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A NOTE ON SEMI-CONJUGACY FOR CIRCLE ACTIONS

MICHELLE BUCHER, ROBERTO FRIGERIO, AND TOBIAS HARTNICK

Abstract. We define a notion of semi-conjugacy between orientation-
preserving actions of a group Γ on the circle, which for fixed point free
actions coincides with a classical definition of Ghys. We then show that
two circle actions are semi-conjugate if and only if they have the same
bounded Euler class. This settles some existing confusion present in the
literature.

1. Introduction

A fundamental problem in one-dimensional dynamics is the classifica-
tion of group actions on the circle. More precisely, denote by Homeo+(S1)
the group of orientation-preserving homeomorphisms of the circle. Given a
group Γ, we will refer to a homomorphism ρ : Γ → Homeo+(S1) as a circle
action. One would like to associate to every circle action of Γ a family of
invariants which classify the action up to a suitable equivalence relation,
ideally up to conjugacy. For the case of a single transformation acting min-
imally on the circle, this problem was solved by Poincaré around the end of
the 19th century, using his theory of rotation number.

In [Ghy87, Ghy01] Étienne Ghys introduced and studied a far reaching
generalization of the rotation number, the bounded Euler class of a circle
action. For minimal actions, i.e. actions for which every orbit is dense, he
thereby achieved a complete classification result:

Theorem 1.1 ([Ghy01, Theorem 6.5]). Let ρ1, ρ2 : Γ → Homeo+(S1) be
minimal circle actions. Then ρ1 and ρ2 are conjugate if and only if they
have the same bounded Euler class.

The bounded Euler class is thus a complete conjugation-invariant for min-
imal actions. For non-minimal actions, this result is not true. Instead,
non-minimal actions sharing the same bounded Euler class only satisfy a
weaker equivalence relation. In [Ghy87] Ghys introduced the notion of semi-
conjugacy between circle actions, which generalizes the notion of conjugacy.
It was then claimed that the bounded Euler class of a circle action deter-
mines the action up to semi-conjugacy:

Theorem 1.2 ([Ghy87, Theorem A1]). Two circle actions ρ1, ρ2 : Γ →
Homeo+(S1) are semi-conjugate if and only if they have the same bounded
Euler class.
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This implies in particular, that semi-conjugacy is an equivalence rela-
tion. However, the definition of semi-conjugacy as written is clearly not an
equivalence relation (see Remark 2.7 below) and thus needs to be amended.
Ghys noticed the problem and provided a fix for it in the subsequent paper
[Ghy01], see in particular [Ghy01, Theorem 6.6]. While the latter result is
more precise for the dynamical properties of group actions in term of their
bounded Euler class, the equivalence of [Ghy87, Theorem A1] is missing
from the statement of Theorem 6.6 in [Ghy01]. Moreover, these issues do
not seem to have been widely noticed, since references to Theorem 1.2 with
the misformulated definition of semi-conjugacy have appeared regularly in
the literature. In view of this situation, we found it worthwhile to point out
an amended definition of semi-conjugacy, for which Theorem 1.2 holds in full
generality, and to provide a complete and self-contained proof of Theorem
1.2 for this definition. Let us emphasize that we do not claim any originality
for the ideas entering into the proof.

While various corrected definitions of semi-conjugacy seem to be known
among experts, to the best of our knowledge none of them has ever appeared
in print. In this note we give three equivalent characterizations of semi-
conjugacy. The first characterization as presented in Definition 2.5 below
is due to the second author and has the major advantage that it is easily
seen to be an equivalence relation. We thus take it as our definition. Two
alternative characterizations due respectively to Maxime Wolff [Wol] and
the first named author [Buc08] will be discussed in Subsection 5.B below.

We would like to emphasize that for fixed point free actions Ghys’ orig-
inal definition agrees with our definition (see Corollary 4.4). It follows a
posteriori that Ghys’ definition of semi-conjugacy is an equivalence relation
for fixed point free circle actions, a highly non-obvious fact.

Our amended definition of semi-conjugacy will be stated in Definition 2.5
below. For this definition, Theorem 1.2 will be established in Section 4.
We will then recall in Subsection 4.E the argument of Ghys which shows
that Theorem 1.2 implies Theorem 1.1. Our proof of Theorem 1.2 is based
on Ghys’ original proof, but involves an additional argument to deal with
potential fixed points of the circle actions under considerations. For a sketch
of an alternative proof, due originally to Thurston [Thu], see [Cal07]. (The
definition of semi-conjugacy should be modified accordingly.)

Besides the proofs of Theorem 1.2 and Theorem 1.1 we also discuss a
number of related issues of independent interest. In Subsection 2.A we dis-
cuss characterisations of non-decreasing degree one maps. In Section 3 we
discuss thoroughly three well-known characterisations of the bounded Euler
class on Homeo+(S1) and establish carefully their mutual equivalence. A
fourth characterization, which will not be needed in the proof of Ghys’ theo-
rem, but generalizes nicely to higher dimensions, is discussed in an appendix
to this note. In Subsection 5.A we explain how Poincaré’s classification of
Z-actions on the circle can be derived from Ghys’ theorem. We also show
that every action of an amenable group on the circle is semi-conjugate to
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an action by rotations, a result originally due to Hirsch-Thurston. The final
two sections, Section 5.C and Section 5.D, discuss respectively a charac-
terization of circle actions with vanishing real bounded Euler classes and
regularity questions concerning non-decreasing degree one maps.

Acknowledgements. The authors are indebted to Pierre de la Harpe
for a careful reading of a preliminary version of this note. They also thank
Danny Calegari, Étienne Ghys, Daniel Monclair and Maxime Wolff for use-
ful comments. The first author was supported by Swiss National Science
Foundation project PP00P2-128309/1. The first and second authors are
grateful to the American Institute of Mathematics for their support dur-
ing the preparation of this work. The third author acknowledges support
from the Taub Foundation within the Leaders in Science and Technology
program.

2. On the definition of semi-conjugacy

2.A. Non-decreasing degree one maps. Throughout this article we con-
sider the circle S1 = R/Z as a quotient of the real line. A pre-image x̃ of a
point x ∈ S1 under the canonical projection R → S1 will be called a lift of
x and we write [x̃] := x.

Definition 2.1. An ordered k-tuple (x1, . . . , xk) ∈ (S1)k, for k ∈ N is said
to be

• weakly positively oriented if there exists a ∈ R and lifts x̃i ∈ R of
the xi’s such that

a ≤ x̃1 ≤ · · · ≤ x̃q ≤ a+ 1,

• positively oriented if furthermore

a ≤ x̃1 < · · · < x̃q < a+ 1.

Replacing ≤, < and a, a+1 respectively by ≥, > and a+1, a we obtain the
corresponding notion of (weakly) negatively oriented k-tuples.

Note that if k ≤ 2 then a k-tuple is both weakly positively oriented and
weakly negatively oriented. Furthermore, the property of being (weakly)
positively oriented is obviously invariant under cyclic permutations.

Definition 2.2. A (not necessarily continuous) map ϕ : S1 → S1 is a non-
decreasing degree one map if the following condition holds for all k ∈ N: If
(x1, . . . , xk) ∈ (S1)k is weakly positively oriented, then (ϕ(x1), . . . , ϕ(xk)) is
weakly positively oriented.

As we will see in Lemma 2.4 below it is actually enough to check the
condition for k = 4. Observe that non-decreasing degree one maps are
closed under composition and that every constant map is a non-decreasing
degree one map.
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Definition 2.3. Let ϕ : S1 → S1 be any map. A set-theoretical lift ϕ̃ : R →
R of ϕ is called a good lift of ϕ if ϕ̃(x+ 1) = ϕ̃(x) + 1 for every x ∈ R and
ϕ̃ is non-decreasing, i.e. ϕ̃(x) ≤ ϕ̃(y) whenever x ≤ y.

Being a non-decreasing degree one map is equivalent to admitting a good
lift (see Lemma 2.4) and the latter property is often taken as the definition
of a non-decreasing degree one map, since it is maybe easier to state. Of
course, one may obtain infintely many good lifts of a non-decreasing degree
one map just by taking one such lift and composing it with an integral
translation. But a given non-decreasing degree one map may also have good
lifts which are not obtained one from the other by the composing with an
integral translation. For example, for every α ∈ R the maps x 7→ ⌊x + α⌋
and x 7→ ⌈x + α⌉ are good lifts of the constant map ϕ : S1 → S1 mapping
every point to [0].

Lemma 2.4. Let ϕ : S1 → S1 be any map. Then the following conditions
are equivalent:

(i) The map ϕ is a non-decreasing degree one map.
(ii) If (x1, . . . , x4) ∈ (S1)4 is weakly positively oriented, then (ϕ(x1), . . . , ϕ(x4))

is weakly positively oriented;
(iii) There exists a good lift of ϕ.

Proof. The implication (i) ⇒ (ii) holds by definition.
(ii) ⇒ (iii): Let x0 ∈ S1 be a base point and y0 = ϕ(x0) ∈ S1 be its image.

Choose lifts x̃0, ỹ0 ∈ R of x0, y0 respectively and define ϕ̃ on [x̃0, x̃0 + 1) as
follows: for x̃0 ≤ x̃ < x̃0 + 1, let ϕ̃(x) be the unique lift of ϕ([x̃]) lying in
[ỹ0, ỹ0 + 1). Now extend ϕ̃ to R in the unique possible way such that it
commutes with integral translations.

