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Abstract—Random forests have proved to be very effective
classifiers, which can achieve very high accuracies. Although
a number of papers have discussed the use of fuzzy sets for
coping with uncertain data in decision tree learning, fuzzy
random forests have not been particularly investigated in the
fuzzy community. In this paper, we first propose a simple method
for generating fuzzy decision trees by creating fuzzy partitions
for continuous variables during the learning phase. Then, we
discuss how the method can be used for generating forests of fuzzy
decision trees. Finally, we show how these fuzzy random forests
achieve accuracies higher than two fuzzy rule-based classifiers
recently proposed in the literature. Also, we highlight how fuzzy
random forests are more tolerant to noise in datasets than
classical crisp random forests.
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I. INTRODUCTION

Decision trees are very popular classification methods due
to a number of reasons [1], [2]. First of all, the classification
accuracy achieved by decision trees is generally comparable
to or higher than other well-known classification models.
Second, decision tree induction algorithms require to tune a
very small number of parameters. Third, decision trees are easy
to interpret and comprehend. Several tree induction algorithms
have been proposed in the literature since the seminal paper
on ID3 by Quinlan [3].

Fuzzy decision trees are an extension of crisp decision trees
to deal with uncertain data [4], [5]. Similar to a crisp decision
tree, a fuzzy decision tree is a directed acyclic graph, in which
each edge connects two nodes from parent node to child node.
The node, which has no parent node, is called root, while the
nodes, which have no child nodes, are called leaves. Each node
in fuzzy decision trees represents a fuzzy subset rather than a
crisp set as in classical crisp decision trees. The root coincides
with the universe of discourse of each variable. All the child
nodes generated from the same parent node constitute a fuzzy
partition for the variable considered in the parent node.

Decision trees and fuzzy decision trees grow in a top-
down way when we successively partition the training data
into subsets having similar or the same output (class labels)
[6]. Usually, the growth of the tree terminates when all data
associated with a node belong to the same class. Most of the
decision trees and fuzzy decision trees partition the training
data into subsets by involving in this process only a single
feature. Fuzzy decision trees proposed in the literature can

be categorized into different types depending on the nature
of the splitting mechanism [7]. In particular, we will focus
on the fuzzy decision trees based on a generalization of
ID3. The algorithms in this category apply fuzzy sets to
quantify continuous attributes and then use the ID3 approach
to construct the decision tree. Fuzzy entropy, information gain
or gain ratio are used as a measure of attribute selection. Other
algorithms exploit the minimal ambiguity (non-specificity) of
a possibility distribution [8], the fuzzy Gini index [9], the
maximum classification importance of attribute contributing
to its consequent [10] and a normalized fuzzy Kolmogorov-
Smirnov discrimination quality measure [11] to select the
attribute used in the node splitting.

Generally, continuous attributes are partitioned before start-
ing the fuzzy decision tree learning: each attribute is dis-
cretized by optimizing purposely-defined indexes [12], [13],
[8]. In [14], the authors propose an interesting analysis on
different combinations of discretization methods for dividing
attribute domains into partitions and different approaches for
defining membership functions on these partitions. To the best
of our knowledge, a few papers have proposed algorithms
which partition continuous attributes concurrently with the
fuzzy tree generation. These algorithms exploit particular fuzzy
partitions [9] or quite complex approaches [15], [16] . None of
them, however, has been employed in the generation of fuzzy
random forests.

A random forest is an ensemble learning method for
classification, which constructs a multitude of decision trees
and outputs the class that is the mode of the classes of the
individual trees. The algorithm for inducing a random forest
was developed by Leo Breiman [17]: in the algorithm, bagging
is used in tandem with random attribute selection. Bagging
creates diversity by constructing each classifier with a different
set of examples, which are obtained from the original training
dataset by re-sampling with replacement. At each node of
each tree of the forest, a subset of the available attributes
is randomly chosen and the best split available within these
attributes is selected for that node. The number of attributes
randomly chosen at each node is a parameter of the random
forests. Random forests have proved to be very effective and
have been applied in several different domains [18].

