 2.5 (parametrized fundamental cycles yield locally finite funda-
mental cycles). Let M be an oriented closed connected n-manifold with fun-

damental group Γ, let M̃ be its universal covering and let α = Γ y (X,µ)

be a standard Γ-space. Moreover, let c =
∑k

j=1 fj ⊗ σj ∈ Cn(M ;α) be an
α-parametrized fundamental cycle of M . Then for µ-a.e. x ∈ X the chain

cx :=
∑

γ∈Γ

k∑

j=1

fj(γ
−1 · x) · γ · σj
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is a well-defined locally finite fundamental cycle of M̃ .

Proof. Let B(α,Z) denote the abelian group of all (strictly) bounded, mea-
surable, everywhere defined functions of type X −→ Z, and let N(α,Z) ⊂
B(α,Z) be the subgroup of µ-a.e. vanishing functions. Then L∞(X,µ,Z) =
B(α,Z)/N(α,Z) as ZΓ-modules, where we equip B(α,Z) and N(α,Z) with
the obvious right Γ-actions.

For x ∈ X there is a well-defined evaluation chain map

ϕx : B(α,Z)⊗ZΓ C∗(M̃ ;Z) −→ C lf
∗ (M̃ ;Z)

f ⊗ σ 7−→
∑

γ∈Γ

f(γ−1 · x) · γ · σ;

notice that the sum on the right hand side indeed is locally finite because Γ

acts properly discontinuously on M̃ by deck transformations.

Let cZ ∈ Cn(M ;Z) ∼= Z⊗ZΓCn(M̃ ;Z) be a fundamental cycle ofM . Then

we can view cZ (via constant functions) as a chain in B(α,Z)⊗ZΓ Cn(M̃ ;Z)

and ϕx(cZ) is the transfer of cZ to M̃ and thus is a locally finite fundamental

cycle of M̃ .
If c ∈ Cn(M ;α) is an α-parametrized fundamental cycle, then c can be

represented by a chain c′ ∈ B(α,Z) ⊗ZΓ Cn(M̃ ;Z) such that there exist

b ∈ B(α,Z) ⊗ZΓ Cn+1(M̃ ;Z) and z ∈ N(α,Z) ⊗ZΓ Cn(M̃ ;Z) with [23, Re-
mark 4.20]

c′ = cZ + ∂b+ z.

Therefore, for µ-a.e. x ∈ X we have

cx = ϕx(c
′) = ϕx(cZ + ∂b) = ϕz(cZ) + ∂ϕx(b),

which is a locally finite fundamental cycle of M̃ . �

2.3. Relation between integral foliated simplicial volume and sta-

ble integral simplicial volume. Actions on coset trees and the profinite
completion provide the link between integral foliated simplicial volume and
stable integral simplicial volume.

Theorem 2.6. Let M be an oriented closed connected manifold with fun-
damental group Γ. Then

M 6
MΓ̂ = ‖M‖∞Z .

More specifically, if (Γi)i is a chain of Γ and α = Γ y (X,µ) the corre-
sponding action on the coset tree, then

Mα = lim
i→∞

‖Mi‖Z
[Γ : Γi]

.

where Mi →M is the covering associated to Γi ⊂ Γ = π1(M).

Proof. The first statement is proved by Löh and Pagliantini [23, Theo-
rem 6.6], and the proof [23, Remark 6.7] also shows that

Mα = inf
i→∞

‖Mi‖Z
[Γ : Γi]

.
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But the infimum is actually a limit: Let (a(i))i be a sequence in N converging
to ∞ such that

lim inf
i→∞

‖Mi‖Z
[Γ : Γi]

= lim
i→∞

‖Ma(i)‖Z
[Γ : Γa(i)]

.

The standard Γ-action on the coset tree associated to the chain (Γa(i))i is
clearly isomorphic to the one on the coset tree associated to the chain (Γi)i.
Hence by the aforementioned result of Löh and Pagliantini we obtain that

Mα = inf
i∈N

‖Ma(i)‖Z
[Γ : Γa(i)]

= lim inf
i→∞

‖Mi‖Z
[Γ : Γi]

.

One argues analogously for the limit superior. This concludes the proof. �

3. Integral foliated simplicial volume and weak containment

Probability measure preserving actions are organized into a hierarchy by
means of weak containment. We recall the notion of weak containment and
its main properties in Section 3.1. In Section 3.2, we will prove monotonic-
ity of integral foliated simplicial volume with respect to weak containment.
Some simple consequences of this monotonicity are discussed in Section 3.3.

3.1. Weak containment. We first recall Kechris’s notion of weak contain-
ment [19, 20] and its relation with the weak topology on the space of actions
on a given standard Borel probability space.

Definition 3.1 (weak containment). Let Γ be a countable group, and let
α = Γ y (X,µ) and β = Γ y (Y, ν) be standard Γ-spaces. Then α is
weakly contained in β if the following holds: For all ε ∈ R>0, all finite
subsets F ⊂ Γ, all m ∈ N, and all Borel sets A1, . . . , Am ⊂ X there exist
Borel subsets B1, . . . , Bm ⊂ Y with

∀γ∈F ∀j,k∈{1,...,m}

∣∣µ(γα(Aj) ∩Ak)− ν(γ
β(Bj) ∩Bk)

∣∣ < ε.

In this case, we write α ≺ β. We call α and β weakly equivalent if α ≺ β
and β ≺ α.

For example, if the standard Γ-space α is a factor of a standard Γ-space β,
then α ≺ β holds.

We will use the following characterization of weak containment:

Proposition 3.2 (weak containment vs. weak closure [19, Proposition 10.1]).
Let Γ be a countable group and let α = Γ y (X,µ) and β = Γ y (Y, ν) be
non-atomic standard Γ-spaces. Then α ≺ β if and only if α lies in the
closure of {

γ ∈ A(Γ,X, µ)
∣∣ γ ∼=Γ β

}

in A(Γ,X, µ) with respect to the weak topology.

Here, A(Γ,X, µ) denotes the set of all µ-preserving actions of Γ on the
standard Borel probability space (X,µ) by Borel isomorphisms. The weak
topology on A(Γ,X, µ) is defined as follows: The set Aut(X,µ) of Borel
automorphisms of (X,µ) carries a weak topology with respect to the family
of all evaluation maps ϕ 7→ ϕ(A) associated with Borel subsets A ⊂ X. I.e.,
if ϕ ∈ Aut(X,µ), then the family of sets of the type

{
ψ ∈ Aut(X,µ)

∣∣ ∀j∈{1,...,m} µ
(
ϕ(Aj)△ ψ(Aj)

)
< δ
}
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where δ ∈ R>0, m ∈ N, and A1, . . . , Am ⊂ X are Borel subsets is an open
neighbourhood basis of the weak topology on Aut(X,µ) [19, Chapter 1(B)].
Viewing A(Γ,X, µ) as a subset of the product Aut(X,µ)Γ then induces a
topology on A(Γ,X, µ), which is also called weak topology.

3.2. Monotonicity of integral foliated simplicial volume under weak

containment. We now prove the following monotonicity result:

Theorem 3.3 (monotonicity of integral foliated simplicial volume). Let M
be an oriented closed connected manifold with fundamental group Γ, and let
α = Γ y (X,µ) and β = Γ y (Y, ν) be free non-atomic standard Γ-spaces
with α ≺ β. Then

Mβ
6
Mα.

Proof. Notice that in the case of finite fundamental group Γ, every free

standard Γ-space α satisfies
Mα = 1/|Γ| · ‖M̃‖Z [23, Proposition 4.26

and Example 4.5]. Therefore, we now focus on the infinite case.
Let n := dimM , let c ∈ Cn(M ;α) be an α-parametrized fundamental

cycle of M , and let ε ∈ R>0. Taking the infimum over all such fundamental
cycles and all such ε shows that it is sufficient to prove

Mβ
6
cα + ε.

To this end, we show that there exists a standard Γ-space γ ∈ A(Γ,X, µ)

with γ ∼=Γ β and
Mβ =

Mγ
6
cα + ε.

