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Abstract. A fundamental result by Gromov and Thurston asserts that,
if M is a closed hyperbolic n-manifold, then the simplicial volume ‖M‖
of M is equal to Vol(M)/vn, where vn is a constant depending only on
the dimension of M . The same result also holds for complete finite-
volume hyperbolic manifolds without boundary, while Jungreis proved
that the ratio Vol(M)/‖M‖ is strictly smaller than vn if M is com-
pact with non-empty geodesic boundary. We prove here a quantita-
tive version of Jungreis’ result for n ≥ 4, which bounds from below
the ratio ‖M‖/Vol(M) in terms of the ratio Vol(∂M)/Vol(M). As a
consequence, we show that a sequence {Mi} of compact hyperbolic n-
manifolds with geodesic boundary satisfies limi Vol(Mi)/‖Mi‖ = vn if
and only if limi Vol(∂Mi)/Vol(Mi) = 0.

We also provide estimates of the simplicial volume of hyperbolic man-
ifolds with geodesic boundary in dimension three.

Introduction

The simplicial volume is a homotopy invariant of compact manifolds in-
troduced by Gromov in his pioneering work [Gro82]. If M is a connected,
compact, oriented manifold with (possibly empty) boundary, then the sim-
plicial volume of M , denoted by ‖M,∂M‖, is the infimum of the sum of the
absolute values of the coefficients over all singular chains representing the
real fundamental cycle of M (see Section 1). If ∂M = ∅ we denote the sim-
plicial volume of M simply by ‖M‖. If M is open, the fundamental class and
the simplicial volume of M admit analogous definitions in the context of ho-
mology of locally finite chains, but in this paper we will restrict our attention
to compact manifolds: unless otherwise stated, henceforth every manifold is
assumed to be compact. Observe that the simplicial volume of an oriented
manifold does not depend on its orientation and that it is straightforward
to extend the definition also to nonorientable or disconnected manifolds: if
M is connected and nonorientable, then its simplicial volume is equal to
one half of the simplicial volume of its orientable double covering, and the
simplicial volume of any manifold is the sum of the simplicial volumes of its
connected components.
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128309/1. The authors thank the Institute Mittag-Leffler in Djursholm, Sweden, for their
warm hospitality during the preparation of this paper.

1

ar
X

iv
:1

50
3.

03
83

7v
1 

 [
m

at
h.

G
T

] 
 1

2 
M

ar
 2

01
5



A QUANTITATIVE VERSION OF A THEOREM BY JUNGREIS 2

Several vanishing and nonvanishing results for the simplicial volume are
available by now, but the exact value of nonvanishing simplicial volumes
is known only in a very few cases. A celebrated result by Gromov and
Thurston [Gro82, Thu79] implies that, if M is a hyperbolic n-manifold with-
out boundary M , then

(1) ‖M‖ =
Vol(M)

vn
,

where Vol(M) is the Riemannian volume of M and vn is the volume of the
regular ideal geodesic n-simplex in hyperbolic space. In the closed case,
the only other exact computation of nonvanishing simplicial volume is for
the product of two closed hyperbolic surfaces or more generally manifolds
locally isometric to the product of two hyperbolic planes [BK08].

After replacing ‖M‖ with ‖M,∂M‖, equality (1) holds also when M is the
natural compactification of any complete noncompact hyperbolic n-manifold
of finite volume without boundary (see e.g. [Fra04, FP10, FM11, BBI13]).
In this case, every component of ∂M supports a Euclidean structure, so
‖∂M‖ = 0. In the case when ‖∂M‖ 6= 0, the only exact computations of the
simplicial volume of compact manifolds with nonempty boundary are pro-
vided in [BFP15] for products of surfaces with the interval and for compact
3-manifolds obtained by adding 1-handles to Seifert manifolds. Building on
these examples, more values for the simplicial volume can be obtained by
surgery or by taking connected sums or amalgamated sums over submani-
folds with amenable fundamental group (see e.g. [Gro82, Kue03, BBF+14]).
However, the exact value of the simplicial volume is not known for any com-
pact n-manifold M such that ‖∂M‖ 6= 0, n ≥ 4, and for any hyperbolic
n-manifold with non-empty geodesic boundary, n ≥ 3.

Hyperbolic manifolds with geodesic boundary. Jungreis proved in [Jun97]
that, if M is an n-dimensional hyperbolic manifold with nonempty geodesic
boundary, n ≥ 3, then

(2) ‖M,∂M‖ > Vol(M)

vn
.

In Section 4 we provide a quantitative version of Jungreis’ result in the case
when n ≥ 4. More precisely, we prove the following:

Theorem 1. Let n ≥ 4. Then there exists a constant ηn > 0 depending
only on n such that

‖M,∂M‖
Vol(M)

≥ 1

vn
+ ηn ·

Vol(∂M)

Vol(M)
.

It is well-known that ‖M,∂M‖ = Vol(M)/v2 = Vol(M)/π for every hy-
perbolic surface with geodesic boundary M , so Theorem 1 cannot be true
in dimension 2. The 3-dimensional case is still open.

Theorem 1 states that, if n ≥ 4, then Vol(M)/‖M,∂M‖ cannot approach
vn unless the (n−1)-dimensional volume of ∂M is small with respect to the
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volume of M . On the other hand, it is known that Vol(M)/‖M,∂M‖ indeed
approaches vn if Vol(∂M)/Vol(M) is small. In fact, the following result is
proved in [FP10] for n ≥ 3: for every ε > 0 there exists δ > 0 such that

Vol(∂M)

Vol(M)
< δ =⇒ Vol(M)

‖M,∂M‖
≥ vn − ε

for every hyperbolic n-manifold M with nonempty geodesic boundary.
Note that in particular, the ratio between ‖M,∂M‖ and Vol(M) does

not depend only on the dimension of M . Putting together this result with
Theorem 1, we obtain, for n ≥ 4, a complete characterization of hyperbolic
n-manifolds with geodesic boundary whose simplicial volume is close to the
bound given by inequality (2):

Corollary 2. Let n ≥ 4, and let Mi be a sequence of hyperbolic n-manifolds
with nonempty geodesic boundary. Then

lim
i→∞

Vol(Mi)

‖Mi, ∂Mi‖
= vn ⇐⇒ lim

i→∞

Vol(∂Mi)

Vol(Mi)
= 0 .

The 3-dimensional case. Let M be a boundary irreducible aspherical 3-
manifold. In [BFP15, Theorem 1.4] we proved the following sharp lower
bound for the simplicial volume of M in terms of the simplicial volume of
∂M :

(3) ‖M,∂M‖ ≥ 5

4
‖∂M‖ .