In order to see that ϕ̃ is non-decreasing it suffices to show that it is non-
decreasing on [x̃0, x̃0+1). Thus let x̃0 ≤ x̃ < ỹ < x̃0+1. Then the quadruple
(x0, [x̃], [ỹ], x0+1) is weakly positively oriented, and thus also the quadruple
(ϕ(x0), ϕ([x̃]), ϕ([ỹ]), ϕ(x0)) = (y0, [ϕ̃(x̃)], [ϕ̃(ỹ)], y0) is weakly positively-
oriented by (ii). By definition this means that there exists a real number a
and integers n, nx, ny,m ∈ Z such that

a ≤ ỹ0 + n ≤ ϕ̃(x̃) + nx ≤ ϕ̃(ỹ) + ny ≤ ỹ0 +m ≤ a+ 1 .

It follows from the first and last inequality, that m ∈ {n, n+ 1}. In both
cases, substracting n we obtain

ỹ0 ≤ ϕ̃(x̃) + (nx − n) ≤ ϕ̃(ỹ) + (ny − n) ≤ ỹ0 + 1.

Since ϕ̃(x̃) and ϕ̃(ỹ) both belong to the interval [ỹ0, ỹ0 + 1) it follows that
nx = n = ny and ϕ̃(x̃) ≤ ϕ̃(ỹ), which finishes the proof of this implication.

(iii) ⇒ (i): Let x0, . . . , xk be weakly positively oriented. By definition
this means that there exists a ∈ R and lifts x̃i ∈ R of the xi’s such that

a ≤ x̃1 ≤ · · · ≤ x̃q ≤ a+ 1.
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Applying the non-decreasing map ϕ̃ to the above inequalities gives

ϕ̃(a) ≤ ϕ̃(x̃1) ≤ · · · ≤ ϕ̃(x̃q) ≤ ϕ̃(a+ 1) = ϕ̃(a) + 1,

where the last equality uses the fact that ϕ̃ commutes with integral transla-
tions. Since the ϕ̃(xi)’s are lifts of ϕ(xi), this by definition implies that the
k-tuple (ϕ(x1), . . . , ϕ(xk)) is weakly positively oriented. �

It is clear from the proof that we cannot replace the statement in (ii) with
the corresponding statement for triples. To give an explicit counterexample,
consider the function ϕ : S1 → S1 given by

ϕ([t]) =

{
[0], ⌊t⌋ ∈ [0, 1/4) ∪ [1/2, 3/4),

[1/2], ⌊t⌋ ∈ [1/4, 1/2) ∪ [3/4, 1).

This function ϕ takes any triple into a weakly positively oriented one, but
the quadruple ([0], [1/4], [1/2], [3/4]) is taken by ϕ to ([0], [1/2], [0], [1/2]),
which is not weakly positively oriented.

2.B. Semi-conjugacy. The following is the key definition of this note.

Definition 2.5. Let ρj : Γ → Homeo+(S1) be circle actions, j = 1, 2. We
say that ρ1 is left-semi-conjugate to ρ2 (and ρ2 is right-semi-conjugate to
ρ1) if there exists a non-decreasing degree one map ϕ such that

ρ1(g)ϕ = ϕρ2(g)

for every g ∈ Γ. In this case, ϕ is called a left-semi-conjugacy from ρ1 to ρ2
and we say that ρ1 is left-semi-conjugate to ρ2 via ϕ.

The circle action ρ1 is called semi-conjugate to ρ2 if it is both left- and
right-semi-conjugate to ρ2.

We recall some standard terminology for group actions: A circle action
ρ : Γ → Homeo+(S1) is said to have a global fixed point if there exists x ∈ S1

such that ρ(γ)(x) = x for every γ ∈ Γ. An action is fixed point free if it does
not admit a global fixed point.

Proposition 2.6. (i) Semi-conjugacy is an equivalence relation.
(ii) Every circle action is right-semi-conjugate to the trivial action.
(iii) A circle action is left-semi-conjugate to the trivial action if and only

if it has a global fixed point.

Proof. (i) Reflexivity and symmetry are obvious, while transitivity readily
follows from the fact that non-decreasing degree one maps are closed under
composition. (ii) Choose ϕ to be an arbitrary constant map. (iii) If ρ is
left-semi-conjugate to the trivial action, then there exists ϕ such that for all
g ∈ Γ and x ∈ S1

ρ(g)(ϕ(x)) = ϕ(x)

whence the image of ϕ consists of fixed points of ρ(Γ). On the other hand,
if x0 is fixed by ρ(Γ) and ϕ(x) = x0 for every x ∈ S1, then ρ is left-semi-
conjugate to the trivial action by ϕ. �
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Remark 2.7. The definition of semi-conjugacy given in [Ghy87] coincides
with our definition of left-semi-conjugacy. As it obviously follows from
Proposition 2.6 (ii)-(iii) that left-semi-conjugacy is not even an equivalence
relation, it cannot be the correct notion. However, for fixed point free cir-
cle actions it does indeed coincide with our notion of semi-conjugacy, see
Corollary 4.4.

The definition of semi-conjugation is changed in [Ghy01] to be a left semi-
conjugation where one further requires the map ϕ : S1 → S1 to be contin-
uous. This is still not symmetric (see Example 5.5 below) but allows for a
correct reformulation of Theorem 1.2.

In some sense, semi-conjugacy in the sense of Definition 2.5 is the most
obvious way to turn left-semi-conjugacy into an equivalence relation. How-
ever, contrary to what is sometimes claimed, it is not the equivalence relation
generated by left-semi-conjugacy. Namely, by Proposition 2.6 the equiva-
lence relation generated by left-semi-conjugacy is the all relation, in which
any two circle actions are related.

By definition, conjugate circle actions are semi-conjugate. We will see
in Proposition 4.7 below that for minimal circle actions the converse holds.
However, in general the notion of semi-conjugacy is much weaker than the
notion of conjugacy. For example Proposition 2.6 shows that every circle
action admitting a fixed point is semi-conjugate to the trivial circle action
(but of course not conjugate to the trivial circle action unless it is trivial
itself).

3. Three characterisations of the bounded Euler class

The goal of this section is to introduce the bounded Euler class and pro-
vide three different characterizations: as a bounded obstruction class (Sub-
section 3.B), via the translation number (Subsection 3.C) and as a bounded
geometric class on the circle (Subsection 3.D). Yet another description of the
bounded Euler class, which generalizes readily to higher dimensions, will be
discussed in the appendix. In order to keep this note self-contained we col-
lect in the next subsection various basic facts concerning (bounded) group
cohomology. The expert can skip that subsection without loss of continuity.

3.A. Preliminaries on (bounded) group cohomology. Given a group
H acting on a space X we define a cocomplex (Cn(H,X;Z), δ) by set-
ting Cn(H,X;Z) := Map(Xn+1;Z)H , where the superscript H denotes H-
invariants under the diagonal H-action, and defining the homogeneous dif-
ferential δ by

δf(g0, . . . , gn) =

n∑

i=0

(−1)if(g0, . . . , ĝi, . . . , gn).

We then denote by H•(H,X;Z) the cohomology of this cocomplex. For X =
H with the left-H-action this cohomology is precisely the classical group
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cohomology H•(H;Z) with Z-coefficients. Given a cocycle c ∈ Cn(H,X;Z)
and a basepoint x0 ∈ X we obtain a cocycle cx0

∈ Cn(H,H;Z) by

cx0
(h0, . . . , hn) = c(h0 · x0, . . . , hn · x0).

The class of cx0
is independent of the choice of basepoint x0. We thus obtain

a map ιX : H•(H,X;Z) → H•(H;Z) and we say that a class α ∈ H•(H;Z)
is represented over X if it is in the image of this map.

There is a more efficient representation for classes in H•(H;Z) based on
the fact that we can identify C(H,H;Z) with Cn(H;Z) := Map(Hn;Z) via
the isomorphism

ι : Cn(H;Z) → Cn(H,H;Z)

given by

ι(f)(h0, . . . , hn) := f(h−1
0 h1, h

−1
1 h2, . . . , h

−1
n−1hn)

ι−1(g)(h1, . . . , hn) := g(e, h1, h1h2, . . . , h1h2 · . . . · hn).

Thus H•(H;Z) = H•(C•(H;Z), d), where the differential d = ι−1 ◦ δ ◦ ι is
given by

df(g1, . . . , gn+1) = f(g2, . . . , gn+1) +
n∑

i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+(−1)n+1f(g1, . . . , gn).

Cocycles in this model are called inhomogeneous cocycles, and are partic-
ularly useful to compute low degree cohomologies. We will be specifically
interested in cohomology of degree 2; we thus recall briefly the relation be-
tween H2(H;Z) and central extensions. Given a central extension of groups
of the form

ξ =

(
0 // Z

i
// H̃

p
// H // {e}

)

and a set theoretic section σ : H → H̃ of p we define a function cσ : H2 → H̃
by

cσ(g, h) = σ(h)σ(gh)−1σ(g).

Since p(cσ(g, h)) = e we can consider cσ as a function into i(Z). We will often

tacitly identify Z with its image in H̃ and thus consider cσ as a function
cσ : H2 → Z. It is straightforward to check that cσ satisfies the cocycle
identity

dcσ(g, h, k) = cσ(h, k) − cσ(gh, k) + cσ(g, hk) − cσ(g, h) = 0,

whence we refer to it as the obstruction cocycle associated with the extension
ξ and the section σ. It turns out that the class e(ξ) := [cσ] ∈ H2(H;Z) is
independent of the choice of section. This independence can easily be proved
directly, but it also follows from the following universal property of the class
[cσ]:
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Lemma 3.1 (Lifting obstruction). If ρ : G → H is a homomorphism, then
there exists a lift

0 // Z
i

// H̃
p

// H // {e}

G

ρ

OO

ρ̃

__

if and only if ρ∗[cσ] = 0 ∈ H2(G;Z).

In the sequel we will need the following explicit version of (one direction
of) the lemma:

Proposition 3.2 (Lifting formula). Let ρ : G → H be a homomorphism.
Assume that ρ∗cσ = du for some u : G → Z. Then a homomorphic lift

ρ̃ : G → H̃ is given by the formula

ρ̃(g) = σ(ρ(g)) · i(−u(g)).