As a first step, we write c suitably in reduced form. Because c is an α-
parametrized fundamental cycle of M there exist an integral fundamental
cycle z ∈ Cn(M ;Z) and a chain b ∈ Cn+1(M ;α) with

c = z + ∂b ∈ Cn(M ;α);

here, we view C∗(M ;Z) as a subcomplex of C∗(M ;α) via the inclusion

of Z →֒ L∞(X,µ,Z) as constant functions. Let D ⊂ M̃ be a (set-theoretical,

strict) fundamental domain for the deck transformation action of Γ on M̃ .
We can then write

z =
∑

σ∈S

aσ ⊗ σ ∈ Cn(M ;α),

b =
∑

τ∈T

fτ ⊗ τ ∈ Cn+1(M ;α),

where S ⊂ map(∆n, M̃), T ⊂ map(∆n+1, M̃) are finite subsets of singular
simplices whose 0-vertex lies in D, and where fτ ∈ L

∞(X,µ,Z) are essen-
tially bounded measurable functions and aσ ∈ Z ⊂ L∞(X,µ,Z) are constant
functions. Without loss of generality, we may assume that the fτ are rep-
resented as bounded (and not only essentially bounded) functions and that
at least one of the fτ is not constant 0. We then obtain in C∗(M ;α)

c =
∑

σ∈S

aσ ⊗ σ + ∂

(∑

τ∈T

fτ ⊗ τ

)

=
∑

σ∈S

aσ ⊗ σ +

n+1∑

j=1

∑

τ∈T

(−1)j · fτ ⊗ (τ ◦ ij) +
∑

τ∈T

gατ (fτ )⊗ τ0;
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here, for j ∈ {0, . . . , n + 1}, we write ij : ∆
n −→ ∆n+1 for the inclusion of

the j-th face, and for τ ∈ T , we let gτ ∈ Γ be the unique element satisfying

g−1
τ · (τ ◦ i0)(e0) = g−1

τ · τ(e1) ∈ D,

and we set τ0 := g−1
τ · τ . Hence, in the above representation of c all singular

simplices have their 0-vertex in D. In view of Remark 2.4 we therefore have

cα =


∑

σ∈S

aσ ⊗ σ +

n+1∑

j=1

∑

τ∈T

(−1)j · fτ ⊗ (τ ◦ ij) +
∑

τ∈T

gατ (fτ )⊗ τ0


(X,µ)

.

As next step we bring the characterization of weak containment via the
weak topology (Proposition 3.2) into play. We choose a finite Borel parti-
tion X = A1 ⊔ · · · ⊔Am of X that is finer than the (finite) set

{
f−1
τ (k) ⊂ X

∣∣ k ∈ Z, τ ∈ T
}
,

and we consider

δ :=
ε

m ·
∑

τ∈T ‖fτ‖∞
∈ R>0

as well as the finite set

F := {g−1
τ | τ ∈ T} ⊂ Γ.

By Proposition 3.2 there is a standard Γ-space γ ∈ A(Γ,X, µ) with γ ∼=Γ β
and

∀g∈F ∀j∈{1,...,m} µ
(
gα(Aj)△ gγ(Aj)

)
< δ.

Finally, we consider the chain c′ ∈ Cn(M ; γ) that is represented by the
chain

∑

σ∈S

aσ ⊗ σ +
n+1∑

j=1

∑

τ∈T

(−1)j · fτ ⊗ (τ ◦ ij) +
∑

τ∈T

gγτ (fτ )⊗ τ0

from L∞(X,µ,Z) ⊗Z Cn(M̃ ;Z). Then the same calculation as in the first
step shows that

c′ = z + ∂

(∑

τ∈T

fτ ⊗ τ

)

holds in C∗(M ; γ) and that

c′γ =


∑

σ∈S

aσ ⊗ σ +

n+1∑

j=1

∑

τ∈T

(−1)j · fτ ⊗ (τ ◦ ij) +
∑

τ∈T

gγτ (fτ )⊗ τ0


(X,µ)

.
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In particular, c′ is a γ-parametrized fundamental cycle and
∣∣cα −

c′γ
∣∣

=

∣∣∣∣

∑

σ∈S

aσ ⊗ σ +

n+1∑

j=1

∑

τ∈T

(−1)j · fτ ⊗ (τ ◦ ij) +
∑

τ∈T

gατ (fτ )⊗ τ0


(X,µ)

−


∑

σ∈S

aσ ⊗ σ +

n+1∑

j=1

∑

τ∈T

(−1)j · fτ ⊗ (τ ◦ ij) +
∑

τ∈T

gγτ (fτ )⊗ τ0


(X,µ)∣∣∣∣

6


∑

σ∈S

aσ ⊗ σ +

n+1∑

j=1

∑

τ∈T

(−1)j · fτ ⊗ (τ ◦ ij) +
∑

τ∈T

gατ (fτ )⊗ τ0

−

(∑

σ∈S

aσ ⊗ σ +
n+1∑

j=1

∑

τ∈T

(−1)j · fτ ⊗ (τ ◦ ij) +
∑

τ∈T

gγτ (fτ )⊗ τ0

)
(X,µ)

6
∑

τ∈T

∥∥gατ (fτ )− gγτ (fτ )
∥∥
∞
.

In the second step we used the (reverse) triangle inequality for
·(X,µ);

in the third step we used the definition of the ℓ1-norm on L∞(X,µ,Z) ⊗Z

Cn(M̃ ;Z) and the triangle inequality.
For each τ ∈ T , we can write

fτ =

m∑

j=1

aτ,j · χAj
∈ L∞(X,µ,Z)

with certain aτ,1, . . . , aτ,m ∈ Z. Hence,

∥∥gατ (fτ )− gγτ (fτ )
∥∥
∞

6

m∑

j=1

|aτ,j | ·
∥∥gατ (χAj

)− gγτ (χAj
)
∥∥
∞

6

m∑

j=1

|aτ,j | ·
∥∥χ(g−1

τ )α(Aj)
− χ(g−1

τ )γ(Aj)

∥∥
∞

=

m∑

j=1

|aτ,j | · µ
(
(g−1

τ )α(Aj)△ (g−1
τ )γ(Aj)

)

6 m · ‖fτ‖∞ · δ.

Therefore, we have

∣∣cα −
c′γ

∣∣ 6 m ·
∑

τ∈T

‖fτ‖∞ · δ 6 ε.

In particular,
Mβ =

Mγ
6
c′γ

6
cα + ε, as desired. �

3.3. Consequences. In the following, we will combine Theorem 3.3 with
known results from ergodic theory on weak containment. In particular, we
will consider Bernoulli shifts and the profinite completion of residually finite
groups.
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Corollary 3.4 (maximality of Bernoulli shifts). LetM be an oriented closed
connected manifold with infinite fundamental group Γ and let B be a non-
trivial standard Borel probability space. Then

Mα
6
MBΓ

holds for all free standard Γ-spaces α.

Proof. This follows directly from Theorem 3.3 and the fact that any free
standard Γ-space weakly contains all non-trivial Bernoulli shifts [2]. �

Let us recall a measurable density notion by Kechris [20], related to the
profinite completion:

Definition 3.5 (Property EMD*). An infinite countable group Γ has prop-

erty EMD* if any ergodic standard Γ-space is weakly contained in the profi-

nite completion Γ̂ of Γ.

Corollary 3.6 (profinite completion and stable integral simplicial volume).
Let M be an oriented closed connected manifold with fundamental group Γ.
If Γ has EMD*, then for all ergodic standard Γ-spaces α we have

Mα
>
MΓ̂ = ‖M‖∞Z ,

and hence
M = ‖M‖∞Z .

Proof. If Γ has EMD* and α is an ergodic standard Γ-space, then we obtain
from Theorem 3.3 that

Mα
>
MΓ̂ = ‖M‖∞Z .

On the other hand, we know that integral foliated simplicial volume can
be computed by using ergodic standard Γ-spaces [23, Proposition 4.17] and
that

M 6 ‖M‖∞Z (Theorem 2.6). Hence,
M = ‖M‖∞Z , as desired. �

Corollary 3.7 (amenable fundamental groups). LetM be an oriented closed
connected manifold with residually finite amenable fundamental group Γ.
Then Mα =

MΓ̂ = ‖M‖∞Z
holds for all free standard Γ-spaces α. In particular,

M = ‖M‖∞Z .

Proof. If Γ is finite, then this is a straightforward calculation [23, Proposi-
tion 4.15, Corollary 4.27].