Every hyperbolic manifold with geodesic boundary is aspherical and bound-
ary irreducible. Therefore, even if Theorem 1 is still open in dimension 3,
inequality (3) may be exploited to show that, if Vol(∂M) is big with respect
to Vol(M), then indeed the simplicial volume of M is bounded away from
Vol(M)/v3. In the same spirit, by combining combinatorial and geometric
arguments, in Section 5 we prove the following result, where

G =
1

12
− 1

32
+

1

52
− 1

72
+ . . . ≈ 0.915965

is Catalan’s constant.

Theorem 3. Let M be a hyperbolic 3-manifold with nonempty geodesic
boundary. Then

‖M,∂M‖ ≥ Vol(M)

v3
+

v3 −G
2(3v3 − 2G)

(
7‖∂M‖ − 4

Vol(M)

v3

)
.

At the moment, no precise computation of the simplicial volume of hy-
perbolic 3-manifold with nonempty geodesic boundary is known. Let us
briefly introduce some families of examples for which the bound provided
by Theorem 3 is sharper than both Jungreis’ bound (2) and bound (3).

For every g ≥ 2 letMg be the set of hyperbolic 3-manifolds M with con-
nected geodesic boundary such that χ(∂M) = 2− 2g (so ∂M , if orientable,
is the closed orientable surface of genus g). Recall that for every 3-manifold
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with boundary M the equality χ(∂M) = 2χ(M) holds, and in particular
χ(∂M) is even. Therefore, the union

⋃
g≥2Mg coincides with the set of

hyperbolic 3-manifolds with connected geodesic boundary.
For every g ≥ 2 we denote by Mg the set of 3-manifolds with bound-

ary M that admit an ideal triangulation by g tetrahedra and have Euler
characteristic χ(M) = 1 − g (see Section 6 for the definition of ideal trian-
gulation). Every element of Mg has connected boundary and supports a
hyperbolic structure with geodesic boundary (which is unique by Mostow
rigidity), hence Mg ⊆ Mg (see Proposition 6.1). Furthermore, Miyamoto
proved in [Miy94] that elements ofMg are exactly the ones having the small-

est volume among the elements of Mg. In particular, Mg is nonempty for
every g ≥ 2. The eight elements of M2 are exactly the smallest hyperbolic
manifolds with nonempty geodesic boundary [KM91, Miy94].

As a consequence of Corollary 2, the simplicial volume and the Riemann-
ian volume of hyperbolic 3-manifolds with nonempty geodesic boundary are
not related by a universal proportionality constant. Nevertheless, it is rea-
sonable to expect that these invariants are closely related to each other.
Therefore, we make here the following conjecture:

Conjecture 4. For g ≥ 2, the elements of Mg are exactly the ones having

the smallest simplicial volume among the elements of Mg. Moreover, the
eight elements ofM2 are the hyperbolic manifolds with nonempty geodesic
boundary having the smallest simplicial volume.

Together with Miyamoto’s results about volumes of hyperbolic manifolds
with geodesic boundary [Miy94], Theorem 3 implies the following (see Sec-
tion 6):

Corollary 5. If M ∈ M2, then ‖M,∂M‖ ≥ 6.461 ≈ 1.615 · ‖∂M‖. If
M ∈ M3, then ‖M,∂M‖ ≥ 10.882 ≈ 1.360 · ‖∂M‖. If M ∈ M4, then
‖M,∂M‖ ≥ 15.165 ≈ 1.264 · ‖∂M‖.

As we will see in Section 6, the corollary shows that Theorem 3 indeed
improves Jungreis’ inequality (2) and bound (3) in some cases. More pre-
cisely we will show that if M ∈ M2 ∪M3 ∪M4, the bounds provided by
Theorem 3 and Corollary 5 coincide, and are sharper than the bounds pro-
vided by inequalities (2) and (3), while if M ∈Mg, g ≥ 5, then the sharpest
known bound for ‖M,∂M‖ is provided by inequality (3).

1. Simplicial volume

Let X be a topological space and Y ⊆ X a (possibly empty) subspace of
X. Let R be a normed ring. Henceforth we confine ourself to R = R,Q or
Z, where each of these rings is endowed with the norm given by the absolute
value. For i ∈ N we denote by Ci(X;R) the module of singular i-chains over
R, i.e. the R-module freely generated by the set Si(X) of singular i-simplices
in X, and we set as usual Ci(X,Y ;R) = Ci(X;R)/Ci(Y ;R). Notice that we
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will identify Ci(X,Y ;R) with the free R-module generated by Si(X)\Si(Y ).
In particular, for z ∈ Ci(X,Y ;R), it will be understood from the equality
z =

∑n
k=1 akσk that σk 6= σh for k 6= h, and σk /∈ Si(Y ) for every k.

We denote by H∗(X,Y ;R) the singular homology of the pair (X,Y ) with
coefficients in R, i.e. the homology of the complex (C∗(X,Y ;R), d∗), where
d∗ is the usual differential.

We endow the R-module Ci(X,Y ;R) with the L1-norm defined by∥∥∥∥∥∑
σ

aσσ

∥∥∥∥∥
R

=
∑
σ

|aσ| ,

where σ ranges over the simplices in Si(X)\Si(Y ). We denote simply by ‖·‖
the norm ‖ · ‖R. The norm ‖ · ‖R descends to a seminorm on H∗(X,Y ;R),
which is still denoted by ‖ · ‖R and is defined as follows: if α ∈ Hi(X,Y ;R),
then

‖α‖R = inf{‖β‖R, β ∈ Ci(X,Y ;R), dβ = 0, [β] = α} .
The real singular homology module H∗(X,Y ;R) and the seminorm ‖ · ‖R
will be simply denoted by H∗(X,Y ) and ‖ · ‖ respectively.

If M is a connected oriented n-manifold with (possibly empty) boundary
∂M , then we denote by [M,∂M ]R the fundamental class of the pair (M,∂M)
with coefficients in R. The following definition is due to Gromov [Gro82,
Thu79]:

Definition 1.1. The simplicial volume of M is

‖M,∂M‖ = ‖[M,∂M ]R‖ = ‖[M,∂M ]R‖R .

The rational, respectively integral, simplicial volume of M is defined as
‖M,∂M‖Q = ‖[M,∂M ]Q‖Q, respectively ‖M,∂M‖Z = ‖[M,∂M ]Z‖Z.

Just as in the real case, the rational and the integral simplicial volume
may be defined also when M is disconnected or nonorientable. Of course
we have the inequalities ‖M,∂M‖ ≤ ‖M,∂M‖Q ≤ ‖M,∂M‖Z. Using that
Q is dense in R, it may be shown in fact that ‖M,∂M‖ = ‖M,∂M‖Q and
we provide here a complete proof of this fact.

Proposition 1.2. For every n-manifold M , the real and rational simplicial
volumes are equal,

‖M,∂M‖ = ‖M,∂M‖Q .