Proof. Since this formula is at the heart of our argument we carry out the

straightforward computation. Since i(Z) is central in H̃ we obtain

σ(ρ(g1g2)) = σ(ρ(g1))
(
σ(ρ(g1))

−1σ(ρ(g1)ρ(g2))σ(ρ(g2))
−1
)
σ(ρ(g2))

= σ(ρ(g1)) · cσ(g1, g2)
−1 · σ(ρ(g2))

= σ(ρ(g1)) · i(−du(g1, g2)) · σ(ρ(g2))

= σ(ρ(g1))i(−u(g1)) · σ(ρ(g2))i(−u(g2)) · i(−u(g1g2))
−1

for all g1, g2 ∈ G. Multiplying both sides by i(−u(g1g2)) now yields ρ̃(g1g2) =
ρ̃(g1)ρ̃(g2) and finishes the proof. �

Conversely, a class e ∈ H2(Γ;Z) determines a central extension, which is
unique up to a suitable notion of isomorphism between extensions. We refer
the reader to [Bro82, Chapter IV] for the details.

The subcomplex Cn
b (H,X;Z) ⊂ Cn(H,X;Z) of bounded functions is in-

variant under δ, and its cohomology is called the (integral) bounded co-
homology of the H-action on X and denoted H•

b (H,X;Z). In particular,
H•

b (H;Z) := H•

b (H,H;Z) is the bounded group cohomology of H in the
sense of [Gro82]. Note that the isomorphism ι : Cn(H;Z) → Cn(H,H;Z)
identifies Cn

b (H,H;Z) with the subspace Cn
b (H;Z) < Cn(H;Z) of bounded

functions, whence H•

b (H;Z) can also be computed from bounded inhomge-
neous cocycles.

The inclusion of complexes (Cn
b (H;Z), δ) →֒ (Cn(H;Z), δ) induces on the

level of cohomology a comparison map H•

b (H;Z) → H•(H;Z), whose kernel
is classically (and somewhat unfortunately) denoted by EH•

b (H;Z). Note
that an inhomogeneous bounded cocycle representing a class in EH2

b (H;Z) is
of the form dT for some T : H → Z with the property that |T (gh)− T (g)−
T (h)| = |dT (g, h)| is uniformly bounded. Such a function T is called an
integral quasimorphism and the number D(T ) := ‖dT‖∞ is called its defect.
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Given two quasimorphisms T1, T2 we have [dT1] = [dT2] ∈ EH2
b (H;Z) if and

only if T1 − T2 ∈ Hom(H;Z)⊕Mapb(H;Z). In particular, changing T by a
bounded amount does not change the bounded cohomology class of [dT ].

Bounded group cohomology can also be defined with real coefficients. In
this case, bounded inhomogeneous cocycles in EH2

b (H;R) are of the form dT
where T is a real-valued quasimorphism. Every real-valued quasimorphism
(and in particular every integral one) is at bounded distance from a unique
homogeneous real-valued quasimorphism called its homogeneization. Here a
real-valued function f is called homogeneous provided f(hn) = n·f(h) for all
n ∈ N. Homogeneous quasimorphisms have the additional properties of be-
ing conjugation-invariant and linear on abelian subgroups. They also satisfy
f(hn) = n·f(h) for all n ∈ Z, positive or not. Note that two quasimorphisms
are at bounded distance if and only if their homogeneizations coincide. The
following lemma illustrates how bounded cohomology with real coefficients
can be used to obtain results concerning integral bounded cohomology; we
will apply this in our second characterization of the bounded Euler class
below.

Lemma 3.3. If q : H̃ → H is a surjective homomorphism with amenable

(e.g. abelian) kernel, then q∗ : H2
b (H;Z) → H2

b (H̃ ;Z) is injective.

Proof. The short exact sequence 0 → Z → R → R/Z → 0 of coefficients
induces a natural long exact sequence in bounded cohomology, called the
Gersten sequence (see [Mon01, Prop. 8.2.12]), and the corresponding ladder
associated with the homomorphism q starts from

0 //

��

Hom(H;R/Z)

q∗

��

// H2
b (H;Z)

q∗

��

// H2
b (H;R)

q∗

��

0 // Hom(H̃ ;R/Z) // H2
b (H̃;Z) // H2

b (H̃;R)

Now surjectivity of q implies that the pullback map q∗ : Hom(H;R/Z) →

Hom(H̃;R/Z) is injective, and the map q∗ : H2
b (H;R) → H2

b (H̃;R) is an
isomorphism by [Mon01, Cor. 8.5.3], whence the lemma follows from the
4-lemma. �

3.B. The bounded Euler class as a bounded lifting obstruction.
From now on we reserve the letter H to denote the group H := Homeo+(S1)
of orientation-preserving homeomorphisms of the circle S1 = R/Z and ab-
breviate by

H̃ := {f ∈ Homeo+(R) | ∀x ∈ R : f(x+ 1) = f(x) + 1}

its universal covering group (with respect to the compact-open topology).
We then have a central extension

ξ =

(
0 // Z

i
// H̃

p
// H // {e}

)
,
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where i(n)(x) := x+ n and p(f̃)([x]) = [f̃(x)].

A section σ : H → H̃ is provided by specifying σ(f)(0) for each f ∈ H;
the section is called bounded provided Eσ := {σ(f)(0) | f ∈ H} is bounded.
In this case the obstruction cocycle cσ : H2 → Z is bounded and thus defines
also a class in the bounded second cohomology H2

b (H;Z). Again it is easy
to see that this class is independent of the choice of bounded section. We
then obtain two classes eu := [cσ] ∈ H2(H;Z) and eub := [cσ] ∈ H2

b (H;Z).

Definition 3.4. The classes eu and eub are called the Euler class, respec-
tively bounded Euler class.

One special section σ is obtained by taking Eσ = [0, 1). Let us give an ex-
plicit formula for the cocycle cσ . For all g, h ∈ G we have σ(h)σ(gh)−1σ(g) =

i(cσ(g, h)). Since i(Z) < H̃ is central this can be written as σ(g)σ(h) =
σ(gh)i(cσ(g, h)). Evaluating at 0 we obtain

σ(g)σ(h)(0) = σ(gh)(0) + cσ(g, h).

Observe that σ(gh)(0) and σ(h)(0) are contained in [0, 1). The latter implies
that σ(g)σ(h)(0) ∈ [0, 2). Thus

(3.1) cσ(g, h) =

{
1 if σ(g)σ(h)(0) ∈ [1, 2),
0 if σ(g)σ(h)(0) ∈ [0, 1).

Another equivalent description can be given as follows: Observe that σ(g)(1) =
σ(g)(0)+1 ∈ [1, 2) and that σ(h)(0) < 1 implies σ(g)σ(h)(0) < σ(g)(1), and
similarly 0 ≤ σ(h)(0) implies σ(g)(0) ≤ σ(g)σ(h)(0). We may thus rewrite
(3.1) as

(3.2) cσ(g, h) =

{
1 if 1 ≤ σ(g)σ(h)(0) < σ(g)(1) < 2,
0 if 0 ≤ σ(g)(0) ≤ σ(g)σ(h)(0) < 1.

Both formulas will be used below.

3.C. The bounded Euler class and the translation number. The
Poincaré translation number T : H̃ → R is the homogeneous quasimorphism

on H̃ given by

T (g) = lim
n→∞

gnx− x

n
(x ∈ R),

which by a classical theorem of Poincaré is independent of the choice of

basepoint x ∈ R. Let TZ : H̃ → Z be any function at bounded distance
from T . Then the cocyle dTZ is bounded and thus defines a class [dTZ] ∈

H2
b (H̃;Z), which is independent of the concrete choice of function TZ. We

can now state the second characterization of the bounded Euler class. We
recall that p : H̃ → H denotes the canonical projection.

Proposition 3.5. The Euler class eub is the unique class in H2
b (H;Z) such

that p∗eub = −[dTZ] ∈ H2
b (H̃;Z).
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Proof. Let cσ denote the cocycle given by (3.1) and let ḡ, h̄ ∈ H̃. We ab-
breviate g := p(ḡ), h := p(h̄). Given a real number r ∈ R we denote by
r = ⌊r⌋+ {r} the unique decomposition of r with ⌊r⌋ ∈ Z and {r} ∈ [0, 1).
Since ḡ and σ(g) have the same projection, we see that

ḡ(x)− σ(g)(x) = ḡ(0)− σ(g)(0) = ⌊ḡ(0)⌋,

i.e. σ(g)(x) = ḡ(x) − ⌊ḡ(0)⌋ and similarly σ(h)(x) = h̄(x) − ⌊h̄(0)⌋. We
deduce that

σ(g)σ(h)(0) = σ(g)(h̄(0) − ⌊h̄(0)⌋) = σ(g)(h̄(0))− ⌊h̄(0)⌋

= ḡh̄(0)− ⌊ḡ(0)⌋ − ⌊h̄(0)⌋

= ⌊ḡh̄(0)⌋ − ⌊ḡ(0)⌋ − ⌊h̄(0)⌋+ {ḡh̄(0)}

Since the last term is contained in [0, 1), this expression is in [1, 2) respec-
tively [0, 1) if the sum of the first three terms is equal to 1 and 0 respectively.
We thus obtain

p∗cσ(ḡ, h̄) = ⌊ḡh̄(0)⌋ − ⌊ḡ(0)⌋ − ⌊h̄(0)⌋.

Now the function TZ : H̃ → Z given by ḡ 7→ ⌊ḡ(0)⌋ is at bounded distance
from the translation number T and the last identity can be written as p∗cσ =
−dTZ. We thus deduce that p∗eub = −[dTZ] and uniqueness follows from
Lemma 3.3. �

3.D. The bounded Euler class realized over the circle. In this sub-
section we are going to show that the Euler class and the bounded Euler
class are representable over the circle, i.e. that they are in the respective im-
ages of the maps H2(H,S1;Z) → H2(H;Z) and H2

b (H,S1;Z) → H2
b (H;Z).