If Γ is infinite, then all free standard Γ-spaces are weakly equivalent [7, 19];

in particular, they are weakly equivalent to the profinite completion Γ̂. Now
the claim follows from Theorem 3.3 and Theorem 2.6. �

The case of aspherical manifolds with amenable fundamental group will
be discussed in Section 6.

Corollary 3.8 (free fundamental groups). Let M be an oriented closed
connected manifold with free fundamental group Γ. Then

M =
MΓ̂ = ‖M‖∞Z .

Proof. If Γ is trivial, then this chain of equalities clearly holds [23, Ex-
ample 4.5]. Moreover, it is known that free groups of non-zero rank sat-

isfy EMD* [20]. Hence, we can apply Corollary 3.6. �
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Remark 3.9. If M is an oriented closed connected manifold with free fun-
damental group Γ of rank r, then ‖M‖ = 0 [22, p. 76]. However, we will
now see that if r > 2, then

M = ‖M‖∞Z > 0.

Looking at the classifying map M −→ BΓ shows that [25, Theorem 1.35(1),
Example 1.36]

b
(2)
1 (M) = b

(2)
1 (M̃,Γ) > b

(2)
1 (Γ) = r − 1 > 0.

Hence, the fact that integral foliated simplicial volume (and also stable in-
tegral simplicial volume) provide an upper bound for L2-Betti numbers [33,
Corollary 5.28] implies that also

M = ‖M‖∞Z > 0.
In case of rank r = 1, then there are examples with vanishing stable

integral simplicial volume (e.g., S1), but also examples with non-vanishing
stable integral simplicial volume (e.g., (S1×Sn−1)#(S2×Sn−2) for all n> 2,
as one can see using the formula of L2-Betti numbers for connected sums [25,
Theorem 1.35(6)] and the mentioned upper bound by Schmidt).

Let us now consider the case of hyperbolic 3-manifolds.

Proposition 3.10. The fundamental group of a virtually fibered closed hy-
perbolic 3-manifold has property EMD*.

Proof. This result has already been noticed by Kechris [20] and Bowen and
Tucker-Drob [4]. For the sake of completeness, we include a proof. First of

all, notice that for residually finite groups property EMD* is equivalent to
property MD [35, Theorem 1.4], another universal property related to profi-
nite completion due to Kechris [20]. Hence, we deduce that surface groups
have property MD [4, Theorem 1.4]: Indeed, using as normal subgroup of a
surface group the kernel of its abelianization map, Lubotzky and Shalom [24,
Theorem 2.8] showed that a surface group satisfies the hypotheses for the
MD-inheritance result [4, Theorem 1.4].

Let us now consider the fundamental group Γ of a closed hyperbolic
3-manifold that fibers over S1, i.e., the semidirect product of a surface
group Λ and Z. Taking as normal subgroup of Γ the surface group Λ
we may again apply MD-inheritance [4, Theorem 1.4] to conclude that Γ

has property MD, and hence property EMD*. For residually finite groups
property EMD* is preserved by passing from a finite index subgroup to the
ambient group, hence yielding the conclusion. �

Corollary 3.11 (hyperbolic 3-manifolds). Let M be an oriented closed con-
nected hyperbolic 3-manifold. Then

‖M‖ =
M = ‖M‖∞Z .

Proof. Agol’s virtual fiber theorem [3] and Proposition 3.10 give that the fun-

damental group of every closed hyperbolic 3-manifold has property EMD*.
Hence, Corollary 3.6 implies that integral foliated simplicial volume and sta-
ble integral simplicial volume are equal for closed hyperbolic 3-manifolds.
On the other hand, it is known that ‖M‖ =

M in this case [23, Theo-
rem 1.1]. �
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Notice that the corresponding result for higher-dimensional manifolds
does not hold (Section 5).

Remark 3.12. An example of group which does not satisfy property EMD*

is SL(n,Z) for n > 2 [4].

4. Homology bounds via integral foliated simplicial volume

Theorem 1.6, which we prove in this section, can be quickly deduced from
Theorem 2.6 and suitable estimates for torsion and rank in terms of integral
simplicial volume:

Proof of Theorem 1.6. Every oriented closed connected n-manifold N satis-
fies the torsion homology bound [32, Theorem 3.2]

log(| torsHk(N ;Z)|) ≤ log(n+ 1)

(
n+ 1

k + 1

)
‖N‖Z

in every degree k. In particular, by Theorem 2.6 we obtain for the tower of
finite coverings associated to the chain (Γi)i of Γ = π1(M) that

lim sup
i→∞

log(| torsHk(Mi;Z)|)

[Γ : Γi]
≤ log(n+ 1)2n+1 · lim

i→∞

‖Mi‖Z
[Γ : Γi]

= log(n+ 1)2n+1 ·
Mα,

where n denotes the dimension of M . Starting from the Betti number esti-
mate in Lemma 4.1 below we similarly obtain

lim sup
i→∞

rkRHk(Mi;R)

[Γ : Γi]
6
Mα

for all principal ideal domains R. �

Poincaré duality allows to bound Betti numbers in terms of integral sim-
plicial volume. For the sake of completeness, we give a simple proof of this
fact. For simplicity, we consider only principal ideal domains as coefficients.

Lemma 4.1. Let R be a principal ideal domain and let M be an oriented
closed connected n-manifold. Then for all k ∈ N we have

rkRHk(M ;R) 6 ‖M‖Z.

Proof. Let c =
∑m

j=1 aj · σj ∈ Cn(M ;Z) be a fundamental cycle of M in

reduced form with |c|1,Z = ‖M‖Z and let k ∈ N. Then the Poincaré duality
map

· ∩ [M ]Z : H
n−k(M ;R) −→ Hk(M ;R)

[f ] 7−→ [f ∩ c] = (−1)k·(n−k) ·

[ m∑

j=1

aj · f(n−k⌊σ) · σ⌋k

]

is surjective. In particular, Hk(M ;R) is a quotient of a submodule of a free
R-module of rank at most m. So, rkRHk(M ;R) 6 m 6 |c|1,Z = ‖M‖Z. �



18 R. FRIGERIO, C. LÖH, C. PAGLIANTINI, AND R. SAUER

5. Integral foliated simplicial volume of higher-dimensional

hyperbolic manifolds

This section is devoted to the proof of Theorem 1.8:

Theorem 5.1. For all n ∈ N>4 there is a Cn ∈ R<1 with the following
property: For all oriented closed connected hyperbolic n-manifolds M we
have

‖M‖ 6 Cn ·
M.

5.1. Setup. As usual, we denote by Γ ∼= π1(M) the automorphism group of

the universal covering π : M̃ → M . We also fix a standard Γ-space X, and
we denote by α the action of Γ on X. Let c ∈ Cn(M,α) = L∞(X,µ,Z)⊗ZΓ

Cn(M̃ ;Z) be a fundamental cycle for M . We rewrite c in a convenient form
for the computations we are going to carry out. Namely, for a suitable finite
set I = {1, . . . , h} of indices we have

(1) c =
∑

i∈I

εiχAi
⊗ σi ,

where:

(i) the first vertex of each σi lies in a fixed (set-theoretical, strict) fun-

damental domain D for the Γ-action on M̃ by deck transformations;
(ii) εi ∈ {1,−1} for every i ∈ I;
(iii) for every i, j ∈ I, either Ai = Aj , or Ai ∩Aj = ∅;
(iv) if Ai = Aj and σi = σj, then εi = εj.

We set

βi = εiµ(Ai) ∈ R ,

so cα =
∑

i∈I

|βi| ,

and we recall that the chain

cR =
∑

i∈I

βi(π ◦ σi) =
∑

i∈I

εiµ(Ai)(π ◦ σi) ∈ Cn(M,R)

is a real fundamental cycle for M [33, Remark 5.23][23, Proposition 4.6].
A crucial role in our argument will be played by the locally finite chain

cx =
∑

i∈I

∑

γ∈Γ

εiχAi
(γ−1x) · γσi ∈ Clf

n (M̃ ;Z)

defined for µ-a.e. x ∈ X, which is a locally finite fundamental cycle of M̃
(Lemma 2.5).