Proof. We have to show that ‖M,∂M‖Q ≤ ‖M,∂M‖. Let ε > 0 be fixed,

and let z =
∑k

i=1 aiσi be a real fundamental cycle for M such that ‖z‖ =∑k
i=1 |ai| ≤ ‖M,∂M‖+ ε. We set

HR =

{
(x1, . . . , xk) ∈ Rk

∣∣ k∑
i=1

xiσi is a relative cycle

}
⊆ Rk .

Of course, HR is a linear subspace of Rk. Since HR is defined by a system
of equations with integral coefficients, if HQ = HR ∩ Qk, then HQ is dense
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in HR. As a consequence, we may find sequences of rational coefficients

{αji}j∈N ⊆ Q, i = 1, . . . , k such that zj =
∑k

i=1 α
j
iσi is a rational cycle

for every j ∈ N, and limj α
j
i = ai for every i = 1, . . . , k. This implies in

particular that limj ‖zj‖Q = ‖z‖, so we are left to show that the zj ’s may be
chosen among the representatives of the rational fundamental class of M .

Let λj ∈ Q be defined by [zj ] = λj · [M,∂M ] (such a λj exists because
[M,∂M ] lies in the image of Hn(M,∂M ;Q) in Hn(M,∂M ;R) under the
change of coefficients homomorphism). The Universal Coefficient Theorem
provides a real cocyle ϕ : Cn(M,∂M ;R) → R such that ϕ(z) = 1. Observe

that ϕ(zj) = λj , so from limj α
j
i = ai we deduce that limj λj = limj ϕ(zj) =

ϕ(z) = 1. For large j we may thus define wj = λ−1
j ·zj ∈ Cn(M,∂M ;Q), and

by construction wj represents the rational fundamental class of M . Finally,
we have

lim
j
‖wj‖Q = lim

j

‖zj‖Q
λj

= ‖z‖ ≤ ‖M,∂M‖+ ε ,

which finishes the proof of the proposition. �

On the contrary, the inequality ‖M,∂M‖ ≤ ‖M,∂M‖Z is not an equality
in general, for instance ‖S1‖ = 0 but ‖S1‖Z ≥ 1. The integral simplicial
volume does not behave as nicely as the rational or real simplicial volume.
For example, it follows from the definition that ‖M‖Z ≥ 1 for every manifold
M . Therefore, the integral simplicial volume cannot be multiplicative with
respect to finite coverings (otherwise it should vanish on manifolds that ad-
mit finite nontrivial self-coverings, as S1). Nevertheless, we will use integral
cycles extensively, as they admit a clear geometric interpretation in terms
of pseudomanifolds (see Section 2). In order to follow this strategy, we need
the following obvious consequence of the equality ‖M,∂M‖Q = ‖M,∂M‖.

Lemma 1.3. Let M be connected and oriented, and let ε > 0 be given.
Then, there exists an integral cycle z ∈ Cn(M,∂M ;Z) such that

‖z‖Z
d
≤ ‖M,∂M‖+ ε ,

where [z] = d · [M,∂M ]Z and d > 0 is an integer.

Moreover, the boundary of a fundamental cycle for M is equal to the sum
of one fundamental cycle for each component of ∂M , so we also have:

(4) ‖∂M‖ ≤ ‖∂z‖Z
d

.

Remark 1.4. The statements and the proofs of Proposition 1.2 and Lemma
1.3 hold more generally after replacing the fundamental class [M,∂M ]Q by
any rational homology class. In other words, for every i ∈ N the change of
coefficients map Hi(M,∂M ;Q)→ Hi(M,∂M ;R) is norm-preserving.

Finally, let us list some elementary properties of the simplicial volume
which will be needed later.
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Proposition 1.5 ([Gro82]). Let M,N be connected oriented manifolds of
the same dimension, and suppose that either M,N are both closed, or they
both have nonempty boundary. Let f : N →M be a map of degree d. Then

‖N, ∂N‖ ≥ |d| · ‖M,∂M‖ .

The following well-known result describes the simplicial volume of closed
surfaces. In fact, the same statement also holds for connected surfaces with
boundary.

Proposition 1.6 ([Gro82]). Let S be a closed surface. Then

‖S‖ = max{0,−2χ(S)} .

2. Representing cycles via pseudomanifolds

This section is devoted to recall the notion of pseudomanifold and the
interpretation of integral cycles by means of pseudomanifolds.

Pseudomanifolds. Let n ∈ N. An n-dimensional pseudomanifold P con-
sists of a finite number of copies of the standard n-simplex, a choice of pairs
of (n − 1)-dimensional faces of n-simplices such that each face appears in
at most one of these pairs, and an affine identification between the faces
of each pair. We allow pairs of distinct faces in the same n-simplex. It is
orientable if orientations on the simplices of P may be chosen in such a way
that the affine identifications between the paired faces (endowed with the
induced orientations) are all orientation-reversing. A face which does not
belong to any pair of identified faces is a boundary face.

We denote by |P | the topological realization of P , i.e. the quotient space
of the union of the simplices by the equivalence relation generated by the
identification maps. We say that P is connected if |P | is. We denote by ∂|P |
the image in |P | of the boundary faces of P , and we say that P is without
boundary if ∂|P | = ∅.

A k-dimensional face of |P | is the image in |P | of a k-dimensional face of a
simplex of P . Usually, we refer to 1-dimensional, respectively 0-dimensional
faces of P and |P | as to edges, respectively vertices of P and |P |.

It is well-known that, if P is an n-dimensional pseudomanifold, n ≥ 3,
then |P | does not need to be a manifold. However, in the 3-dimensional
orientable case, singularities may occur only at vertices (and it is not difficult
to construct examples where they indeed occur). Let us be more precise,
and state the following well-known result (see e.g. [Hat02, pages 108-109]):

Lemma 2.1. Let P be an orientable n-dimensional pseudomanifold, and let
Vk ⊆ |P | be the union of the k-dimensional faces of |P |. Then |P | \ Vn−3 is
an orientable manifold. In particular, if P is an orientable 2-dimensional
pseudomanifold without boundary, then |P | is an orientable surface without
boundary.
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Moreover, the boundary of the topological realization of an n-dimensional
pseudomanifold P is naturally the topological realization of an (orientable)
(n−1)-pseudomanifold ∂P without boundary, and an orientation of P canon-
ically induces an orientation on ∂P . In particular, if P is orientable and
3-dimensional, then ∂|P | is a finite union of orientable closed surfaces.

The pseudomanifold associated to an integral cycle. Let M be an
oriented connected n-dimensional manifold with (possibly empty) boundary
∂M . It is well-known that every integral relative cycle on (M,∂M) can be
represented by a map from a suitable pseudomanifold to M . Let us describe
this procedure in detail in the case we are interested in, i.e. in the case of
n-dimensional integral cycles (see also [Hat02, pages 108-109]).