Recall that throughout we think of S1 as the quotient space R/Z. In or-
der to describe cocycles in Cn(H,S1;Z) we need to understand H-orbits in
(S1)n+1. For n ≤ 2 the classification of orbits is as follows:

Orbits of H acting on (S1)n+1.

(n=0) The action of H on one factor S1 clearly has exactly one orbit.
(n=1) The action of H on two factors (S1)2 has two orbits: one degenerate

orbit {(x, x) | x ∈ S1} and one non degenerate orbit {(x, y) | x 6=
y ∈ S1}.

(n=2) The action ofH on three factors (S1)3 has six orbits. Choose distinct
points x, y, z ∈ S1 and suppose that (x, y, z) is a positively oriented
triple. Then the orbits are given as follows:
degenerate: H·(x, x, x), H·(x, x, y), H·(x, y, x), H·(y, x, x).
nondegenerate: H · (x, y, z), H · (y, x, z).

For general n there are still only finitely many H-orbits. This implies
Cn
b (H,S1;Z) = Cn(H,S1;Z) and thus the comparison map Hn

b (H,S1;Z) ∼=
Hn(H,S1;Z) is an isomorphism. In particular, if an element of Hn(H;Z) is
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representable over S1, then it is bounded. In degree 2 we can actually pa-
rametrize all possible cocycles and coboundaries using the above description
of orbits. For coboundaries the result is as follows.

Lemma 3.6. Let b : (S1)2 → R be an H-invariant 2-cochain determined
by its two values on (x, x) and (x, y) (where x 6= y), say b(x, x) = α and
b(x, y) = β. If z /∈ {x, y}, then

δb(x, x, x) = δb(x, x, y) = δb(y, x, x) = α,

δb(x, y, x) = 2β − α,

δb(x, y, z) = δb(y, x, z) = β.

One very familiar H-invariant 2-cocycle on S1 is the orientation cocycle
Or, which assigns the value +1, respectively −1, to positively oriented, resp.
negatively oriented non-degenerate triples, and 0 to all degenerate triples.
By the previous lemma it is not a coboundary, since the value on positively
and negatively oriented triples is not the same. We now describe general
2-cocycles:

Lemma 3.7. Let f : (S1)3 → R be an H-invariant cochain. Then f is a
cocycle if and only if

f(x, x, x) = f(y, x, x) = f(x, x, y),
f(y, x, z)− f(x, y, x) = f(x, x, z)− f(x, y, x)

for every triple (x, y, z) of distint points.

Proof. That the three linear conditions given in the lemma are necessary
follow from the cocycle relations

δf(y, x, x, x) = δf(x, x, x, y) = δf(x, y, x, z) = 0.

There cannot be any further relation since the space of 2-coboundaries is 2-
dimensional by Lemma 3.6 and the quotient of the space of 2-cocycles by the
space of 2-coboundaries is nontrivial as it contains 0 6= [Or] ∈ H2

b (H,S1;Z).
�

Definition 3.8. Let (x, y, z) be a positively oriented triple in S1. Then the
unique H-invariant function c : (S1)3 → Z given by

c(x, x, x) = c(y, x, x) = c(x, x, y) = 0, c(x, y, x) = 1

c(x, y, z) = 0, c(y, x, z) = 1

is called the Euler cocycle.

By Lemma 3.7 the Euler cocycle is indeed a cocycle in C2
b (H,S1;Z). Now

a small computation shows (see also [Ioz02, Lemma 2.1]):

Lemma 3.9. If c ∈ C2
b (H,S1;Z) is the Euler cocycle and cσ ∈ C2

b (H)

denotes the obstruction cocycle associated with the special section σ : H → H̃
with Eσ = [0, 1), then

cσ(g, h) = c([0], g · [0], gh · [0]).
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Moreover, if Or defines the orientation cocycle and b is the 2-cochain defined
by b(x, x) = 0 and b(x, y) = 1 then Or = 2c+ δb.

Proof. It follows from the explicit definition of c that

c([0], g · [0], gh · [0]) =

{
1, 1 ≤ σ(g)σ(h)(0) < σ(g)(1) < 2
0, 0 ≤ σ(g)(0) ≤ σ(g)σ(h)(0) < 1

In view of (3.2) this implies cσ(g, h) = c([0], g · [0], gh · [0]). The relation
Or = 2c+ δb is straightforward. �

From this computation we draw the following conclusions.

Corollary 3.10. The bounded Euler class eub is representable over the cir-
cle. In fact it is represented by the Euler cocycle c : (S1)3 → Z. Similarly,
the class 2 · eub is represented over the circle by the orientation cocycle Or.

Note that, in particular, for every x ∈ S1 the homogeneous cocycle cx :
H3 → Z given by

(g0, g1, g2) 7→ cx(g0, g1, g2) = c(g0x, g1x, g2x)

represents the bounded Euler class.

4. Ghys’ theorem

4.A. Circle actions with vanishing bounded Euler class. Before we
turn to the proof of Ghys’ theorem in the general case we provide a charac-
terization of circle actions with vanishing bounded Euler class. This char-
acterization can be seen as a special case of Ghys’ theorem, but it is also
of independent interest and has a particularly simple proof. Parts of this
special case will also be used in the proof of the general theorem.

Recall that the Euler class eu was defined as an obstruction class. It thus
follows from Lemma 3.1 that if ρ : Γ → H is a circle action, then

ρ∗eu = 0 ⇔ the action lifts to an action on the real line.

The following result shows that the vanishing of the bounded Euler class has
much more drastical consequences:

Proposition 4.1. Let ρ : Γ → H be a circle action with ρ∗eub = 0. Then
the action lifts to an action of the real line which moreover has a fixed point.

Proof. By assumption there exists a bounded function u : Γ → Z with
ρ∗cσ = du. By Proposition 3.2 we have a homomorphism

ρ̃ : Γ → H̃, ρ̃(g) = σ(ρ(g)) · i(−u(g)).

In particular,

ρ̃(g)(0) = σ(ρ(g))(0) − u(g).
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Now, since σ is a bounded section and u is bounded, also ρ̃(g)(0) is bounded.
It follows that

F+(ρ̃) := sup
g∈G

ρ̃(g)(0);

is well-defined, and it is clearly a fixed point for ρ̃(G). �

Using the second characterization of the bounded Euler class via the trans-
lation number we obtain a converse to this result, leading to the following
characterization:

Corollary 4.2 (Circle actions with vanishing bounded Euler class). Let
ρ : Γ → Homeo+(S1) be a circle action. Then the following are equivalent:

(i) ρ∗eub = 0.
(ii) The circle action ρ lifts to an action on the real line which moreover

has a fixed point.
(iii) ρ(Γ) fixes a point in S1.
(iv) ρ is semi-conjugate to the trivial circle action.

Proof. We have already seen that (i)⇒(ii). Conversely, if (ii) holds for a lift

ρ̃ : Γ → H̃ with fixed point x0, then

ρ∗eub = −ρ̃∗[dTZ] = −[dρ̃∗TZ ].

However we have for every g ∈ Γ,

ρ̃∗T (g) = lim
n→∞

ρ̃(g)n(x0)− x0
n

= 0,

whence ρ̃∗TZ is bounded and thus (i) holds. The implication (ii)⇒(iii) is
obvious, since the projection of a fixed point of a lift is a fixed point for the
original action. Conversely, if ρ(Γ) fixes [x0] ∈ S1, then it acts on S1 \{[x0]}
and this action can be lifted to an action on (x0, x0 + 1) and periodically
to an action on R fixing all points in x0 + Z. This shows (ii)⇔(iii) and the
equivalence (iii) ⇔ (iv) follows from Proposition 2.6. �

Although Corollary 4.2 is only a very simple special case of Ghys’ theorem,
it is sufficient for many applications. E.g. most of the applications of Ghys’
theorem in higher Teichmüller theory depend only on Corollary 4.2 (see
e.g. [BIW10, BSBH+13]). We therefore find it important to point out the
above simple proof. Note that a slightly stronger version of Corollary 4.2 is
established in the appendix.

4.B. A refined statement of Ghys’ theorem. We will now prove Ghys’
Theorem 1.2 (with our corrected definition of semi-conjugation), thus es-
tablishing that the bounded Euler class is a complete invariant of semi-
conjugacy. We will actually prove the following more precise version:

Theorem 4.3. Let ρ1, ρ2 be circle actions of Γ.

(i) If ρ∗1eub = ρ∗2eub, then ρ1 and ρ2 are semi-conjugate.
(ii) If ρ1 and ρ2 are semi-conjugate and either of them has a fixed point,

then both have a fixed point and ρ∗1eub = ρ∗2eub = 0.
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(iii) If ρ1 is fixed point free and left-semi-conjugate to ρ2, then ρ∗1eub =
ρ∗2eub 6= 0.

Note that in the situation of (iii), ρ1 and ρ2 are actually semi-conjugate
by (i). This proves the following result alluded to in the introduction.

Corollary 4.4. If a fixed point free circle action ρ1 is left-semi-conjugate
to a circle action ρ2, then they are semi-conjugate. In particular, left-semi-
conjugacy defines an equivalence relation on the set of all fixed point free
circle actions.

Part (ii) of Theorem 4.3 follows directly from Corollary 4.2: If, say, ρ1
has a fixed point, then it is semi-conjugate to the trivial circle action by the
implication (iii) ⇒ (iv), whence also ρ2 is semi-conjugate to the trivial circle
action and thus has a fixed point by the implication (iv) ⇒ (iii). Then, by
the implication (iii) ⇒ (i) we have ρ∗1eub = ρ∗2eub = 0. Thus it remains to
show only (i) and (iii), which we will do in the next two subsections.