Fuzzy random forests were originally presented in Bonis-
sone et al. [19], [20] and further discussed and applied in
other papers [21], [22]. The fuzzy random forest learning
exploits two algorithms. The first algorithm generates the
forest by performing, for each tree, a random sampling with
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replacement on the available examples and calling the second
algorithm. This algorithm is based on ID3 and builds a fuzzy
tree by, first, selecting a random subset of attributes available
at each node and, then, by choosing the best one to perform
the split. Continuous attributes are partitioned before starting
the random forest generation by using trapezoidal fuzzy sets.
These partitions are obtained by using a complex method that
adopts two steps. In the first step, a number of split points are
determined by adopting the basic procedure for splitting nodes
used in the classical C4.5 decision tree learning algorithm [23].
Then, in the second step, a genetic algorithm is employed
to obtain the fuzzy sets that define the partitioning of the
continuous attributes from the split points. When an unlabeled
object has to be classified, all the fuzzy trees are activated and
the outputs are combined. Different combination methods are
proposed and experimented in [20]. Unfortunately, the results
discussed in this paper cannot be used for a fair comparison.
Indeed, the number of fuzzy decision trees employed in the
fuzzy random forests change from one dataset to another and
no explanation is provided on how this number should be
chosen. Further, for each dataset, only the result of the best
combination method on the test set is shown and this method
is different from one dataset to another. Again, no explanation
is given on how this method should be selected.

In this paper, we propose to generate the fuzzy partitions
concurrently with the generation of the fuzzy decision trees,
as generally carried out in the classical non-fuzzy decision
tree generation when dealing with continuous attributes. When
creating a decision node, we define a strong fuzzy partition
consisting of three triangular fuzzy sets. The core of the inter-
mediate fuzzy set coincides with the right and left extremes of
the supports of the left and right fuzzy sets, respectively. Thus,
the partition is completely determined by a unique point: the
core of the intermediate fuzzy set. For each attribute in the
set of randomly selected attributes for the node, we evaluate
different positions of the core and select the position that
provides the highest information gain. The information gain
is computed by using the fuzzy entropy. The parent node is
therefore split into three child nodes (one for each fuzzy set),
which contain the objects of the parent node with membership
values higher than 0.5 to the corresponding fuzzy set. The same
continuous variable can be considered in different decision
nodes from the root to a leaf: for each of these decision
nodes we apply the same fuzzy partition. Since each of these
nodes focuses on a specific interval of the universe of the
continuous variable, this corresponds to carry out a zoom in
on the specific interval. The learning of the fuzzy decision
tree terminates when no node can be further split based on
determined conditions.

We generate 100 fuzzy decision trees by randomly select-
ing different training sets through bagging. Then, we combine
the results of the trees by adopting a very simple method:
for each class, we add all the confidence values output by
any leaf that contains training set instances of the class. The
class characterized by the highest total confidence value is
associated with the unlabeled object.

We tested the fuzzy random forests on 28 publicly available
datasets. We compared the results with two well-known fuzzy
classifiers recently proposed in the literature and with the
random forest proposed by Breiman [17]. We show that our

approach outperforms the fuzzy classifiers and is statistically
equivalent to the random forest. Finally, we perturbed the
datasets by adding noise in the class attribute [20]. In par-
ticular, we changed the class of the objects in the training set
with probabilities 10% and 20%. We show that fuzzy random
forests are more robust to noise than classical crisp random
forests.

The paper is organized as follows. In Section II we in-
troduce our approach to the learning of fuzzy decision trees.
Sections III and IV describe how fuzzy random forests are
generated and used in classification, respectively. In Section
V we discuss the experimental results and Section VI draws
some final conclusions.

II. THE PROPOSED FUZZY DECISION TREE LEARNING
ALGORITHM

In this section, we introduce the fuzzy decision tree learn-
ing algorithm we use to generate the fuzzy random forest.
Let X = {X1, . . . , XF } be the set of input variables and
XF+1 be the output variable. Since we consider classification
problems, XF+1 is a discrete variable, which can assume
values in {C1, . . . , CM}, where M is the number of possible
classes. Let Uf , with f = 1, ..., F , be the universe of the f th
variable Xf . Let TTR = {(x1, xF+1,1), . . . , (xN , xF+1,N )}
be the tree training set composed of N input-output pairs,
with xp = [x1,p . . . , xF,p] and xF+1,p ∈ {C1, . . . , CM}. Input
variables Xf can be continuous or categorical. Continuous
variables need to be partitioned for generating the decision
tree.

Unlike the fuzzy decision tree learning used in [20],
we do not assume that continuous variables are partitioned
before starting the tree learning, but we determine these fuzzy
partitions during the tree generation. We aim to propose an
approach that is easy to implement, is computationally light
and guarantees to achieve accuracy values comparable with
classical random forests. The ratio behind this approach is to
explore specific zones of the input domain more and more in
detail during the tree generation. In practice, we adopt a sort
of zoom in on this specific zones. The “magnifying glass” is
a strong fuzzy partition consisting of three triangular fuzzy
sets. We adopt this partition because it is determined by just
choosing a point, the core of the intermediate triangular fuzzy
set.