Let z =
∑k

i=1 εiσi be an n-dimensional relative cycle in Cn(M,∂M ;Z),
where σi is a singular n-simplex on M , and εi = ±1 for every i (note
that here we do not assume that σi 6= σj for i 6= j). We construct an
n-pseudomanifold associated to z as follows. Let us consider k distinct
copies ∆n

1 , . . . ,∆
n
k of the standard n-simplex ∆n. For every i we fix an

identification between ∆n
i and ∆n, so that we may consider σi as defined

on ∆n
i . For every i = 1, . . . , k, j = 0, . . . , n, we denote by F ij the j-th face

of ∆n
i , and by ∂ij : ∆n−1 → F ij ⊆ ∆n

i the usual face inclusion. We say that

the distinct faces F ij and F i
′
j′ form a canceling pair if σi|F ij = σi′ |F i′

j′
and

(−1)jεi + (−1)j
′
εi′ = 0. This is equivalent to say that, when computing the

boundary ∂z of z, the pair of (n− 1)-simplices arising from the restrictions

of σi and σi′ to F ij and F i
′
j′ cancel each other.

Let us define a pseudomanifold P as follows. The simplices of P are
∆n

1 , . . . ,∆
n
k , and we identify the faces belonging to a maximal collection of

canceling pairs (note that such a family is not uniquely determined). If

F ji , F j
′

i′ are paired faces, we identify them via the affine diffeomorphism

∂j
′

i′ ◦ (∂ji )
−1 : F ji → F j

′

i′ . We observe that P is orientable: in fact, we can
define an orientation on P by endowing ∆n

i with the standard orientation
of ∆n if εi = 1, and with the reverse orientation if εi = −1.

By construction, the maps σ1, . . . , σk glue up to a well-defined continuous
map f : |P | → M . For every i = 1, . . . , k, let σ̂i : ∆n → |P | be the singular
simplex obtained by composing the identification ∆n ∼= ∆n

i with the quotient

map with values in |P |, and let us set zP =
∑k

i=1 εiσ̂i. Then the chain zP is a
relative cycle in Cn(|P |, ∂|P |;Z) and the map f∗ induced by f : (|P |, ∂|P |)→
(M,∂M) on integral singular chains sends zP to f∗(zP ) = z.

By Lemma 1.3, the simplicial volume of a connected oriented n-manifold
can be computed from integral cycles. By exploiting Thurston’s straight-
ening procedure for simplices, in Proposition 3.3 we will show that such
efficient cycles may be represented by n-pseudomanifolds with additional
useful properties.
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3. Geometric properties of straight cycles

The straightening procedure for simplices was introduced by Thurston
in [Thu79], in order to bound from below the simplicial volume of hyperbolic
manifolds. The universal covering of a hyperbolic n-manifold with geodesic
boundary is a convex subset of the hyperbolic space Hn, and the support of
any straight simplex is just the image of a geodesic simplex of Hn via the
universal covering projection. As a consequence, to compute the simplicial
volume of a hyperbolic manifold with geodesic boundary we may restrict to
considering only cycles supported by (projections of) geodesic simplices.

Geodesic simplices. Let Hn = Hn ∪ ∂Hn be the usual compactification
of the hyperbolic space Hn. We recall that every pair of points of Hn is
connected by a unique geodesic segment (which has infinite length if any of
its endpoints lies in ∂Hn). A subset in Hn is convex if whenever it contains
a pair of points it also contains the geodesic segment connecting them. The
convex hull of a set A is defined as usual as the intersection of all convex
sets containing A. A (geodesic) k-simplex ∆ in Hn is the convex hull of k+1
points in Hn, called vertices. We say that a k-simplex is:

• ideal if all its vertices lie in ∂Hn,
• regular if every permutation of its vertices is induced by an isometry

of Hn,
• degenerate if it is contained in a (k−1)-dimensional subspace of Hn.

As above, we denote by vn the volume of the regular ideal simplex in Hn.
The following result characterizes hyperbolic geodesic simplices of maximal
volume, and plays a fundamental role in the study of the simplicial volume
of hyperbolic manifolds:

Theorem 3.1 ([HM81, Pey02]). Let ∆ be an n-simplex in Hn. Then
Vol(∆) 6 vn, with equality if and only if ∆ is ideal and regular.

Let ∆ be a nondegenerate geodesic n-simplex, and let E be an (n − 2)-
dimensional face of ∆. The dihedral angle α(∆, E) of ∆ at E is defined
as follows: let p be a point in E ∩ Hn, and let H ⊆ Hn be the unique
2-dimensional geodesic plane which intersects E orthogonally in p. We set
α(∆, E) to be equal to the angle in p of the polygon ∆ ∩ H of H ∼= H2.
Observe that this definition is independent of p.

From the computation of the dihedral angle of the regular ideal geodesic
n-simplex, together with the fact that geodesic simplices of almost maximal
volume are close in shape to regular ideal simplices, one deduces:

Lemma 3.2. Let n > 4. Then, there exists εn > 0, depending only on n,
such that the following condition holds: if ∆ ⊆ Hn is a geodesic n-simplex
such that Vol(∆) > (1− εn)vn and α is the dihedral angle of ∆ at any of its
(n− 2)-faces, then

2 <
π

α
< 3 .
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We refer the reader to [FFM12, Lemma 2.16] for a proof.

Geometric straightening. Let us come back to the definition of straight-
ening for simplices in hyperbolic manifolds. Henceforth we denote by M a
hyperbolic manifold with geodesic boundary. As usual, we also assume that
M is oriented.

The universal covering M̃ of M is a convex subset of Hn bounded by
a countable family of disjoint geodesic hyperplanes (see e.g. [Koj90]). If

σ : ∆k → M̃ is a singular k-simplex, then we may define the simplex s̃trk(σ)

as follows: set s̃trk(σ)(v) = σ(v) on every vertex v of ∆k, and extend us-
ing barycentric coordinates (see [Rat94, Chapter 11]) or by an inductive

cone construction (which exploits the fact that any pair of points in M̃ is
joined by a unique geodesic, that continuously depends on its endpoints –
see e.g. [FP10, Section 3.1] for full details). The image of s̃trk(σ) is the
geodesic simplex spanned by the vertices of σ. Hence, we define a map

s̃tr∗ : C∗(M̃, ∂M̃ ;R) → C∗(M̃, ∂M̃ ;R). Being π1(M)-invariant, the map

s̃tr∗ induces a map

str∗ : C∗(M,∂M ;R)→ C∗(M,∂M ;R)

which is homotopic to the identity. Simplices that lie in the image of str∗
are called straight.

Recall that, by Lemma 1.3, the simplicial volume of a connected oriented
n-manifold can be computed from integral cycles. Using the straightening
procedure we show that such cycles may be represented by n-pseudomanifolds
with additional properties.