4.C. Same bounded Euler class implies semi-conjugacy. In this sub-
section we are going to establish Part (i) of Theorem 4.3. Our proof is a
slight variation of Ghys’ original proof, which emphasizes the similarity to
the proof of Proposition 4.1.

To fix notation, let ρ1, ρ2 be circle actions with the same bounded Euler
class ρ∗1eub = ρ∗2eub. We claim that ρ1 and ρ2 are semi-conjugate. By
symmetry it suffices to show that ρ1 is left-semi-conjugate to ρ2.

Let Γ̃ be the central extension of Γ which corresponds to ρ∗1eu = ρ∗2eu.
Then we can choose lifts ρ̃1, ρ̃2 making the diagrams

0 // Z
i

// H̃
p

// H // 1

0 // Z

ρ̃i

OO

i
// Γ̃

ρ̃i

OO

// Γ

ρi

OO

// 1

commute. Since ρ∗1eub = ρ∗2eub and the diagrams commute we have

[dρ̃1
∗TZ] = ρ̃1

∗[dTZ] = −ρ̃1
∗(p∗eub) = −ρ̃2

∗(p∗eub) = ρ̃2
∗[dTZ] = [dρ̃2

∗TZ].

This implies that there exist a homomorphism u : Γ̃ → Z and a bounded

function b : Γ̃ → Z such that ρ̃1
∗TZ − ρ̃2

∗TZ = u + b. It follows that
ρ̃1

∗T − ρ̃2
∗T − u is a bounded homogeneous function, hence 0. Thus,

ρ̃1
∗T − ρ̃2

∗T = u.

Replacing the lift ρ̃2 by ρ̃2 + i(u) we can ensure that u = 0. Assume that ρ̃2
is chosen in that way. Then for every g ∈ H̃,

|T (ρ̃1(g)
−1ρ̃2(g))| ≤ | − T (ρ̃1(g)) + T (ρ̃2(g))| +D(T ) = D(T ),

whereD(T ) is the defect of the quasimorphism T . In particular, ρ̃1(g)
−1ρ̃2(g)

has uniformly bounded translation number and thus

ϕ̃(x) := sup
g∈Γ̃

(ρ̃1(g)
−1ρ̃2(g)(x))
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is well-defined. By definition we have for every g0 ∈ Γ̃,

ϕ̃(ρ̃2(g0)(x)) = sup
g∈Γ̃

ρ̃1(g)
−1(ρ̃2(g)(ρ̃2(g0)(x)))

= sup
g∈Γ̃

ρ̃1(g g
−1
0 )−1(ρ̃2(g)(x))

= ρ̃1(g0)

(
sup
g∈Γ̃

ρ̃1(g)
−1(ρ̃2(g)(x))

)

= ρ̃1(g0)(ϕ̃(x)).

Moreover, being the supremum of increasing maps which commute with
integral translations, the map ϕ̃ : R → R is non-decreasing and commutes
with integral translations, so it is a good lift of a non-decreasing degree one
map ϕ : S1 → S1. It follows that ϕ realizes the desired left-semi-conjugation
from ρ1 to ρ2. This finishes the proof of Part (i) of Theorem 4.3.

4.D. Semi-conjugacy implies same bounded Euler class. In this sub-
section we establish the remaining Part (iii) of Theorem 4.3 thereby finishing
the proof of the theorem. Here we will finally make use of the third (geo-
metric) characterization of the bounded Euler class.

Instead of Theorem 4.3.(iii) we will actually prove a slightly stronger state-
ment. To state this result we introduce the following notation. Throughout
this section we will fix two circle actions ρ1, ρ2 of Γ and a semi-conjugacy ϕ
from ρ1 to ρ2. We will not assume a priori that ρ1 is fixed point free. For
each γ ∈ Γ we fix lifts ρ̃1(γ) and ρ̃2(γ) of ρ1(γ) respectively ρ2(γ) with the
additional property that

(4.1) ρ̃j(γ)
−1 = ρ̃j(γ

−1) (j = 1, 2).

Suppose now that ϕ̃ is some good lift of ϕ. Since ρ̃1(γ)ϕ̃ and ϕ̃ρ̃2(γ) are
lifts of the same map and are invariant under integral translations, there
exists a map nγ : R → Z (dependent on ϕ̃), invariant under integral trans-
lations, such that for all x ∈ R,

(4.2) ρ̃1(γ)ϕ̃(x) = ϕ̃(ρ̃2(γ)(x)) + nγ(x).

Note that our symmetry assumption (4.1) implies that nγ−1 = −nγ◦ρ̃2(γ
−1).

Proposition 4.5. Let ρ1, ρ2 be circle-actions of Γ and let ϕ be a semi-
conjugacy from ρ1 to ρ2. Let a good lift ϕ̃ of ϕ be fixed and let nγ : R → Z

be defined by (4.2). Consider the following statements:

(1) ρ1(Γ) does not have a global fixed point in S1.
(2) ϕ is not the constant map.
(3) There exists a good lift ϕ̃ of ϕ such that for each γ ∈ Γ the map nγ given

by (4.2) is constant.
(4) There exists a good lift ϕ̃ of ϕ such that ρ̃1(γ)ϕ̃(x) = ϕ̃(ρ̃2(γ)(x)) for all

γ ∈ Γ and x ∈ R.



A NOTE ON SEMI-CONJUGACY FOR CIRCLE ACTIONS 17

(5) There exists a non-empty ρ2(Γ)-invariant subset K2 ⊂ S1 such that ϕ|K2

is injective.
(6) ρ∗1eub = ρ∗2eub.

Then the implications (1)⇒(2)⇒(3)⇒(4)⇒(5)⇒(6) hold.

Note that the implication (1)⇒(6) gives Part (iii) of Theorem 4.3.

Proof of Proposition 4.5. The implication (1)⇒(2) is obvious, so we turn
directly to the proofs of the implications (2)⇒(3)⇒(4)⇒(5)⇒(6).

Assume that (2) holds and fix γ ∈ Γ. Let ϕ̃ be a good lift of ϕ. Since ϕ is
non-constant we find distinct elements a0, b0 ∈ R with b0 − a0 ∈ (0, 1) and
ϕ̃(b0)− ϕ̃(a0) ∈ (0, 1). Since ρ̃1(γ) is strictly increasing and commutes with
integral translations, this implies at once that

(4.3) 0 < ρ̃1(γ)(ϕ̃(b0))− ρ̃1(γ)(ϕ̃(a0)) < 1.

On the other hand, since ϕ̃ ◦ ρ̃2(γ) is non-decreasing and commutes with
integral translations, we also have 0 ≤ ϕ̃(ρ̃2(γ)(b0)) − ϕ̃(ρ̃2(γ)(a0)) ≤ 1.
However, these inequalities must both be strict, because otherwise we would
have

ρ1(γ)(ϕ([b0])) = ϕ(ρ2(γ)([b0])) = ϕ(ρ2(γ)([a0])) = ρ1(γ)(ϕ([a0])),

which contradicts (4.3). We have thus shown that

0 < ρ̃1(γ)(ϕ̃(b0))−ρ̃1(γ)(ϕ̃(a0)) < 1 , 0 < ϕ̃(ρ̃2(γ)(b0))−ϕ̃(ρ̃2(γ)(a0)) < 1 .

Subtracting the second inequality from the first we deduce that nγ(b) −
nγ(a) ∈ [0, 1) − [0, 1) = (−1, 1). Since both are integers we deduce that
nγ(b) = nγ(a), which implies that nγ is constant on E := (a0+Z)∪ (b0+Z).

Now let x ∈ R \E. Then the interval (x− 1, x+1) contains one translate
of a0 and one translate of b0, and these take different values under ϕ̃. We
thus find e ∈ E with |x − e| < 1 and ϕ̃(x) 6= ϕ̃(e), whence either {x −
e, ϕ̃(x) − ϕ̃(e)} ⊂ [0, 1) or {e − x, ϕ̃(e) − ϕ̃(x)} ⊂ [0, 1). In both cases we
have nγ(x) − nγ(e) ∈ (−1, 1), so nγ(x) = nγ(e). This finishes the proof of
the implication (2)⇒(3).

Now assume that (3) holds, i.e. for every γ ∈ Γ we have nγ(x) = nγ for
some constant nγ . We can then replace the lift ρ̃1(γ) by the lift ρ̃1(γ)− nγ

and thereby achieve that for all x ∈ R,

(4.4) ρ̃1(γ)ϕ̃(x) = ϕ̃(ρ̃2(γ)(x)),

which is (4). We emphasise that (4.1) still holds after this modification.
Indeed, by the remark following (4.2) we have nγ = −n−1

γ and thus

(ρ̃1(γ)− nγ)
−1 = ρ̃1(γ)

−1 + nγ = ρ̃1(γ
−1)− nγ−1 .

We now deduce (5) from (4), where according to the previous remark we
may also assume (4.1). Given x ∈ R we define a subset Sx by

Sx = {y ∈ R | ϕ̃(y) = ϕ̃(x)}.
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Since ϕ̃ is non-decreasing and commutes with integral translations we have
Sx ⊂ (x − 1, x]. In particular, inf Sx is a well-defined real number. This

shows that the subset K̃2 ⊂ R given by

K̃2 := {x ∈ R | x = inf Sx}

is non-empty.

We claim that ϕ̃|K2
is injective. Indeed, assume x1, x2 ∈ K̃2 and

ϕ̃(x1) = ϕ̃(x2).

Assume without loss of generality that x1 ≤ x2. Then x1 ∈ Sx2
and hence

x2 = inf Sx2
implies x2 ≤ x1 whence x1 = x2, finishing the proof of injectiv-

ity.