Observe that, as a consequence of our choices, if γσi = γ′σj for some
γ, γ′ ∈ Γ and i, j ∈ I, then γ = γ′ and σi = σj (but possibly i 6= j). If this is
the case and γ−1(x) ∈ Ai∩Aj , then the singular simplex γσi = γσj appears
with multiplicities in cx. However, we will keep track of the fact that these
singular simplices arise from distinct summands in (1). In this spirit, the
chain cx should be considered just as a sum of signed simplices (i.e., a locally
finite chain whose coefficients lie in {±1}), possibly with repetitions. To be
precise we say that the pair (γ, i) ∈ Γ× I appears in cx if γ−1(x) ∈ Ai. Note
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that it could happen that γσi = γσj for some i 6= j, but (γ, i) appears in cx,
while (γ, j) does not.

By the very definitions, for every i ∈ I, γ ∈ Γ we have

(2) µ ({x ∈ X | (γ, i) appears in cx}) = µ(γAi) = µ(Ai) = |βi| .

Moreover, we will assume that c is straight as explained below.

5.2. Straight simplices. Recall that a geodesic p-simplex in Hn is just
the convex hull of (p+ 1) (ordered) points lying in H

n
= Hn ∪ ∂Hn. Such a

simplex is ideal if all its vertices belong to ∂Hn, and it is degenerate if its ver-
tices lie on a (p− 1)-dimensional hyperbolic subspace of H

n
. If σ : ∆p → Hn

is a singular simplex, then we denote by strp(σ) the straight simplex as-
sociated to σ, i.e., the barycentric parameterization of the unique geodesic
simplex having the same vertices as σ. It is well known that the straight-
ening map can be linearly extended to an Isom(Hn)-equivariant chain map
str∗ : C∗(H

n,Z) → C∗(H
n,Z), which is Isom(Hn)-equivariantly homotopic

to the identity [30, §11.6]. As a consequence, the norm non-increasing map

id⊗ZΓstr∗ : C∗(M,α)→ C∗(M,α)

induces the identity in homology. Therefore, henceforth we will assume that
each σi in our parametrized foliated fundamental cycle c is straight.

We define the algebraic volume of σi by setting

volalg(σi) = εi

∫

σi

ω
M̃
,

where ω
M̃

is the volume form of M̃ = Hn. Since cR is a real fundamental
cycle for M we have the equality

(3) vol(M) =
∑

i∈I

|βi|volalg(σi) .

The fact that parametrized integral cycles cannot be used to produce
efficient cycles descends from the following observation: in dimension greater
than 3, the dihedral angle of the regular ideal simplex does not divide 2π.
As a consequence, for a.e. x ∈ X the integral (locally finite) cycle cx must
contain a certain quantity of small simplices. This implies in turn that cx
cannot project onto an efficient fundamental cycle of M . In the case when
cx is Γ-equivariant, this fact is precisely stated and proved by Francaviglia,
Frigerio, and Martelli [8], and implies that the ratio between the (stable)
integral simplicial volume and the ordinary simplicial volume ofM is strictly
bigger than one. However, cx is not Γ-equivariant in general, so more work
is needed in our context.

Let us first recall the statements from the equivariant case [8] that we will
be using later on. A ridge of a geodesic simplex (or of a singular simplex)
is a face of the simplex of codimension 2. If ∆ is a nondegenerate geodesic
n-simplex in Hn and E is a ridge ∆, then the dihedral angle α(∆, E) of ∆
at E is defined in the following way: let p be a point in E ∩ Hn, and let
H ⊆ Hn be the unique 2-dimensional geodesic plane which intersects E
orthogonally in p. We define α(∆, E) as the angle in p of the polygon ∆∩H
of H ∼= H2. It is easily seen that this is well-defined (i.e., independent
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of p). For every n > 3, we denote the dihedral angle of the ideal regular
n-dimensional simplex at any of its ridges by αn.

It is readily seen by intersecting the simplex with a horosphere centered
at any vertex that αn equals the dihedral angle of the regular Euclidean
(n− 1)-dimensional simplex at any of its (n− 3)-dimensional faces, so αn =
arccos 1

n−1 . In particular, we have α3 = arccos 1
2 = π

3 . Since
2π
6 < arccos 1

3 <
2π
5 and 2π

5 < arccos 1
n
< 2π

4 for every n > 4, the real number 2π
αn

is an integer
if and only if n = 3. For n ∈ N>4, we write kn ∈ N for the unique integer
satisfying

knαn < 2π < (kn + 1)αn;

then kn = 5 if n = 4 and kn = 4 if n > 5. If the volume of a geodesic simplex
is close to vn, then the simplex must be close in shape to the regular ideal
one, so one gets the following:

Lemma 5.2 ([8, Lemma 3.16]). Let n > 4. Then, there exist an > 0 and
εn > 0, such that the following condition holds: if a geodesic n-simplex ∆
satisfies vol(∆) > (1 − εn)vn and if α is the dihedral angle of ∆ at any of
its ridges, then

2π

kn + 1
(1 + an) < α <

2π

kn
(1− an).

5.3. The incenter and inradius of a simplex. Consider a nondegenerate
geodesic k-simplex ∆ ⊆ Hn, and let H(∆) ⊆ Hn be the unique hyperbolic
subspace of dimension k containing ∆. We are going to recall the definition
of inradius r(∆) of ∆, which is due to Luo [28].

For every point p ∈ ∆ we denote by r∆(p) the radius of the maximal
k-ball of H(∆) centered in p and contained in ∆, and we set

r(∆) := sup
p∈∆

r∆(p) ∈ (0,+∞] .

Since the volume of any k-simplex is smaller than vk and the volume of
k-balls diverges as the radius diverges, there exists a constant rk > 0 such
that r∆(p) 6 rk for every p ∈ ∆, so r(∆) ∈ (0,+∞). Moreover, there is a
unique point p ∈ ∆ with r∆(p) = r(∆) [28][8, Lemma 3.15]. Such a point is
denoted by the symbol inc(∆), and it is called the incenter of ∆.

The following lemma shows that, in big simplices, the incenter of a face
is uniformly distant from any other non-incident face.

Lemma 5.3 ([8, Lemma 3.15]). Let n > 3. There exist εn > 0 and δn > 0
such that the following holds for every geodesic n-simplex ∆ ⊆ Hn with
vol(∆) > vn(1 − εn): let e be any face of ∆ and e′ another face of ∆ that
does not contain e; then

d(inc(e), e′) > 2δn.

In particular, if e, e′ are distinct ridges of ∆, then

B(inc(e), δn) ∩B(inc(e′), δn) = ∅.

Henceforth we fix constants εn > 0, an > 0 and δn > 0 such that the
statements of Lemmas 5.2 and 5.3 hold. We also set

ηn = vol(B(p, δn)) ,
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where B(p, δn) is any ball of radius δn in Hn; notice that ηn is independent
of the point p.

5.4. Proof of Theorem 5.1. Taking the infimum over all standard Γ-
spaces X and over all the fundamental cycles c ∈ Cn(M,α) shows that
Theorem 1.8 will be a consequence of the following:

Theorem 5.4. Let n ∈ N, n > 4, and

Cn := max

{
1−

εn
12
, 1−

ηn
3vn

, 1−
anηn
2vn

}
< 1.

Then, for every oriented closed connected hyperbolic n-manifold M with fun-
damental group Γ, every standard Γ-space α = Γ y (X,µ), and every fun-
damental cycle c ∈ Cn(M,α), the following inequality holds:

‖M‖ 6 Cn ·
cα.

The rest of this section is devoted to the proof of Theorem 5.4. We will
now keep the notation and assumptions introduced in Section 5.1.

Definition 5.5. We say that the simplex σi is big if volalg(σi) > (1− εn)vn,
and small otherwise. We also set

Ib = {i ∈ I |σi is big} , Is = I \ Ib ,

and

cb =
∑

i∈Ib

εiχAi
⊗ σi , cs =

∑

i∈Is

εiχAi
⊗ σi ,

so that c = cb + cs. Also observe that we have
cα =

cb
α+

cs
α. (Of

course, cb and cs need not be cycles.)

The following result says that a cycle is efficient only if its small simplices
have a small weight.

Proposition 5.6. Suppose that

cs
α

>

cα

12
.

Then
cα

>
‖M‖

1− εn/12
.