Proposition 3.3. Suppose that M is a hyperbolic n-manifold with geodesic
boundary ∂M . Let ε > 0 be fixed. Then, there exists a relative integral cycle
z ∈ Cn(M,∂M ;Z) with associated pseudomanifold P such that the following
conditions hold:

(1) [z] = d · [M,∂M ]Z in Hn(M,∂M ;Z) for some integer d > 0, and

‖z‖Z
d
≤ ‖M,∂M‖+ ε ;

(2) every singular simplex appearing in z is straight;
(3) every simplex of P has at most one (n − 1)-dimensional boundary

face;
(4) if n = 3, then every simplex of P without 2-dimensional boundary

faces has at most two edges contained in ∂|P | and every simplex of
P has at most three edges in ∂|P |.

Proof. By Lemma 1.3 we may choose an integral cycle z′ satisfying condition
(1), and set z = strn(z′) ∈ Cn(M,∂M ;Z). As usual, we understand that no
simplex appearing in z is supported in ∂M (otherwise, we may just remove
it from z without modifying the class of z in Cn(M,∂M ;Z) and decreasing
‖z‖Z). Point (1) descends from the fact that the straightening operator is
norm nonincreasing and homotopic to the identity, while point (2) is obvious.
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Let σ be a straight n-simplex of z. Let σ̃ be a fixed lift of σ to M̃ . If there

exists a component of ∂M̃ containing m + 1 vertices of σ̃, then σ̃ has an

m-dimensional face supported on ∂M̃ . In particular, the assumption that σ

is not supported on ∂M implies that no component of ∂M̃ contains all the
vertices of σ̃. Hence,

(i) If σ has two faces on ∂M , then the vertices of σ̃ are contained in the

same connected component of ∂M̃ , a contradiction.
(ii) Suppose that σ has at least three edges on ∂M . If n = 3, the union of

the corresponding edges of σ̃ is connected, so at least three vertices of

σ̃ lie on the same connected component of ∂M̃ , and at least one 2-face
of σ is supported on ∂M .

If four edges of σ lie on ∂M and n = 3, then as before, the union
of the corresponding edges of σ̃ is connected. But the vertices of these
four edges of the 3-simplex are all the vertices of the 3-simplex, which

all lie on the same connected component of ∂M̃ , a contradiction.

Now points (3) and (4) immediately descend from (i) and (ii). �

Volume form. Let σ : ∆n → M be a smooth n-simplex, and let ω be the
volume form of M . We set

Volalg(σ) =

∫
∆n

σ∗(ω) .

Since straight simplices are smooth, the map

Cn(M,∂M ;R)→ R,
n∑
i=1

aiσi 7→
n∑
i=1

aiVolalg(strn(σi))

is well-defined. This map is a relative cocycle that represents the volume
coclass on M (see e.g. [FP10, Section 4] for the details). Therefore, if

z =
∑h

i=1 aiσi ∈ Cn(M,∂M ;Z) is an integral cycle supported by straight
simplices such that [z] = d · [M,∂M ]Z, then

(5)

h∑
i=1

aiVolalg(σi) = d ·Vol(M) .

Let us rewrite z as follows:

z =

N∑
i=1

εiσi ,

where εi = ±1 for every i = 1, . . . , N . Note that we do not assume that σi 6=
σj for i 6= j. Let P be the pseudomanifold associated to z, and recall that the
simplices ∆n

1 , . . . ,∆
n
N of P are in bijection with the σi’s. An identification

of ∆n
i with the standard n-simplex is fixed for every i = 1, . . . , N , so that

we may consider σi as a map defined on ∆n
i . We set

(6) Volalg(∆n
i ) = εiVolalg(σi) ,
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and we say that ∆n
i is positive (resp. degenerate, negative) if Volalg(∆n

i ) > 0
(resp. Volalg(∆n

i ) = 0, Volalg(∆n
i ) < 0). Equation (5) may now be rewritten

as follows:

(7)
N∑
i=1

Volalg(∆n
i ) = d ·Vol(M) .

If σ̃i is any lift of σi to M̃ ⊆ Hn, then ∆n
i is degenerate if and only if the

image of σ̃i is. Since |Volalg(∆n
i )| is just the volume of the image of σ̃i, by

Theorem 3.1 we have

|Volalg(∆n
i )| ≤ vn .

If ∆n
i is nondegenerate and F is an (n − 2)-face of ∆n

i , then we define the
angle of ∆n

i at F as the angle of the image of σ̃i at σ̃i(F ).

Lemma 3.4. Let F be an (n−2)-face of ∂P , and let ∆n
i1
, . . . ,∆n

ik
be the sim-

plices of P that contain F (taken with multiplicities). For every j = 1, . . . , k
we also suppose that Volalg(∆n

ij
) > 0, so in particular ∆n

ij
is nondegenerate,

and has a well-defined angle αij at F . Then

k∑
j=1

αij = π .

Proof. Up to choosing suitable lifts σ̃ij of the σij ’s, we may glue the σ̃ij ’s in

order to develop the union of the ∆n
ij

’s into M̃ ⊆ Hn. Since the (n−1)-faces

of ∂P sharing F are developed into two adjacent (n− 1)-geodesic simplices

in ∂M̃ , this implies at once that a suitable algebraic sum of the αij ’s is
equal either to 0 or to π. In order to conclude it is sufficient to show that
the condition Volalg(∆n

ij
) > 0 implies that all the signs in this algebraic sum

are positive (this implies in particular that the sum is itself positive, whence
equal to π).

To prove the last statement, it is sufficient to check that, if ∆n
ij1

, ∆n
ij2

are adjacent in P along their common (n − 1)-face V and the lifts σ̃ij1 ,
σ̃ij2 coincide on V , then the images of σ̃ij1 and σ̃ij2 lie on different sides

of σ̃ij1 (V ) = σ̃ij2 (V ). Let us set for simplicity j1 = 1 and j2 = 2, and for

j = 1, 2 let ε′ij = 1 if V is the k-th face of ∆n
ij

and k is even, and ε′ij = −1

otherwise. It is easily checked that the images of σ̃i1 and σ̃i2 lie on different
sides of σ̃i1(V ) = σ̃i1(V ) if and only if the quantities

ε′i1Volalg(σi1) , ε′i2Volalg(σi2)

have opposite sign. However, since V corresponds to a canceling pair, we
have εi1ε

′
i1

+ εi2ε
′
i2

= 0, so the conclusion follows from the positivity of
Volalg(∆n

i1
) and Volalg(∆n

i2
). �



A QUANTITATIVE VERSION OF A THEOREM BY JUNGREIS 13

4. Proof of Theorem 1

Throughout this section we suppose that dimM = n ≥ 4. The idea of the
proof is as follows: Lemma 3.2 implies that no dihedral angle of a geodesic
n-simplex of almost maximal volume can be a submultiple of π. Together
with Lemma 3.4, this implies that any fundamental cycle M must contain
simplices whose support has small volume (that is, smaller than (1−εn)vn).
In fact, the weights of these simplices in any fundamental cycle may be
bounded from below by the simplicial volume of the boundary of M , and
this will finally yield the estimate needed in Theorem 1. Let us now provide
the detailed computations.