Now we claim that K̃2 is invariant under ρ̃2(γ) for every γ ∈ Γ. Thus

let x ∈ K̃2 and y ∈ R with y < ρ̃2(γ)x. Then (4.1) yields ρ̃2(γ
−1)y =

ρ̃2(γ)
−1y < x, and since x = inf Sx we have

ϕ̃(ρ̃2(γ
−1)y) < ϕ̃(x).

Combining this with (4.4) we obtain

ϕ̃(x) > ϕ̃(ρ̃2(γ
−1)(y)) = ρ̃1(γ)

−1ϕ̃(y).

Multiplying both sides by ρ̃1(γ) and using (4.4) again we find

ϕ̃(y) < ϕ̃(ρ̃2(γ)(x)).

This shows that ρ̃2(γ)x ∈ K̃2. It then follows that the image K2 of K̃2 in S1

is non-empty and ρ2(Γ)-invariant, and that ϕ|K2
is injective. This finishes

the proof of the implication (4)⇒(5).
Finally, we establish the implication (5)⇒(6): Let K2 be as in (4) and let

x ∈ K2. By Lemma 3.7 the cohomology class ρ∗2eub is represented by the
cocycle

ρ∗2cx(g0, g1, g2) = c(ρ2(g0)x, ρ2(g1)x, ρ2(g2)x).

Note that for j = 0, 1, 2 the points ρj(g0)x are all contained in K2, since K2

is ρ2(Γ)-invariant. It thus follows from injectivity of ϕ on K2 that they are
pairwise distinct if and only if their images under ϕ are pairwise distinct.
Since ϕ also preserves their weak orientation, we deduce that the triples
(ρ2(g0)x, ρ2(g1)x, ρ3(g2)x) and (ϕ̃(ρ2(g0)x), ϕ̃(ρ2(g1)x), ϕ̃(ρ2(g2)x)) are in the
same H-orbit. Indeed, this follows from the classification of H-orbits on
(S1)3 in Subsection 3.D. Since c is H-invariant we obtain

ρ∗2cx(g0, g1, g2) = c(ϕ(ρ2(g0)x), ϕ(ρ2(g1)x), ϕ(ρ2(g2)x))

= c(ρ1(g0)ϕ(x), ρ1(g1)ϕ(x), ρ1(g2)ϕ(x))

= ρ∗1cϕ(x)(g0, g1, g2).

Since the cocycle ρ∗1cϕ(x) represents ρ∗1eub, we deduce that ρ∗1eub = ρ∗2eub.
This finishes the proof. �

At this point we have finished the proof of Theorem 4.3 and thereby of
Theorem 1.2.



A NOTE ON SEMI-CONJUGACY FOR CIRCLE ACTIONS 19

Remark 4.6. In [Ghy87, Proof of Proposition 5.2] Ghys claims that the
map nγ is constant independently of whether ϕ is constant or not. (Note
that our nγ is denoted u(γ) in [Ghy87, Equation (1), Proof of Proposition
5.2]). The following example shows that this claim is wrong. Let ρ1 be the
trivial circle action of Z and ρ2 be the circle action sending 1 to the rotation
by 1/2. Then ρ1 is left semi-conjugate to ρ2 by Proposition 2.6 (ii). The
left semi-conjugation can be given by the constant map ϕ(x) ≡ 0 which
lifts to ϕ̃ : x 7→ ⌊x⌋. A lift of ρ1(1) is the identity and a lift of ρ2(1) is
the translation T1/2 by 1/2. Then ρ1(1)ϕ = ϕρ2(1) on the circle but the
translation x 7→ ϕ̃(x)− ϕ̃(T1/2)(x) = ⌊x⌋ − ⌊x+ 1/2⌋ depends on x since it
is 0 for x ∈ [0, 1/2) +Z and −1 for x ∈ [1/2, 1) +Z. More generally, neither
of the statements (2)–(5) is correct without the assumption that ρ1 is fixed
point free. For example, if ρ1 has a fixed point then we can alway choose
ϕ to be constant. In that case, every set K2 ⊂ S1 on which ϕ is injective
constructed is a singleton. If ρ2(Γ) is fixed point free, then such a set cannot
be invariant. The reader may check that in this case our set K2 constructed
in the proof is indeed a singleton, and that the proof of invariance breaks
down in the absence of (3), e.g. in the situation of the example above.

4.E. The minimal case: Semi-conjugacy equals conjugacy. Recall
that a circle action ρ : Γ → Homeo+(S1) is minimal if every ρ(Γ)-orbit
is dense in S1. The following proposition shows that for minimal circle
actions, the notions of conjugacy and semi-conjugacy coincide. This implies
in particular that Theorem 1.1 follows from Theorem 1.2.

Proposition 4.7 (Ghys). Let ρ1, ρ2 : Γ → Homeo+(S1) be minimal circle
actions. Then the following are equivalent:

(i) ρ1 is left-semi-conjugate to ρ2.
(ii) ρ1 and ρ2 are semi-conjugate.
(iii) ρ1 and ρ2 are conjugate.

Proof. Since minimal actions are fixed point free, the equivalence (i)⇔(ii)
follows from Corollary 4.4. Moreover, the implication (iii)⇒(i) holds triv-
ially. Concerning the implication (i)⇒(iii) assume that ρ1 is left-semi-
conjugate to ρ2 via ϕ. Then the image of ϕ is ρ1(Γ)-invariant, whence
dense in S1 by minimality. This in turn implies that the image of ϕ̃ is dense
in R. So the map ϕ̃, being non-decreasing and commuting with integral
translations, is continuous and surjective. Therefore, the same is true for ϕ,
and we are left to show that ϕ is also injective.

Suppose by contradiction that there exist distinct points x, y ∈ S1 such
that ϕ(x) = ϕ(y), and choose lifts x̃, ỹ of x, y in R such that x̃ < ỹ < x̃+ 1.
Since ϕ̃ is non-decreasing and commutes with integral translations, we have
either ϕ̃(ỹ) = ϕ̃(x̃) or ϕ̃(ỹ) = ϕ̃(x̃ + 1). In any case, ϕ̃ is constant on a
non-trivial interval, so there exists an open subset U ⊆ S1 such that ϕ|U is
constant. Let now x be an arbitrary point of S1. By minimality of ρ2 there
exists g ∈ Γ such that ρ2(g)

−1(x) ∈ U , and consequently V := ρ2(g)(U) is
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an open neighborhood of x. Now

ϕ|V = (ϕρ2(g))|U ◦ ρ2(g)
−1|V = (ρ1(g)ϕ)|U ◦ ρ2(g)

−1|V ,

whence ϕ is locally constant. It follows that ϕ is constant, and this contra-
dicts the fact that ϕ is surjective. �

We have now established both of the theorems mentioned in the intro-
duction.

5. Variations and examples

5.A. Classical examples. Let us spell out a few special immediate conse-
quences of Ghys’ theorem. We start with the case where Γ = Z. In this case
a circle action ρ : Γ → Homeo+(S1) is given by a single invertible transfor-

mation ρ(1) ∈ Homeo+(S1). The action lifts to ρ̃ : Z → H̃ and following
Poincaré we define its rotation number as

R(ρ) := [ρ̃∗T (1)] ∈ R/Z.

The fact that any Z action lifts is illustrated by ρ∗(eu) = 0 ∈ H2(Z;Z).
Thus, the unbounded Euler class cannot give any information for Z-actions.
The case of the bounded Euler class is much more interesting:

Corollary 5.1 (Poincaré). For circle actions ρ1, ρ2 : Z → Homeo+(S1) the
following are equivalent:

(i) ρ1 and ρ2 are semi-conjugate.
(ii) ρ∗1eub = ρ∗2eub.
(iii) R(ρ1) = R(ρ2).

In particular, Poincaré’s rotation number is a complete semi-conjugacy in-
variant for circle actions of Z (and a complete conjugacy invariant for min-
imal Z-actions).

Proof. The equivalence (i)⇔(ii) is a special case of Theorem 1.2. For j = 1, 2
we have

ρ∗jeub = ρ̃j
∗p∗eub = −ρ̃j

∗[dTZ] = −[dρ̃j
∗TZ],

whence (ii) is equivalent to [d(ρ̃1
∗TZ− ρ̃2

∗TZ)] = 0. This in turn means that
there exists a homomorphism f ∈ Hom(Z,Z) such that the quasimorphism
ρ̃1

∗TZ − ρ̃2
∗TZ − f is bounded. Now using the fact that a homogeneous

quasimorphism is bounded if and only if its homogeneization is trivial we
see that the latter condition is equivalent to

ρ̃1
∗T − ρ̃2

∗T = f ∈ Hom(Z,Z).

Since two homogeneous functions on Z agree iff they agree on 1 we see that
this condition is equivalent to

ρ̃1
∗T (1)− ρ̃2

∗T (1) ∈ Z,

i.e. R(ρ1) = R(ρ2). �
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Given α ∈ R/Z we denote by Rα ∈ Homeo+(S1) the rotation by α. We
denote by Rot(S1) ∼= R/Z the subgroup of Homeo+(S1) given by rotations.
Note that the Z-action ρ with ρ(1) = Rα has rotation number α. In par-
ticular, every Z-action is semi-conjugate to a rotation action. This is more
generally true in the following context (see [HT75, Cal07]):

Corollary 5.2 (Hirsch-Thurston). Every circle action ρ : Γ → Homeo+(S1)
of an amenable group is semi-conjugate to an action by rotations, i.e. a
homomorphism ρ′ : Γ → Rot(S1) < Homeo+(S1).