Proof. By (3) we have

‖M‖ =
vol(M)

vn
=

∑
i∈I |βi|volalg(σi)

vn

=

∑
i∈Ib
|βi|volalg(σi)

vn
+

∑
i∈Is
|βi|volalg(σi)

vn

6

∑
i∈Ib
|βi|vn

vn
+

∑
i∈Is
|βi|(1− εn)vn

vn
=
∑

i∈I

|βi| − εn
∑

i∈Is

|βi|

=
cα − εn

∑

i∈Is

|βi| =
cα − εn

cs
α

6
cα

(
1−

εn
12

)
. �

Therefore, we are now left to consider the case when
cs
α is small.
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5.4.1. Full ridges. In the sequel we work with ∆-complexes. These are vari-
ations of simplicial complexes in which distinct simplices may share more
than one face and faces of the same simplex may be identified [14, §2.1]. To
the real cycle cR there is associated the finite ∆-complex P which is defined
as follows. We take one copy ∆i of the n-dimensional standard simplex ∆n,
and we identify the (n − 1)-dimensional faces F1 ⊆ ∆i1 , . . . , Fs ⊆ ∆is of
these simplices if π ◦ σi1 ◦ ∂j1 = · · · = π ◦ σis ◦ ∂js , where ∂jl is the usual
affine identification between the (n − 1)-dimensional standard simplex and
the face Fl of ∆il . Observe that, after identifying ∆j with the standard
simplex ∆n for every j, the singular simplices π ◦ σi glue into a continuous
map

f : P →M .

Let now e be a ridge of P , and observe that the set of vertices of e is
endowed with a well-defined order. We denote by ẽ the unique lift of f(e)
to Hn having the first vertex in D, so ẽ is naturally a singular (n − 2)-
simplex. We shall often denote by ẽ also the image of such a simplex, since
this will not produce any confusion. If S is a finite set, we denote by |S| the
cardinality of S. For every x ∈ X we set

Ω(e, x) = {(γ, i) | (γ, i) appears in cx and ẽ is a ridge of γσi} ⊆ Γ× I ,

Ωb(e, x) = {(γ, i) ∈ Ω(e, x) |σi is big} ,

N(e, x) = |Ω(e, x)| ,

Nb(e, x) = |Ωb(e, x)|

(observe that, since cx is locally finite, the sets Ωb(e, x) ⊆ Ω(e, x) are finite).
It is immediate to check that the functions N(e, ·) : X → N, Nb(e, ·) : X → N

are measurable. We now consider the following measurable subsets of X:

F (e) = {x ∈ X |Nb(e, x) > kn + 1} .

NF (e) = {x ∈ X | 1 6 N(e, x) , Nb(e, x) 6 kn} ,

and we say that e is x-full if x ∈ F (e), and x-non-full if x ∈ NF (e). Observe
that, thanks to Lemma 5.2, if e is x-full, then the big simplices appearing
in cx must produce some overlapping around ẽ. On the other hand, if e is
not x-full, then at least one small simplex appears around ẽ in cx.

Henceforth we denote by E the set of (n−2)-dimensional (simplicial) faces
of P , and for every i ∈ I we denote by E(σi) the set of (n− 2)-dimensional
(singular) faces of σi, i.e., the set of ridges of σi.

Let us now fix i ∈ I. We want to measure the fact that σi may produce
overlappings in cx for some x ∈ X. To this aim, we fix a ridge τ of σi. If
eτ ∈ E is the (n− 2)-dimensional face corresponding to τ , then there exists
a unique element γτ ∈ Γ such that γτ · τ = ẽτ and we set

F (σi, τ) = F (σi, τ, eτ ) = {x ∈ F (eτ ) | (γτ , i) ∈ Ω(eτ , x)} ⊆ X ,

NF (σi, τ) = NF (σi, τ, eτ ) = {x ∈ NF (eτ ) | (γτ , i) ∈ Ω(eτ , x)} ⊆ X .

Observe that, according to our definitions,

F (σi, τ) = γτAi ∩ F (eτ ) , NF (σi, τ) = γτAi ∩ NF (eτ ) .
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On the other hand, for later convenience we set

F (σi, τ, e) = ∅ = NF (σi, τ, e) ,

for every e ∈ E \ {eτ}. So

F (σi, τ) =
⋃

e∈E

F (σi, τ, e) , NF (σi, τ) =
⋃

e∈E

NF (σi, τ, e) .

Of course, for every x ∈ X such that (γτ , i) appears in cx we have that eτ
is either x-full or x-non-full, so by the very definitions (and by Equation (2))
we have that

|βi| = µ(F (σi, τ)) + µ(NF (σi, τ)) .

By summing over the ridges of σi we then get

(4)
n(n+ 1)

2
|βi| =

∑

τ∈E(σi)

(
µ(F (σi, τ)) + µ(NF (σi, τ))

)
.

Lemma 5.7. We have

n(n+ 1)

2

cb
α

6
∑

i∈Ib

∑

τ∈E(σi)

µ
(
F (σi, τ)

)
+
∑

e∈E

5µ
(
NF (e)

)
.

Proof. From Equation (4) we get

n(n+ 1)

2

cb
α =

n(n+ 1)

2

∑

i∈Ib

|βi|

=
∑

i∈Ib

∑

τ∈E(σi)

(
µ(F (σi, τ)) + µ(NF (σi, τ))

)
.

Recall now that kn 6 5 for every n ∈ N; so, by definition, around any
x-non-full ridge ẽ in Hn at most five big simplices of cx may appear. As a
consequence for every e ∈ E we have that

∑

i∈Ib

∑

τ∈E(σi)

µ(NF (σi, τ, e)) 6 5µ(NF (e)),

so
∑

i∈Ib

∑

τ∈E(σi)

µ(NF (σi, τ)) =
∑

e∈E

∑

i∈Ib

∑

τ∈E(σi)

µ(NF (σi, τ, e)) 6 5
∑

e∈E

µ(NF (e)) ,

and this concludes the proof. �

The following proposition shows that, if the total weight of big simplices
of c is large, then there must be many overlappings in cx for x in a subset
of large measure.

Proposition 5.8. Suppose that

cs
α

6

cα

12
.

Then ∑

i∈Ib

∑

τ∈E(σi)

µ(F (σi, τ)) > 5
cα .
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Proof. Let e ∈ E and take x ∈ NF (e). By Lemma 5.2, at least one small
simplex must appear around ẽ in cx. In other words, we have that

NF (e) ⊆
⋃

i∈Is

⋃

τ∈E(σi)

NF (σi, τ, e) ,

so

µ(NF (e)) 6
∑

i∈Is

∑

τ∈E(σi)

µ(NF (σi, τ, e)) .

By summing over e ∈ E we obtain

∑

e∈E

µ(NF (e)) 6
∑

e∈E

∑

i∈Is

∑

τ∈E(σi)

µ(NF (σi, τ, e)) =
∑

i∈Is

∑

τ∈E(σi)

µ(NF (σi, τ))

6
n(n+ 1)

2

∑

i∈Is

|βi| =
n(n+ 1)

2

cs
α ,

where the second inequality follows from (4). Using this inequality and
Lemma 5.7 we then get that

n(n+ 1)

2

cα =
n(n+ 1)

2
(
cb
α +

cs
α)

6
∑

i∈Ib

∑

τ∈E(σi)

µ(F (σi, τ)) +
∑

e∈E

5µ(NF (e)) +
n(n+ 1)

2

cs
α

6
∑

i∈Ib

∑

τ∈E(σi)

µ(F (σi, τ)) + 5
n(n+ 1)

2

cs
α +

n(n+ 1)

2

cs
α

=
∑

i∈Ib

∑

τ∈E(σi)

µ(F (σi, τ)) + 3n(n+ 1)
cs
α

6
∑

i∈Ib

∑

τ∈E(σi)

µ(F (σi, τ)) +
n(n+ 1)

4

cα ,

so
∑

i∈Ib

∑

τ∈E(σi)

µ(F (σi, τ)) >
n(n+ 1)

4

cα
> 5
cα . �

Remark 5.9. Suppose that every simplex in c has positive algebraic volume
(this is very “likely” if

cα is close to ‖M‖). Then for every x ∈ X all the
simplices in cx have positive algebraic volume. Since cx has integral coeffi-
cients, this readily implies that no overlapping occurs in cx. In particular,
no full ridge appears in any cx, so µ(F (σi, τ, e)) = 0 for every e ∈ E, i ∈ I,
τ ∈ E(σi). By Proposition 5.8 and Proposition 5.6 we now have

cs
α

>

cα

12
and

cα
>

‖M‖

1− εn/12
.