Let I = {1, . . . , N} and let

z =
∑
i∈I

εiσi

be an integral n-cycle satisfying the conditions of Proposition 3.3, where
εi = ±1 for every i ∈ I. Let P be a pseudomanifold associated to z, and let
∆n
i , Volalg(∆n

i ) be defined as in the previous section.
We choose εn as in Lemma 3.2, we say that the simplex ∆n

i is small if
and only if Volalg(∆n

i ) ≤ (1− εn)vn, and we set

Ismall = {i ∈ I |∆n
i is small}, Nsmall = #Ismall .

Lemma 4.1. We have

Nsmall ≥
d

n+ 1
‖∂M‖ .

Proof. We start by showing that every (n−2)-face of ∂|P | is contained in at
least one small n-simplex ∆n

i of P , with i ∈ Ismall, corresponding to some σi.
Indeed, let F be an (n−2)-face of ∂|P | and let ∆n

i1
, . . . ,∆n

ik
be the n-simplices

of P containing F . Suppose by contradiction that Volalg(∆n
ij

) ≥ (1− εn)vn
for every j = 1, . . . , k. Let σij be the straight simplex corresponding to
∆n
ij

. Our assumptions imply that the dihedral angle αij of σij (∆
n
ij

) at F is

well-defined. Moreover, Lemma 3.4 gives

k∑
j=1

αij = π ,

which contradicts Lemma 3.2.
Of course, a small simplex could have several (n−2)-faces in the boundary,

but since an n-simplex has exactly (n + 1)n/2 faces of codimension two,
we can bound the number of small simplices by the number of (n − 2)-
dimensional faces in ∂|P |,

Nsmall ≥
2

(n+ 1)n
]{(n− 2)−faces in ∂|P |}.

An (n− 1)-simplex has exactly n faces of codimension one. Moreover, since
∂P is an (n− 1)-dimensional pseudomanifold without boundary, every (n−
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2)-face of ∂|P | is shared by exactly two (n− 1)-simplices, so the number of
(n− 2)-faces of ∂|P | is equal to (n/2)c(∂P ), where c(∂P ) is the number of
(n− 1)-simplices of ∂P . So inequality (4), i.e.

c(∂P ) = ‖∂z‖Z ≥ d · ‖∂M‖ ,
concludes the proof of the lemma. �

To conclude the proof of Theorem 1, note that by equation (7) we have

d ·Vol(M) =
∑
i∈I

Volalg(∆n
i ) =

∑
i∈Ismall

Volalg(∆n
i ) +

∑
i∈I\Ismall

Volalg(∆n
i )

≤ Nsmall(1− εn)vn + (N −Nsmall)vn = (N −Nsmall · εn)vn .

Putting together this inequality with Lemma 4.1 and the inequality N =
‖z‖Z ≤ d(‖M,∂M‖+ ε) we get

d ·Vol(M) ≤
(
d(‖M,∂M‖+ ε)− d · εn

n+ 1
‖∂M‖

)
vn .

As ε is arbitrary, after dividing each side of this inequality by d · Vol(M)
and reordering, we get

‖M,∂M‖
Vol(M)

≥ 1

vn
+

εn · ‖∂M‖
(n+ 1)Vol(M)

=
1

vn
+

εnVol(∂M)

(n+ 1)vn−1Vol(M)
,

which finishes the proof of Theorem 1.

5. Proof of Theorem 3

In order to provide lower bounds on the simplicial volume of hyperbolic
3-manifolds with geodesic boundary we first need to analyze some properties
of volumes of hyperbolic 3-simplices. An essential tool for computing such
volumes is the Lobachevsky function L : R→ R defined by the formula

L(θ) = −
∫ θ

0
log |2 sinu| du .

In a nondegenerate ideal 3-simplex, opposite sides subtend isometric angles,
the sum of the angles of any triple of edges sharing a vertex is equal to π
and the simplex is determined up to isometry by its dihedral angles. The
following result is proved by Milnor in [Thu79, Chapter 7], and plays a
fundamental role in the computation of volumes of hyperbolic 3-simplices.

Proposition 5.1. Let ∆ be a nondegenerate ideal simplex with angles α, β, γ.
Then

Vol(∆) = L(α) + L(β) + L(γ) .

Moreover,
Vol(∆) ≤ 3L(π/3) = v3 ≈ 1.014942 ,

where the equality holds if and only if α = β = γ = π/3 ( i.e. ∆ is regular).

We say that a nondegenerate geodesic simplex with nonideal vertices ∆
is:
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• 1-obtuse if it has at least one nonacute dihedral angle,
• 2-obtuse if there exist two edges of ∆ which share a vertex and

subtend nonacute dihedral angles,
• 3-obtuse if there exists a face F of ∆ such that each edge of F

subtends a nonacute dihedral angle.

Lemma 5.2. There do not exist 3-obtuse geodesic simplices. Moreover, if
∆ is a 2-obtuse geodesic simplex, then

Vol(∆) ≤ v3

2
.

Proof. Let F be a face of a nondegenerate geodesic simplex ∆. Let H be the
geodesic plane containing F and let π : H3 → H denote the nearest point
projection. Let v ∈ Hn be the vertex of ∆ not contained in H.

For every edge e of F , the geodesic line containing e divides H into two
regions. Note that the angle at e is acute if and only if the projection π(v)
of the last vertex point belongs to the region containing F . Consider the
three geodesic lines containing the three edges of F . Since no point in H can
simultaneously be contained in the region of H bounded by each of these
geodesics and not containing F , it follows that ∆ cannot be 3-obtuse.

Suppose now that two of the edges of F subtend nonacute dihedral an-
gles and consider the four regions of H delimited by the two corresponding
geodesics. Denote by v0 the vertex of F given as the intersection of these two
geodesics. Note that π(v) belongs to the region opposite to the region con-
taining F . Denote by r the reflection along H. Set v′ = r(v) and ∆′ = r(∆).

The convex hull of ∆ and ∆′ is equal to the convex hull of F ,v and v′. Let ∆̂
be the geodesic simplex with vertices v, v′ and the two vertices of F opposite

to v0. Since v0 belongs to ∆̂ (see Figure 1) it follows that ∆ ∪∆′ ⊂ ∆̂ and
hence

v3 ≥ Vol(∆̂) ≥ Vol(∆ ∪∆′) = 2Vol(∆) ,

which finishes the proof of the lemma. �

Recall that

G =
1

12
− 1

32
+

1

52
− 1

72
+ . . . ≈ 0.915965

is Catalan’s constant.

Lemma 5.3. If ∆ is a 1-obtuse geodesic simplex, then

Vol(∆) ≤ G .