Proof. By a classical result of Trauber (see [Mon01, Cor. 7.5.11]) the bounded
cohomology of Γ with real coefficient vanishes. Thus the connecting homo-
morphism

δ : H1(Γ;R/Z) → H2
b (Γ;Z)

of the Gersten exact sequence (see [Mon01, Prop. 8.2.12]) is an isomorphism.
Let α := ρ∗eub ∈ H2

b (Γ;Z) and β := δ−1(α). Then under the isomorphism
H1(Γ;R/Z) ∼= Hom(Γ,R/Z) = Hom(Γ,Rot(S1)) the class β corresponds to
a homomorphism ρ′ : Γ → Rot(S1). Now a standard diagram chase shows
that (ρ′)∗eub = δ(β) = ρ∗eub, whence ρ and ρ′ are semi-conjugate. �

5.B. Alternative characterizations of semi-conjugacy. In this subsec-
tion we present two alternative characterisations of semi-conjugacy, which
are respectively due to Maxime Wolff [Wol] and the first author [Buc08].
Both of these characterisations have the advantage that they only require
one semi-conjugacy with certain additional properties rather than two semi-
conjugacies as in Definition 2.5; on the downside, it is not obvious a priori
that either of these definitions actually yields an equivalence relation.

Corollary 5.3. For circle actions ρ1 and ρ2 the following are equivalent:

(i) There exists a left-semi-conjugacy from ρ1 to ρ2 which satisfies Prop-
erty (4) of Proposition 4.5.

(ii) There exists a left-semi-conjugacy from ρ1 to ρ2 which satisfies Prop-
erty (5) of Proposition 4.5.

(iii) ρ1 and ρ2 are semi-conjugate.

Characterization (i) was pointed out to us by Maxime Wolff, and charac-
terization (ii) is taken from [Buc08].

Proof. The implications (i)⇒(ii)⇒(iii) of the corollary follow from the impli-
cations (4)⇒(5)⇒(6) in Proposition 4.5 and Part (i) of Theorem 4.3. Con-
versely assume that (iii) holds and that ρ1 is left-semi-conjugate to ρ2 via ϕ.
If ϕ is non-constant then (i) and (ii) hold by the implications (2)⇒(4)⇒(5)
of Proposition 4.5. Now assume, on the other hand, that ϕ is constant.
Then the image of ϕ is a fixed point [x1] for ρ1. According to Part (ii) of
Theorem 4.3 there is also a fixed point [x2] of ρ2. Let x1, x2 ∈ R be lifts
of x1 and x2 respectively. Then there exists a unique good lift ϕ̃ of ϕ such
that ϕ̃([x2, x2 + 1)) = {x1}, and this lift clearly satisfies Property (4) of
Proposition 4.5. This shows that (iii) implies (i) and finishes the proof. �
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5.C. Real bounded Euler class. In many applications, computations
in integral bounded cohomology are difficult, and thus one relies on real
bounded cohomology. The image of eub in H2

b (H;R) under the change of
coefficient map H2

b (H;Z) → H2
b (H;R) is called the real bounded Euler class

and denoted euRb . Corollary 4.1 has the following real counterpart:

Corollary 5.4. Let ρ : Γ → Homeo+(S1) be a circle action with ρ∗euRb = 0.
Then ρ([Γ,Γ]) fixes a point on S1.

Proof. Since ρ∗euRb = 0 we can argue as in the proof of Corollary 5.2 and
prove that ρ is semi-conjugate to an action ρ′ : Γ → Rot(S1) < Homeo+(S1).
In particular, ρ|[Γ,Γ] is semi-conjugate to ρ′|[Γ,Γ]. Now since Rot(S1) is
abelian, ρ′ vanishes on [Γ,Γ]. It follows that (ρ|[Γ,Γ])

∗eub = (ρ′|[Γ,Γ])
∗eub = 0,

whence ρ([Γ,Γ]) fixes a point on S1 by Corollary 4.1. �

5.D. Regularity of semi-conjugacies. The following example shows that
semi-conjugacies may not be chosen to be continuous in general.

Example 5.5. Let ρ1 be the action of Z given by sending the generator
1 to the rotation by π. Let ρ2 be an action of Z with rotation number 1

2
for which ρ(2) has precisely two fixed points. For example, the generator
could be sent to fixed point free lift of a parabolic isometry to the double
cover of S1 = ∂H2. Both actions have rotation number 1/2, so that they
are semi-conjugate, say, ρ1 is right-semi-conjugate to ρ2 via ϕ : S1 → S1.
By definition, ϕ sends orbits for the ρ1 action to orbits for the ρ2 action.
Now all ρ1 orbits have precisely two points, while only one ρ2 orbit has two
points (and the other orbits have infinite order). It follows that the image of
ϕ is equal to the unique ρ2 orbit consisting of two points, hence the map ϕ
cannot be continuous. Even worse, the semi-conjugacy ϕ′ : S1 → S1 in the
opposite direction, i.e. from ρ1 to ρ2 cannot be chosen continuous either.
Indeed, let {x1, x2} be the unique ρ2-orbit containing two points. Then ϕ′

has to send x1 and x2 to a pair of antipodal points y, y. Now restrict to the
index two subgroup 2Z < Z and look at the restricted orbits: The restricted
ρ1-action is trivial, so orbits for the restricted ρ2 action have to be sent to
points. But x1 and x2 are accumulation points of the same restricted ρ2-
orbit, which is all mapped to a point z. Then z cannot be both equal to y
and y, so that ϕ′ is not continuous.

Things get better if we replace continuity with the following less demand-
ing notion:

Definition 5.6. Let ϕ : S1 → S1 be an non-decreasing degree one map.
Then ϕ is called upper semicontinuous if it admits an upper semicontinuous
good lift ϕ̃ : R → R.

Indeed we can show:

Lemma 5.7. If a circle action ρ1 : Γ → H is left-semi-conjugate to a
circle action ρ2 : Γ → H, then it is left-semi-conjugate to ρ2 via an upper
semicontinuous map ϕ′ : S1 → S1.
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Proof. Let ϕ be an arbitrary left-semi-conjugacy from ρ1 to ρ2. If ϕ is
constant then there is nothing to show, hence we may assume that ϕ is non-
constant. We then define ϕ̃, ρ̃1, ρ̃2 and nγ as in the beginning of Subsection
4.D and also define a new function ϕ̃′ : R → R by

ϕ̃′(x);= sup{ϕ̃(y) | y < x}.

Since ϕ̃′ is non-decreasing and commutes with integral translations, it is the
good lift of a non-decreasing degree one map ϕ′ : S1 → S1. We claim that
ϕ′ is a left-semi-conjugacy from ρ1 to ρ2.

In order to prove our claim we fix γ ∈ Γ and abbreviate gj := ρ̃j(γ) ∈ H̃
for j = 1, 2. By (4.2) we have for every y ∈ R,

(5.1) g1ϕ̃(y) = ϕ̃(g2(y)) + nγ(y).

By the implication (2)⇒(3) in Proposition 4.5, there exists an integer m ∈ N

such that nγ ≡ m. Now for every x ∈ R we have

g1ϕ̃
′(x) = g1(sup{ϕ̃(y) | y < x}) = sup{g1ϕ̃(y) | y < x}

= sup{ϕ̃(g2(y)) +m | y < x} = sup{ϕ̃(y) | y < g2(x)}+m

= ϕ̃′(g2(x)) +m,

which implies that ρ1(γ)ϕ
′ = ϕ′ρ2(γ), and concludes the proof. �

Thus in the definition of semi-conjugacy we could have added the require-
ment that the semi-conjugacies in question are upper semi-continuous.
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Appendix A. The action of the double cover of H on the circle

Let H be the unique double cover of H := Homeo+(S1) and p : H → H
denote the canonical projection. The double cover H acts on the circle by
preserving antipodal points. The aim of this appendix is twofold: On the one
hand, we describe all cocycles obtained as H-invariant functions (S1)3 → Z

and relate them to the cohomology class p∗(eub) ∈ H2
b (H,Z). On the other

hand, we establish a fixed point theorem (Theorem A.5) which is stronger
then its analogue for H (Corollary 4.2) since in this case a fixed point is
not only equivalent to the vanishing of the pullback of the Euler class, but
further to the vanishing of the pullback of a particular cocycle.

Non-degenerate orbits of H acting on (S1)n+1. For every point x ∈ S1,
we denote by x its antipodal point.

(n=0) The action of H on one factor S1 clearly has exactly one orbit.
(n=1) The action of H on two factors (S1)2 has two non degenerate orbits:

If x, y ∈ S1 are such that y 6= x, x, then the two non degenerate
orbits are

H · (x, y) and H · (y, x).

(There are further two degenerate orbits: H · (x, x) and H · (x, x).)
(n=2) The action of H on three factors (S1)3 has eight non-degenerate

orbits. Choose distinct points x0, x1, x2 ∈ S1 and suppose that
(x0, x1, x2, x0) is a positively oriented triple. Then the orbits are
given as follows, where the first six orbits are parametrized by the
symmetric group Sym(3):

H · (xσ(0), xσ(1), xσ(2)), for every σ ∈ Sym(3),

H · (x0, x2, x1) and H · (x0, x1, x2).

Cocycles on S1. Given an H-invariant n-cochain f defined only on non-
degenerate orbits and with values in Z, there is a simple trick (see [BM12])
to obtain a cochain defined on all orbits and taking the same values as
f . Indeed, define f(x0, . . . , xn) as follows: Intuitively, we want to move
xn, . . . , x0 (in this order) a very small amount in the positive direction to
make the (n+1)-tuple non-degenerate. More precisely, if xn is equal to xi or
xi for i 6= n, replace xn by a point x+n such that (xn, x

+
n , xn) is positively ori-

ented and no xi or xi, for i 6= n, lies in the positive direction between xn and
x+n . Continue inductively for all xi’s and set f(x0, . . . , xn) := f(x+0 , . . . , x

+
n ).