This implies (a stronger version of) Theorem 5.4 in the case when the sim-
plices appearing in c all have positive algebraic volume.
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5.5. Generalized chains and local degree. Let B(Hn;R) be the real
vector space having as a basis the set of measurable bounded subsets of Hn,
endowed with the obvious action by Γ. A generalized chain is an element of
the space

R⊗RΓ B(Hn;R) .

If 1⊗B is an indecomposable element in R⊗RΓB(Hn;R), then we define the
local degree degp(1⊗ B) ∈ N of 1⊗B at p ∈M as the number of points in
the intersection between B and the preimage of p via the universal covering
map π : Hn → M (such a number is well-defined because Γ permutes the
fiber of p, and it is finite since B is relatively compact and the fiber of p is
discrete). It is readily seen that the local degree extends to a well-defined
linear map

degp : R⊗RΓ B(Hn;R)→ R .

Let now z =
∑

λ∈Λ aλ ⊗Bλ be a fixed generalized chain. The number

vol(z) =
∑

λ∈Λ

aλ vol(Bλ)

is well-defined, and a double-counting argument shows that

vol(z) =

∫

M

degp(z) dp

(observe that the map deg·(z) : M → R is measurable, since each Bλ is
Borel). Let us set

Ipos = {i ∈ I | volalg(σi) > 0} ,

so that Ib ⊆ Ipos. Since cR is a real fundamental cycle and the boundary of
the image of each σi is a null set, we easily have that

degp

( ∑

i∈Ipos

|βi| im(σi)−
∑

i∈I\Ipos

|βi| im(σi)

)
= 1

for almost every p ∈M .
In particular, if we set

zpos =
∑

i∈Ipos

|βi| ⊗ im(σi) ,

then we deduce that

(5) degp(zpos) > 1

for almost every p ∈ M . We now need to refine this estimate in order to
show that overlappings in cx have a cost in terms of the ℓ1-norm of the
fundamental cycle cR.

Take e ∈ E. If F (e) 6= ∅, then ẽ ⊆ Hn is a ridge of a big geodesic
simplex. Since big simplices are nondegenerate, also ẽ is nondegenerate. In
particular, the incenter inc(ẽ) is well-defined. We denote by inc(e) ∈M the
image of inc(ẽ) in M .

Recall that, if σi is a big simplex and τ ∈ E(σi), then there exists a
unique element γτ ∈ Γ such that γτ · τ = ẽτ , where ẽτ is the preferred lift
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of the (n− 2)-dimensional face eτ ∈ E corresponding to τ . We consider the
following generalized chains:

z− =
∑

i∈Ib

∑

τ∈E(σi)

µ(F (σi, τ))⊗ ((γτ · im(σi)) ∩B(inc(ẽτ ), δn))

(observe that γτ and inc(ẽτ ) are defined whenever µ(F (σi, τ)) 6= 0),

z+ =
∑

e∈E

µ(F (e)) ⊗B(inc(ẽ), δn)

(again, inc(ẽ) is defined whenever µ(F (e)) 6= 0), and we finally set

(6) z = zpos − z− + z+ .

Roughly speaking, the generalized chain z is obtained by removing from the
big simplices in zpos the portions that cover small balls around the incenters
of full ridges, and adding back (a suitable weighted sum of) such small
balls. We will show that the degree of z at almost every point of M is
still at least 1. However, when there are many overlappings, the absolute
value of the volume of z− is substantially bigger than the volume of z+.
These two facts imply that the volume of zpos must be considerably bigger
than vol(M). Therefore, the sum of the coefficients appearing in zpos must
be bigger than ‖M‖, and this implies in turn the desired bound from below
for
cα.
In order to pursue this strategy, we need to introduce the notion of gen-

eralized parametrized chain. Let B(Hn;Z) be the free abelian group having
as a basis the set of measurable bounded subsets of Hn, endowed with the
obvious action by Γ. By definition, a generalized parametrized chain is an
element of the space

L∞(X,µ,Z) ⊗ZΓ B(Hn;Z) .

The integration map
∫
X
: L∞(X,µ,Z)→ R and the inclusion i : B(Hn;Z)→

B(Hn;R) induce a well-defined homomorphism

θ :=

∫

X

⊗ i : L∞(X,µ,Z) ⊗ZΓ B(Hn;Z)→ R⊗RΓ B(Hn;R) .

If z̃ is a generalized parametrized chain and p ∈M , then we set

degp(z̃) = degp(θ(z̃)) .

Moreover, if z̃ =
∑

j∈J fj ⊗ Bj, then for every x ∈ X we can consider the
locally finite formal sum

z̃x =
∑

j∈J

∑

γ∈Γ

fj(γ
−1x)γ(Bj) ,

and we may define the local degree of such a sum at p̃ ∈ Hn by setting

degp̃(z̃x) =
∑

j∈J

∑

γ∈Γ

fj(γ
−1x)χγ(Bj )(p̃) .

Lemma 5.10. Let z̃ be a generalized parametrized chain. Then

degp(z̃) =

∫

X

degp̃(z̃x) dµ(x) ∈ R

for every p ∈M and p̃ ∈ Hn such that π(p̃) = p.
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Proof. By linearity, we may assume that z̃ = χA ⊗ B for some measurable
subsets A ⊆ X, B ⊆ Hn. Moreover, if k = |(B ∩ π−1(p))|, then there exist
elements γ1, . . . , γk in Γ such that χγ(B)(p̃) = χB(γ

−1(p̃)) = 1 if and only if
γ = γh for some h ∈ {1, . . . , k}. Therefore,

degp̃(z̃x) =
∑

γ∈Γ

χA(γ
−1x)χγ(B)(p̃) =

k∑

h=1

χA(γ
−1
h x) =

k∑

h=1

χγh·A(x) ,

and
∫

X

degp̃(z̃x) dµ(x) =
k∑

h=1

∫

X

χγh·A(x) dµ(x) = kµ(A) = degp(z̃) . �

Let us now return to the study of our parametrized cycle c =
∑

i∈I εiχAi
⊗

σi. From now on z̄ denotes the generalized chain in (6).

Proposition 5.11. For almost every p ∈M , we have degp(z) > 1.

Proof. We set

z̃pos =
∑

i∈Ipos

χAi
⊗ im(σi) ,

z̃− =
∑

i∈Ib

∑

τ∈E(σi)

χF (σi,τ) ⊗ ((γτ · im(σi)) ∩B(inc(ẽτ ), δn)) ,

z̃+ =
∑

e∈E

χF (e) ⊗B(inc(ẽ), δn) ,

and

z̃ = z̃pos − z̃− + z̃+ .

It follows from our choices that θ(z̃) = z, so degp(z̃) = degp(z) for every
point p ∈M . Therefore, by Lemma 5.10 we are left to show that

degp̃(z̃x) > 1

for almost every p̃ ∈ Hn and almost every x ∈ X.
Let i ∈ Ib. Recall that

F (σi, τ) = γτAi ∩ F (eτ ) .

Therefore, for every γ ∈ Γ and every x ∈ X we have

χF (σi,τ)(γ
−1(x)) = χγF (σi,τ)(x) = χγγτAi∩γF (eτ )(x) .

Then, for every x ∈ X and p̃ ∈ Hn we have

(7)

∑

γ∈Γ

∑

τ∈E(σi)

χF (σi,τ)(γ
−1(x))χγγτ (im(σi))∩γB(inc(ẽτ ),δn)(p̃)

=
∑

γ∈Γ

∑

τ∈E(σi)

χγγτAi∩γF (eτ )(x)χγγτ (im(σi))∩γB(inc(ẽτ ),δn)(p̃)

=
∑

γ∈Γ

∑

τ∈E(σi)

χ
γAi∩γγ

−1
τ F (eτ )

(x)χ
γ(im(σi))∩γγ

−1
τ B(inc(ẽτ ),δn)

(p̃)

=
∑

γ∈Γ

∑

τ∈E(σi)

χ
γAi∩γγ

−1
τ F (eτ )

(x)χ
γ(im(σi))∩γB(inc(γ−1

τ ẽτ ),δn)
(p̃) .
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Recall now that, since σi is big, the δn-balls centered at the incenters of the
ridges of σi are disjoint. As a consequence we have that

χγAi
(x)χγ im(σi)(p̃) >

∑

τ∈E(σi)

χγAi
(x)χγ(im(σi))∩γB(inc(γ−1

τ ẽτ ),δn)
(p̃)

>
∑

τ∈E(σi)

χ
γAi∩γγ

−1
τ F (eτ )

(x)χ
γ(im(σi))∩γB(inc(γ−1

τ ẽτ ),δn)
(p̃) .