Proof. Suppose first that ∆ is a 1-obtuse ideal geodesic simplex. Let α, β, γ
be its three dihedral angles with α ≥ π/2 and β + γ = π − α. Using
Proposition 5.1, one can readily show that when α ≥ π/2 is fixed, the
maximum volume Vol(∆) = L(α) + L(β) + L(γ) is attained at β = γ =
(π − α)/2. Another easy computation based on Proposition 5.1 implies
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v

v′

π(v) H
F

∆

∆′

v0

Figure 1. A 2-obtuse simplex ∆ and its mirror copy ∆′.

that, under the assumption that α ≥ π/2, the quantity L(α)+2L((π−α)/2)
attains its maximum at α = π/2. Therefore, we may conclude that

Vol(∆) ≤ L(π/2) + 2L(π/4) = G ,

where the last equality is proved in [Thu79, Chapter 7].
Let now ∆ be a 1-obtuse nonideal geodesic simplex. The lemma will follow

once we exhibit a 1-obtuse ideal geodesic simplex ∆ with ∆ ⊂ ∆. Let v1, v2

be the vertices on the edge e subtending the nonacute angle. Two of the
vertices of ∆ will be the two endpoints w1, w2 of the geodesic through v1, v2.
Let v, v′ be the two remaining vertices of ∆ and denote by F, F ′ the two faces
of ∆ opposite to v′ and v respectively. Let w, respectively w′, be vertices on
the boundary of the hyperplane containing F , resp. F ′, and such that the
convex hull of v1, v2, w, resp. v1, v2, w

′, contains v, resp. v′. (For example,
pick w, resp. w′, as the endpoint of the geodesic through v1 and v, resp. v′.)
Let ∆ be the ideal geodesic simplex with vertices w1, w2, w, w

′. As it contains
all the vertices of ∆, the simplex ∆ is indeed contained in ∆. Furthermore,
it is still 1-obtuse as its dihedral angle on the edge with endpoints w1, w2 is
equal to the dihedral angle of ∆ at the edge with endpoints v1, v2. �

Proof of Theorem 3. Let z be the integral cycle provided by Proposi-
tion 3.3, let P be the associated pseudomanifold, and let ∆3

1, . . . ,∆
3
N be the

simplices of P . In equation (6) a well-defined algebraic volume Volalg(∆3
i )

is associated to every ∆3
i , in such a way that the equality

(8) d ·Vol(M) =

N∑
i=1

Volalg(∆3
i )



A QUANTITATIVE VERSION OF A THEOREM BY JUNGREIS 17

holds. We also say that ∆n
i is 1-, 2- or 3-obtuse if the corresponding geodesic

simplex in Hn is (by Lemma 5.2, the last possibility cannot hold in fact).
Let Ωi, i = 0, . . . , 4, be the set of simplices of P having exactly i boundary

2-faces. We denote by ti the number of elements of Ωi. By Proposition 3.3
we have Ω2 = Ω3 = Ω4 = ∅, so that

t2 = t3 = t4 = 0, ‖z‖Z = t0 + t1 = N .

We denote by t1,n the number of nonpositive simplices in Ω1 (i.e. simplices
with nonpositive volume), and by t1,1 (resp. t1,2) the number of 1-obtuse
(resp. 2-obtuse) positive simplices in Ω1. Moreover, we say that an edge e
of the 2-dimensional pseudomanifold ∂P is nice if e is the edge of a simplex
in Ω0. We also say that an edge of ∂P is bad if it is not nice. An edge of
the topological realization ∂|P | is nice if it is the image of at least one nice
edge in ∂P . An edge in ∂|P | is bad if it is not nice. Notice that bad edges
in ∂|P | are not the image of bad edges in ∂P , since a nice edge in ∂|P | will
be the image of a certain number of nice edges in ∂P and necessarily two
bad edges of ∂P corresponding to the two (possibly nondistinct) tetrahedra
having as 2-faces the 2-faces in ∂|P | containing the original nice edge. We
denote by Ebad (resp. Enice) the number of bad (resp. nice) edges of ∂|P |.

Lemma 5.4. We have

3t1,n + 2t1,2 + t1,1 ≥ Ebad .

Proof. Let e be a bad edge of ∂|P |, let Ti1 , Ti2 be the triangles of ∂P adjacent
to e, and let ∆3

i1
(resp. ∆3

i2
) be the simplex of P containing Ti1 (resp. Ti2).

It is easy to show that if Fi1 (resp. Fi2) is the 2-face of ∆3
i1

(resp. ∆3
i2

)
such that e = Fi1 ∩ Ti1 = Fi2 ∩ Ti2 , then Fi1 , Fi2 are glued to each other
in |P | (see [BFP15, Lemma 4.4]). Also suppose that ∆3

i1
and ∆3

i2
are both

positive and let αij be the dihedral angle of ∆3
ij

at e. By Lemma 3.4 we

have αi1 + αi2 = π. As a consequence, either ∆3
i1

or ∆3
i2

(or both in case
αi1 = αi2 = π/2) has a nonacute angle along e. We have thus shown that at
every bad edge of ∂|P | there is (at least) one incident simplex that either is
nonpositive or has a nonacute angle at an edge of its boundary face. Since
we know that no simplex of P can be 3-obtuse, the conclusion follows from
an obvious double counting argument. �

Proposition 5.5. We have

‖M,∂M‖+ ε ≥ Vol(M)

v3
+

(
1− G

v3

)
Ebad

d
.
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Proof. Since v3 ≥ 3(v3 − G) and v3/2 ≥ 2(v3 − G), by equation (8) and
Lemmas 5.2, 5.3 and 5.4 we have

d ·Vol(M) ≤ (t0 + t1 − t1,1 − t1,2 − t1,n)v3 +Gt1,1 + t1,2
v3

2

= (t0 + t1)v3 − (v3 −G)t1,1 − t1,2
v3

2
− t1,nv3

≤ (t0 + t1)v3 − (v3 −G)(t1,1 + 2t1,2 + 3t1,n)

≤ (t0 + t1)v3 − (v3 −G)Ebad .

Now the conclusion follows from the inequality t0+t1 = ‖z‖Z ≤ d(‖M,∂M‖+
ε) (see Proposition 3.3). �

Proposition 5.6. We have

‖M,∂M‖+ ε ≥ 7

4
‖∂M‖ − Ebad

2d
.

Proof. Recall that ∂|P | is the union of a finite number of closed orientable
surfaces, and that the pseudomanifold P comes equipped with a degree d
map f : (|P |, ∂|P |)→ (M,∂M). Therefore, we have that ‖∂|P |‖ ≥ d ·‖∂M‖.
Since ∂|P | is decomposed into t1 triangles, this implies that

(9) t1 ≥ d · ‖∂M‖ .
For the number Enice of nice edges of ∂|P | we have the obvious equality

Enice = (3/2)t1 − Ebad. By definition, every nice edge is contained in a
simplex in Ω0, and by point (4) of Proposition 3.3 any such simplex has at
most 2 edges on ∂|P |, so

(10) t0 ≥
Enice

2
=

3

4
t1 −

Ebad

2
.