We keep now to the described procedure of extending a cochain defined
only on non-degenerate orbits to all orbits. In particular, the cocycle and
coboundary conditions need only to be verified on non-degenerate orbits. A
straightforward computation gives:

Lemma A.1. Let b : (S1)2 → Z be a 1-cochain given by its two values
b(x, y) = w+ and b(y, x) = w−, where x, y ∈ S1 are chosen so that (x, y, x)
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is a positively oriented triple. Let z ∈ S1 such that (x, y, z, x) is a positively
oriented 4-tuple. Then

δb(x, y, z) = w+,

δb(x, z, y) = w−,

δb(x, z, y) = 2w+ − w−,

δb(x, y, z) = 2w− − w+.

Given an H-invariant 2-cochain f : (S1)3 → R and σ ∈ S3 we denote by
aσ, b

+ and b− the values it takes on the corresponding non-degenerate orbits
as listed above. Observe that again, the classical orientation cocycle Or
attributing the value +1 on positively oriented triples, and −1 on negatively
oriented triples, thus with

b+ = 1, b− = −1, and aσ = sign(σ)

is indeed a cocycle. (However with our convention of perturbing degenerate
configuration of points, it will not agree with the orientation cocycle defined
previously on degenerate orbits.) According to Lemma A.1, the orientation
cocycle gives rise to a nontrivial cohomology class in H2(H,S1;Z).

Lemma A.2. Let as above aσ, b+ and b− denote the values on the non-
degenerate H-orbits of an H-invariant cochain f : (S1)3 → R. Then f is a
cocycle if and only if

aId = a(0 1 2) = a(0 2 1),

a(0 1) = a(0 2) = a(1 2),

aId + a(0 1) = b+ + b−.

Proof. Elementary case by case consideration of configurations of four points
on the circle shows that the five linearly independent conditions are neces-
sary. Since by Lemma A.1, the space of coboundaries is 2-dimensional, it
follows that H2(H,S1;Z) is at most 8−5−2 = 1-dimensional. Since further
H2(H,S1;Z) is nontrivial, we have found all relations. �

Let us simplify the notation and write a+ = aId and a− = a(0 1). Thus

an H-invariant cocycle is given by the four values a+, a−, b+, b− subject to
the relation a+ + a− = b+ + b−. Various cocycles appear in the literature,
among them also the cocycle p∗2(c), where c is the H-invariant cocycle on
S1 defined in Section 3.D and p2 : S1 → S1 is the double cover given by
identifying antipodal points. We summarize their relations in the following
table:
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a+ a− b+ b− H2(H,S1;Z)

δb w+ w− 2w+ − w− 2w− − w+ 0
Or 1 −1 1 −1 −2[ESull]

p∗2(Or) 1 −1 −1 1 −4 [ESull]
p∗2(c) 1 0 0 1 −2 [ESull]
ESull 0 0 1 −1 [ESull]

The Sullivan cocycle can be described geometrically as follows: it is
nonzero on a non degenerate triple (x, y, z) if and only if the triple contains 0
in (the interior of) its convex hull and in that case it is +1 or −1 depending
on the orientation of the triple. This cocycle was found by Sullivan as an
explicit representative for the Euler class of flat oriented R

2-vector bundles.
Observe that the Sullivan cocycle is not H-invariant, but only H-invariant.

The Sullivan cocycle. One quite attractive aspect of the Sullivan cocy-
cle and its higher-dimensional analoga is that they detect small subsets of
spheres. Here a subset of a sphere is called small if its spherical convex hull
is not the whole sphere. In the case of S1 a set X ⊂ S1 is small if and only
if it is contained in a half-open half-circle.

Proposition A.3. Let X ⊂ S1 be any subset. Then ESull vanishes on X3

if and only if X is small.

Proof. If X ⊂ S1 is a small subset then no three points in X ever contain 0
in their convex hull, so that ESull vanishes on X3.

Conversely, suppose that ESull vanishes on X3. View X as a subset of
R
2 and consider its convex hull in R

2. By Caratheodory’s Theorem, if 0 is
contained in the convex hull of X, then there exists x0, x1, x2 ∈ X such that
0 belongs to the convex hull of x0, x1, x2 and hence ESull(x0, x1, x2) 6= 0,
which is impossible. If 0 is not on the boundary of the convex hull, then
by Hahn-Banach there exists a hyperplane separating 0 and the convex
hull of X, so X is in particular contained in the intersection of S1 with the
(appropriate) half plane delimited by the hyperplane. If 0 is in the boundary
of the convex hull, then by the supporting hyperplane theorem, there exists
a hyperplane through 0 so that the convex hull of X is contained in one
half of one closed half space delimited by that hyperplane. We are almost
done, except that we need to exclude the case that X is contained in one
closed half-circle, but is not contained in a half-open half-circle. Suppose
that x and x belong to X. Then ESull(x, x, x) = ESull(x, x

+, x+) = 1, where
the points x+, x+ ∈ S1 are very small perturbations of x, x in the positive
direction. �

Note that the same proof holds also for the higher dimensional general-
ization of the Sullivan cocycle.
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The cohomology class [ESull]. Given a basepoint x ∈ S1 we obtain a

cocycle Ex
Sull : H

3
→ Z by pullback along the corresponding orbit map, i.e.

Ex
Sull(g0, g1, g2) := ESull(g0.x, g1.x, g2.x).

This cocycle determines a class in the group cohomology H2(H;Z); since
Ex

Sull is bounded, it also determines a class in the bounded group cohomology

H2
b (H;Z). In order to provide an interpretation of these classes, we consider

the following diagram of central extensions

0 // Z
i

//

·2

��

H̃

Id
��

p
// H

p

��

// {e}

0 // Z
i

// H̃
p

// H // {e}

where H̃ denotes, as before, the common universal cover of H and H which
consists of homeomorphisms of the real line commuting with integral trans-
lations. The cohomology class in H2(H,Z) corresponding to the central ex-
tension in the top row is twice the pullback by p of the class eu ∈ H2(H,Z)
hence can be represented by −ESull.

By Lemma 3.1 this yields the following interpretation of [ESull] as an
obstruction class: Given a group Γ, the S1-action associated with a homo-
morphism ρ : Γ → H lifts to an action of Γ on the real line if and only if
ρ∗[ESull] = 0 ∈ H2(Γ,Z).

We now turn to an interpretation of the bounded class defined by ESull.
It turns out that the case of the bounded Sullivan cocycle in degree 2 is very
particular since the vanishing of the cohomology class is equivalent to the
vanishing of the cocycle:

Proposition A.4. Let Γ be a group and ρ : Γ → H be any homomorphism,
then ρ∗[Ex

Sull]b = 0 ∈ H2
b (Γ,Z) if and only if ρ∗(Ex

Sull) = 0 for any base
point x ∈ S1.

Proof. One direction is trivial. For the other direction, suppose that ρ∗Ex
Sull =

δb for some x ∈ S1 and a Γ-invariant bounded cochain b : Γ2 → Z. We will
show that b ≡ 0. Writing out the cocycle equation in a special case yields
for all γ ∈ Γ,

ρ∗Ex
Sull(e, γ, γ

2) = 2b(e, γ) − b(e, γ2).

This implies in particular |2b(e, γ) − b(e, γ2)| ≤ 1, hence inductively

(A.1) |2kb(e, γ)− b(e, γ2
k

)| ≤ 2k − 1.

Since b is bounded, we can choose k sufficiently big so that |b(e, γ2
k

)| ≤ 2k−1.
Dividing (A.1) by 2k we obtain

|b(e, γ)| ≤
1

2k
|b(e, γ)2

k

|+ 1−
1

2k
≤ 1 +

1

2
−

1

2k
< 2.
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Since b takes integral values, it follows that it takes values in {−1, 0, 1}.
Assume that b(e, γ) = 1. Then (A.1) yields

|2k − b(e, γ2
k

)| ≤ 2k − 1,

hence b(e, γ2
k

) = 1. A similar argument in the negative case shows that for

every γ ∈ Γ, either b(e, γ) = 0 or 0 6= b(e, γ) = b(e, γ2
k

) for every k > 0.
Thus if b(e, γ) 6= 0 for some γ, then

ESull(x, ρ(γ)x, ρ(γ)
2x) = 2b(e, γ) − b(e, γ2) = b(e, γ) = b(e, γ2)

= ESull(x, ρ(γ)
2x, ρ(γ)4x).

This means that there exist w, x, y, z ∈ S1 such that

ESull(x, y, z) = ESull(x, z, w) 6= 0.

By our extension of the Sullivan cocycle to degenerate orbits, we can without
loss of generality suppose that both triples (x, y, z) and (x, z, w) are non
degenerate. Since their evaluations on the Sullivan cocycle agree both triples
contain 0 in the interior of their convex hull and have the same orientation.
This is impossible. �

For the Sullivan cocycle we now obtain the following stronger version of
Corollary 4.2:

Theorem A.5. Let Γ be a group, ρ : Γ → H a homomorphism. Then the
following are equivalent:

(1) ρ∗[Ex
Sull]b = 0 ∈ H2

b (Γ;Z);

(2) ρ lifts to a homomorphism ρ̃ : Γ → H̃ and ρ̃(Γ) has a fixed point in
R.

(3) ρ(Γ) fixes a point in S1.
(4) Every ρ(Γ)-orbit on S1 is small.
(5) There exists a small ρ(Γ)-orbit in S1.
(6) For every x ∈ S1, ρ∗Ex

Sull = 0.
(7) There exists x ∈ S1 such that ρ∗Ex

Sull = 0.

Proof. We summarize the shown implications in the following diagram:

(4) ks
PropA.3

+3

trivial
��

(6)

trivial
��

ks
PropA.4

+3 (1)

(5) ks
PropA.3

+3 (7)

trivial

9A
⑤
⑤
⑤
⑤
⑤
⑤
⑤

⑤
⑤
⑤
⑤
⑤
⑤
⑤

(3).
trivial
ks

The remaining equivalence between (1), (2) and (3) admits the same proof
as the equivalence between (i), (ii) and (iii) in Corollary 4.2. �
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