By summing over γ ∈ Γ and using (7) we obtain
∑

γ∈Γ

χγAi
(x)χγ im(σi)(p̃)

>
∑

γ∈Γ

∑

τ∈E(σi)

χF (σi,τ)(γ
−1(x))χγγτ (im(σi))∩γB(inc(ẽτ ),δn)(p̃) .

Finally, by summing over i ∈ Ipos we get
∑

i∈Ipos

∑

γ∈Γ

χγAi
(x)χγ im(σi)(p̃)

>
∑

i∈Ib

∑

γ∈Γ

χγAi
(x)χγ im(σi)(p̃)

>
∑

i∈Ib

∑

γ∈Γ

∑

τ∈E(σi)

χF (σi,τ)(γ
−1(x))χγγτ (im(σi))∩γB(inc(ẽτ ),δn)(p̃) ,

which just means that

degp̃(z̃pos,x) > degp̃(z̃−,x) .

Therefore, degp̃(z̃x) > 0 for every x ∈ X, p̃ ∈ Hn. In order to conclude it
is sufficient to show that, if x is such that cx is a fundamental cycle for Hn,
then degp̃(z̃x) > 1 for almost every p̃ ∈ Hn. Let us fix such an x ∈ X. Since
cx is a fundamental cycle and the boundary of the image of each (translate
of) σi is a null set, for almost every p̃ ∈ Hn we have
∑

i∈Ipos

∑

γ∈Γ

χAi
(γ−1x)χim(γσi)(p̃)−

∑

i∈I\Ipos

∑

γ∈Γ

χAi
(γ−1x)χim(γσi)(p̃) = 1 ,

so
degp̃(z̃pos,x) =

∑

i∈Ipos

∑

γ∈Γ

χAi
(γ−1x)χim(γσi)(p̃) > 1 .

Therefore, if degp̃(z̃−,x) = 0, then degp̃(z̃x) > degp̃(z̃pos,x) > 1, and we are
done. Otherwise, we have degp̃(z̃−,x) > 1. Therefore, there exist i ∈ Ipos,
τ ∈ E(σi) and γ ∈ Γ such that

χF (σi,τ)(γ
−1(x))χγγτ (im(σi))∩γB(inc(ẽτ ),δn)(p̃) = 1 ,

i.e.,

x ∈ γF (σi, τ, eτ ) ⊆ γF (eτ ) and p̃ ∈ γB(inc(ẽτ ), δn) .

This implies at once that

degp̃(z̃+,x) > 1 ,

so

degp̃(z̃x) =
(
degp̃(z̃pos,x)− degp̃(z̃−,x)

)
+ degp̃(z̃+,x) > 0 + 1 > 1 ,
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whence the conclusion. �

Proposition 5.12. We have

(8)
cαvn−

1 + an
kn + 1

ηn
∑

i∈Ib

∑

τ∈E(σi)

µ(F (σi, τ))+ ηn
∑

e∈E

µ(F (e)) > vol(M) .

Proof. Of course we have

vol(zpos) =
∑

i∈Ipos

|βi| vol(im(σi)) 6 vn
∑

i∈Ipos

|βi| 6
cαvn

and

vol(z+) =
∑

e∈E

µ(F (e)) vol(B(inc(ẽ, δn))) = ηn
∑

e∈E

µ(F (e)) .

Now recall that δn was chosen in such a way that, if i ∈ Ib, then the boundary
of the ball of radius δn centered at the incenter of any ridge τ of im(σi) does
not meet any (n − 1)-face of im(σi) not containing τ . As a consequence, if
µ(F (σi, τ)) 6= 0, then vol((γτ ·im(σi))∩B(inc(ẽτ ), δn)) > ηn(1+an)/(kn+1).
Therefore, we have

vol(z−) =
∑

i∈Ib

∑

τ∈E(σi)

µ(F (σi, τ)) vol ((γτ · im(σi)) ∩B(inc(ẽτ ), δn))

>
1 + an
kn + 1

ηn
∑

i∈Ib

∑

τ∈E(σi)

µ(F (σi, τ)) .

Therefore, we get that

vol(z) 6
cαvn −

1 + an
kn + 1

ηn
∑

i∈Ib

∑

τ∈E(σi)

µ(F (σi, τ)) + ηn
∑

e∈E

µ(F (e)) .

On the other hand, by Proposition 5.11 we have

vol(M) 6

∫

M

degp(z) dp = vol(z) ,

and this concludes the proof. �

Proposition 5.13. Suppose that
cs
α

6
cα/12. Then

‖M‖ 6 max

{
1−

ηn
3vn

, 1−
anηn
2vn

}
·
cα .

Proof. We divide the proof in two cases. Suppose first that

∑

e∈E

µ(F (e)) 6

cα

2
.

Since kn + 1 6 6 and an > 0, from Lemma 5.8 we deduce that

1 + an
kn + 1

∑

i∈Ib

∑

τ∈E(σi)

µ(F (σi, τ)) >
5

6

cα .

Plugging these inequalities into (8) we obtain

‖M‖ =
vol(M)

vn
6
cα +

ηn
vn

(cα

2
−

5
cα

6

)
=

(
1−

ηn
3vn

)cα.
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Now assume that
∑

e∈E µ(F (e)) >
cα/2. Recall that around any x-full

ridge ẽ in Hn at least kn + 1 big simplices of cx appear. As a consequence
for every e ∈ E we have that

∑

i∈Ib

∑

τ∈E(σi)

µ(F (σi, τ, e)) > (kn + 1)µ(F (e)),

so
1

kn + 1

∑

e∈E

∑

i∈Ib

∑

τ∈E(σi)

µ(F (σi, τ, e)) >
∑

e∈E

µ(F (e)).

Substituting this inequality into (8) we get

‖M‖ =
vol(M)

vn
6
cα +

ηn
vn

(∑

e∈E

µ(F (e)) − (1 + an)
∑

e∈E

µ(F (e))

)

=
cα −

anηn
vn

∑

e∈E

µ(F (e)) 6
cα −

anηn
cα

2vn
. �

The results proved in Propositions 5.6 and 5.13 readily imply Theorem 5.4.

6. Integral foliated simplicial volume of aspherical manifolds

with amenable fundamental group

The section is devoted to the proof of Theorem 1.9. Before we start,
we remark that we cannot generalize Theorem 1.9 to rationally essential
manifolds.

Remark 6.1. The statement of Theorem 1.9 does not hold if we replace
“aspherical” by “rationally essential”. For example, the oriented closed
connected manifold M := (S1)4#(S2 × S2) is rationally essential and has
amenable residually finite fundamental group, but an L2-Betti number esti-
mate as in Remark 3.9 shows that ‖M‖∞Z =

M > 0.

6.1. Strategy of proof of Theorem 1.9. We start with a parametrized

fundamental cycle c in L∞(X,µ,Z) ⊗ZΓ Cn(M̃ ;Z) that comes from an in-
tegral fundamental cycle on M . Using the generalized Rokhlin lemma by
Ornstein-Weiss from ergodic theory we rewrite c as a sum of chains of the

form χAi
⊗ c̃i with Ai ⊂ X and c̃i ∈ Cn(M̃ ;Z). The chains c̃i will have

boundaries that are small in norm. We then fill ∂c̃i in the contractible
space M̃ more efficiently by chains c̃′i. The norm of the parametrized fun-
damental cycle resulting from replacing c̃i by c̃′i can be made arbitrarily
small.

We will now provide the details for this argument.

6.2. Setup. Let n := dimM . The case n = 1 (i.e., M ∼= S1) being trivial,
we may assume without loss of generality that n > 1.

Let π : M̃ −→M be the universal covering of M and let D be a strict set-
theoretical fundamental domain for the (left) deck transformation action

of Γ := π1(M) on M̃ . We assume that Γ is amenable. Furthermore, let
α = Γ y (X,µ) be a free standard Γ-space.