Together with Proposition 3.3, Inequalities (9) and (10) imply that

d(‖M,∂M‖+ ε) ≥ t0 + t1 ≥
7

4
t1 −

Ebad

2
≥ 7d

4
· ‖∂M‖ − Ebad

2
,

which finishes the proof of the proposition. �

We are now ready to prove Theorem 3. In fact, if we set k0 = Ebad/(2d),
then putting together Propositions 5.5 and 5.6 we get

‖M,∂M‖+ ε ≥ max

{
Vol(M)

v3
+ 2

(
1− G

v3

)
k0,

7

4
· ‖∂M‖ − k0

}
,

whence

‖M,∂M‖+ ε ≥ min
k≥0

max

{
Vol(M)

v3
+ 2

(
1− G

v3

)
k,

7

4
· ‖∂M‖ − k

}
.

If (7/4)‖∂M‖ ≤ Vol(M)/v3, then the statement of Theorem 3 is an obvious
consequence of Jungreis’ inequality (2). Otherwise, the right-hand side of
the inequality above is equal to

Vol(M)

v3
+

v3 −G
2(3v3 − 2G)

(
7‖∂M‖ − 4

Vol(M)

v3

)
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Figure 2. A truncated tetrahedron.

which finishes the proof of Theorem 3 since ε is arbitrary.

6. Small hyperbolic manifolds with geodesic boundary

We start by recalling some results from [FMP03] and [Miy94]. An ideal
triangulation of a 3-manifold M is a homeomorphism between M and |P | \
V (|P |), where P is a 3-pseudomanifold and V (|P |) is a regular open neigh-
bourhood of the vertices of |P |. In other words, it is a realization of M
as the space obtained by gluing some topological truncated tetrahedra, i.e.
tetrahedra with neighbourhoods of the vertices removed (see Figure 2).

As in the introduction, let Mg, g ≥ 2, be the class of 3-manifolds with
boundary M that admit an ideal triangulation by g tetrahedra and have
Euler characteristic χ(M) = 1− g (so χ(∂M) = 2− 2g). We also denote by
Mg the set of hyperbolic 3-manifolds M with connected geodesic boundary
such that χ(∂M) = 2− 2g. For g ≥ 2, let ∆g ⊆ H3 be the regular truncated
tetrahedron of dihedral angle π/(3g) (see e.g. [Koj90, FP04] for the definition
of hyperbolic truncated tetrahedron). It is proved in [KM91] that

Vol(∆g) = 8L
(π

4

)
− 3

∫ π
3g

0
arccosh

(
cos t

2 cos t− 1

)
dt

(11)

= 4G− 3

∫ π
3g

0
arccosh

(
cos t

2 cos t− 1

)
dt .

The following result lists some known properties of manifolds belonging to
Mg. The last point implies that Mg coincides with the set of the elements

of Mg of smallest volume.

Proposition 6.1 ([FMP03, Miy94]). Let g ≥ 2. Then:

(1) the set Mg is nonempty;
(2) every element of Mg admits a hyperbolic structure with geodesic

boundary (which is unique up to isometry by Mostow Rigidity The-
orem);
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(3) the boundary of every element of Mg is connected, so Mg ⊆Mg;
(4) if M ∈ Mg, then M decomposes into the union of g copies of ∆g,

so in particular Vol(M) = gVol(∆g);

(5) if M ∈Mg, then Vol(M) ≥ gVol(∆g).

Items (2) and (3) and (4) are proved in [FMP03], items (1) and (5)
in [Miy94].

Proposition 6.2. Fix g ≥ 2. Then all the elements of Mg share the same
simplicial volume.

Proof. Take M1,M2 ∈ Mg, and let us consider the universal coverings M̃1

and M̃2. Both M̃1 and M̃2 are obtained as the union in H3 of a countable
family of copies of ∆g, which are adjacent along their hexagonal faces, and

this easily implies that M̃1 and M̃2 are isometric to each other. Since the

isometry group of M̃1 is discrete, this fact can be used to show that M1

and M2 are commensurable, i.e. there exists a hyperbolic 3-manifold with
geodesic boundaryM ′ that is the total space of finite coverings p1 : M ′ →M1

and p2 : M ′ → M2 (see [Fri06, Lemma 2.4]). Since the Riemannian volume
and the simplicial volume are multiplicative with respect to finite coverings,
this implies in turn that ‖M1, ∂M1‖/Vol(M1) = ‖M2, ∂M2‖/Vol(M2), which
finishes the proof since Vol(M1) = Vol(M2). �

Let us prove Corollary 5 and see that for M ∈M2∪M3∪M4, the bounds
provided by the corollary are indeed sharper than Jungreis’ inequality (2)
and inequality (3).

• If M ∈ M2, then ‖∂M‖ = 4 and Vol(M) ≥ 2Vol(∆2) ≈ 6.452.
Applying Theorem 3 we get

‖M,∂M‖ ≥ 6.461 ≈ 1.615 · ‖∂M‖.

Also observe that, if M ∈M2, then Vol(M)/v3 ≈ 6.357 .
• If M ∈ M3, then ‖∂M‖ = 8 and Vol(M) ≥ 3Vol(∆3) ≈ 10.429.

Applying Theorem 3 we get

‖M,∂M‖ ≥ 10.882 ≈ 1.360 · ‖∂M‖.

Also observe that, if M ∈M3, then Vol(M)/v3 ≈ 10.274 .
• If M ∈ M4, then ‖∂M‖ = 12 and Vol(M) ≥ 4Vol(∆4) ≈ 14.238.

Applying Theorem 3 we get

‖M,∂M‖ ≥ 15.165 ≈ 1.264 · ‖∂M‖.

If M ∈M4, then Vol(M)/v3 ≈ 14.097 .

Finally, let us take M ∈Mg, g ≥ 5 and show that the bound

‖M,∂M‖ ≥ 5

4
‖∂M‖
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proved in [BFP15] is sharper than the ones given by inequality (2) and
Theorem 3. Note that it is sufficient to show that

5

4
‖∂M‖ > 7‖∂M‖(v3 −G) + 2Vol(M)

2(3v3 − 2G)
>

Vol(M)

v3
.

Using that ‖∂M‖ = 4(g−1) and Vol(M) = gVol(∆g), after some straightfor-
ward algebraic manipulations the first inequality and the second inequality
may be rewritten respectively as follows:(

1− 1

g

)
(v3 + 4G) > Vol(∆g) , 7

(
1− 1

g

)
v3 > Vol(∆g) .

We know from equation (11) that Vol(∆g) < 4G. Therefore, for every g ≥ 5
we have (

1− 1

g

)
(v3 + 4G) ≥ 4

5
(v3 + 4G) > 4G > Vol(∆g)

and

7

(
1− 1

g

)
v3 ≥

28

5
v3 > 4G > Vol(∆g) ,

whence the conclusion.
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