Let c =
∑m

j=1 aj · σj ∈ Cn(M ;Z) be an integral fundamental cycle

of M ; we arrange this in such a (non-reduced) way that the coefficients
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satisfy a1, . . . , am ∈ {−1, 1} (but we still require that the same simplex
does not occur with positive and negative sign). We consider the unique

lift c̃ :=
∑m

j=1 aj · σ̃j ∈ Cn(M̃ ;Z) satisfying

π ◦ σ̃j = σj and σ̃j(e0) ∈ D

for all j ∈ {1, . . . ,m}.
As next step, we define a suitable finite subset S ⊂ Γ that measures the

defect of c̃ from being a cycle: Because c is a cycle we can match any face
of σ1, . . . , σm occurring with positive sign in the expression ∂c to another
one of these faces with negative sign. Let Σ+ ⊔ Σ− be such a splitting of
the set Σ of faces of σ1, . . . , σm, and let ·̂ : Σ+ −→ Σ− be the corresponding
matching bijection; then

∂c =
∑

τ∈Σ+

(τ − τ̂).

For each τ ∈ Σ we denote the corresponding face of c̃ by τ̃ . Then for
each τ ∈ Σ+ there is a unique gτ ∈ Γ with

˜̂τ = gτ · τ̃ .

By definition of τ̂ , we then obtain

∂c̃ =
∑

τ∈Σ+

(τ̃ − gτ · τ̃).

Let S be a finite symmetric generating set of Γ that contains {gτ | τ ∈ Σ+}.

6.3. Fundamental cycles and the generalized Rokhlin lemma. We
denote the S-boundary of a subset F ⊂ Γ by

∂SF = {γ ∈ F | ∃s∈S γs 6∈ F}.

Fix ε > 0. By a version [31, Theorem 5.2] of the generalized Rokhlin lemma
of Ornstein-Weiss there are finite subsets F1, . . . , FN ⊂ Γ and Borel sub-
sets A1, . . . , AN ⊂ X such that

• for every i ∈ {1, . . . , N}, the set Fi is (S, ε)-invariant in the sense
that |∂SFi|/|Fi| < ε;
• for every i ∈ {1, . . . , N}, the sets γAi with γ ∈ Fi are pairwise
disjoint;
• the sets FiAi with i ∈ {1, . . . , N} are pairwise disjoint;

• µ(R) < ε where R := X\
⋃N

i=1 FiAi.

Then the following computation holds in L∞(X,µ,Z) ⊗ZΓ C∗(M̃ ;Z):

1⊗ c̃ =

( m∑

j=1

N∑

i=1

∑

γ∈Fi

ajχγAi
⊗ σ̃j

)
+

m∑

j=1

ajχR ⊗ σ̃j

︸ ︷︷ ︸
=:E

=

N∑

i=1

χAi
⊗

( m∑

j=1

∑

γ∈Fi

ajγ
−1σ̃j

)

︸ ︷︷ ︸
=:c̃i

+E.
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In the following, let i ∈ {1, . . . , N}. Interchanging summation, we have

c̃i =
∑

γ∈Fi

m∑

j=1

ajγ
−1σ̃j =

∑

γ∈Fi

γ−1c̃.

Lemma 6.2 (small boundary in M̃). The chain c̃i has small boundary; more
precisely, we have

|∂c̃i|1,Z 6 ε · |Fi| · |Σ+|.

Proof. Because Fi is (S, ε)-invariant, it suffices to show |∂c̃i|1,Z 6 |∂SFi| ·
|Σ+|. By construction,

∂c̃i =
∑

γ∈Fi

∑

τ∈Σ+

γ−1 · (τ̃ − gτ · τ̃)

=
∑

γ∈Fi

∑

τ∈Σ+

γ−1 · τ̃ −
∑

γ∈Fi

∑

τ∈Σ+

γ−1 · gτ · τ̃ .

So, the only terms in ∂c̃i that do not cancel are of the shape ±γ−1 · τ̃
with τ ∈ Σ+ and γ−1 ∈ ∂SFi. Hence, |∂c̃i|1,Z 6 |∂SFi| · |Σ+|. �

6.4. Efficient filling of the boundary. We will now fill the boundary

of c̃i more efficiently in M̃ .

Lemma 6.3 (efficient filling). There exists a chain c̃′i ∈ Cn(M̃ ;Z) with

∂c̃′i = ∂c̃i and |c̃′i|1,Z 6 (n+ 1) · |∂c̃i|1,Z.

Proof. Because M is aspherical, the universal covering M̃ is contractible.

Then any homotopy between id
M̃

and a constant map p : M̃ −→ M̃ in-

duces a chain homotopy h∗ : C∗(M̃ ;Z) −→ C∗+1(M̃ ;Z) between id
C∗(M̃ ;Z)

and C∗(p;Z) satisfying
‖hk‖ 6 k + 1

(with respect to |·|1,Z) for all k ∈ N; this follows from the standard construc-

tion [14, Theorem 2.10] of h∗ by subdividing ∆k × [0, 1] into k+1 simplices
of dimension k.

By construction,

b̃i := ∂c̃i ∈ Cn−1(M̃ ;Z)

is a cycle. Moreover, because n > 1 we have Hn−1(•;Z) ∼= 0 and for any
cycle d ∈ Cn−1(•;Z) there exists a chain z ∈ Cn(•;Z) with ∂z = d and
|z|1,Z 6 |d|1,Z (this follows from a direct computation in C∗(•;Z)). Because

p factors over a one-point space •, we thus find a chain zi ∈ Cn(M̃ ;Z) with

∂zi = Cn−1(p;Z)(̃bi) and |zi|1,Z 6
∣∣Cn−1(p;Z)(̃bi)

∣∣
1,Z

6 |̃bi|1,Z.

We now consider

c̃′i := hn−1(̃bi) + zi ∈ Cn(M̃ ;Z).

Then the chain homotopy relation ∂ ◦ h+ h ◦ ∂ = id−C∗(p;Z) shows that

∂c̃′i = ∂hn−1(̃bi) + ∂zi

= b̃i − Cn−1(p;Z)(̃bi)− hn−2 ◦ ∂b̃i + ∂zi

= b̃i = ∂c̃i
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and

|c̃′i|1,Z 6 n · |̃bi|1,Z + |zi|1,Z 6 (n+ 1) · |̃bi|1,Z,

as claimed. �

With the c̃′i obtained from the previous lemma, we define a new chain

c′ :=

( N∑

i=1

χAi
⊗ c̃′i

)
+ E ∈ L∞(X,µ,Z)⊗ZΓ Cn(M̃ ;Z).

6.5. Efficient fundamental cycles.

Lemma 6.4. The chain c′ is an α-parametrized fundamental cycle of M .

Proof. Since M̃ is aspherical and ∂c̃i = ∂c̃′i, there are chains w̃i ∈ Cn+1(M̃ ;Z)
with ∂wi = c̃i − c̃

′
i. The claim now follows from the computation

c′ =

( N∑

i=1

χAi
⊗ c̃′i

)
+ E =

( N∑

i=1

χAi
⊗ c̃i

)
+E +

N∑

i=1

χAi
⊗ ∂̃wi

=

( N∑

i=1

χAi
⊗ c̃i

)
+E + ∂

( N∑

i=1

χAi
⊗ w̃i

)

= 1⊗ c̃+ ∂

( N∑

i=1

χAi
⊗ w̃i

)

and the fact that 1⊗ c̃ is an α-parametrized fundamental cycle. �

6.6. Conclusion of the proof. The previous two lemmas imply the fol-
lowing estimate.

Mα ≤
c′α ≤

N∑

i=1

µ(Ai)|c̃
′
i|1,Z +

Eα

≤
N∑

i=1

µ(Ai)|c̃
′
i|1,Z + µ(R)|c̃|1,Z

≤

( N∑

i=1

(n+ 1)µ(Ai)|∂c̃i|1,Z

)
+ ε|c̃|1,Z

≤ |Σ+|ε(n + 1)

( N∑

i=1

µ(Ai)|Fi|

)
+ ε|c̃|1,Z

= |Σ+|ε(n + 1)

( N∑

i=1

µ(FiAi)

)
+ ε|c̃|1,Z

= |Σ+|ε(n + 1)µ

( N⋃

i=1

FiAi

)
+ ε|c̃|1,Z

≤ ε
(
|Σ+|(n+ 1) + |c̃|1,Z

)
.

Since ε > 0 was arbitrary, the above estimate finishes the proof of Theo-
rem 1.9.
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