Let S be the set of instances contained in a generic node
of the tree. Further, for each instance xp ∈ S, let µS(xp) be
the membership value of xp to S. At the root of the tree,
S coincides with TTR and µS(xp) = 1 for each instance
xp ∈ S. At each node, we select randomly a subset of the
total number of input variables and partition the continuous
variables contained in the set by using a strong partition with
three triangular fuzzy sets. Fig. 1 shows an example of this
partition. For the categorical variables, we simply consider all
the possible values. Then, for each partition, we compute the
fuzzy information gain (FGain) and choose the input variable
with the highest value of FGain for splitting the node.

In classical crisp decision trees, the points can belong to
only one of the subsets generated by partitioning the example
set of the parent node. In fuzzy decision trees, with strong
partitions, one point xp can belong to two different fuzzy



sets, for instance B1 and B2, with complementary membership
degrees (µB1(xi) = 1 − µB2(xi)). To simplify the generation
of the tree and to reduce its deepness, we consider in the child
nodes only the examples with membership degree higher than
0.5. Thus, for each fuzzy set in the partition shown in Fig.1,
we create a node and transfer to this node the examples which
belong to the α − cut, with α = 0.5, of the fuzzy set. We
verified that this choice simplifies the generation of the fuzzy
decision tree without affecting the final accuracy.

More formally, for each attribute Xf , we sort the attribute
values xf,1 . . . , xf,NS

for the set S. Let lf and uf be the lower
and upper bounds of the universe in Xf of the points contained
in S. To determine the optimal cut-point tf for variable Xf ,
we pose tf in correspondence of the f-th coordinate (except
lf and uf ) of each point of the universe. For each possible
candidate, we define a strong fuzzy partition of the universe
by using three triangular fuzzy sets, namely Af,1, Af,2 and
Af,3 as shown in Fig. 1. The cores of Af,1, Af,2 and Af,3

coincide with lf , tf and uf , respectively.

Fig. 1. An example of fuzzy partition of continuous variables used for
splitting nodes

Then, we compute the points af,1−2 and af,2−3, where the
membership function (MF) of Af,1 intersects the MF of Af,2,
and the MF of Af,2 intersects the MF of Af,3, respectively.
More precisely,

af,1−2 =
lf + tf

2
(1)

af,2−3 =
tf + uf

2
(2)

Let S1, S2 and S3 be the subsets of examples in S with
values of input variable Xf lower than or equal to af,1−2,
larger than af,1−2 and lower than af,2−3, and larger than or
equal to af,2−3, respectively.

We recall that the cardinality of a fuzzy set is defined as

|S| =
NS∑
i=1

µS(xi) (3)

where NS is the number of objects in S.

From this definition, we compute the cardinality of Sj ,
j = 1, 2, 3 as:

|Sj | =
Nj∑
i=1

µSj (xi) =

Nj∑
i=1

TN(µAf,j
(xf,i), µS(xi)) (4)

where Nj is the number of values of Xf (crisp cardinality)
in the set Sj , µSj

(xi) = TN(µAf,j
(xf,i), µS(xi)) is the

membership degree of example xi to set Sj , µAf,j
(xf,i) is the

membership degree of example xi to fuzzy set Af,j , µS(xi)
is the membership degree of example xi to set S (for the root
of the decision tree, µS(xi) = 1) and the operator TN is a
T-norm. In the experiments, we adopted the product as T-norm.

To compute the fuzzy information gain, we exploit the
weighted fuzzy entropy [14]. Let FEnt(Sj), j = 1, 2, 3, be
the fuzzy entropy of Sj defined as:

FEnt(Sj) =

M∑
m=1

−|Sj,Cm
|

|Sj |
log2(

|Sj,Cm
|

|Sj |
) (5)

where Sj,Cm
is the set of examples in Sj with class label equal

to Cm. Then, the weighted fuzzy entropy WFEnt(tf ;S) is
computed as:

WFEnt(tf ;S) =

3∑
j=1

|Sj |
|S|

FEnt(Sj) (6)

The fuzzy information gain FGain for variable Xf is
defined as:

FGain(A, tf ;S) = FEnt(S)−WFEnt(A, tf ;S). (7)

As in the discretization approaches used in crisp decision
trees, a continuous variable can be considered in several
decision nodes in the same path from the root to a leaf. In
each node, we apply the same fuzzy partition shown in Fig.
1 to the universe of the set of objects that belong to the node
with membership value higher than 0. For instance, let us
assume that continuous variable Xf is used in a decision node
to partition the universe [lf , uf ]. The partition generates three
child nodes, which contain objects with values of variable XF

in
[
lf ,

lf+tf
2

]
,
[
lf+tf

2 ,
tf+uf

2

]
and

[
tf+uf

2 , uf

]
, respectively.

Let us suppose that in the path generated from the first child
node another decision node considers variable Xf . Then, a new
partition is generated by considering the universe

[
lf ,

lf+tf
2

]
.

In practice, the new partition is devoted to analyze in detail
a specific subset of the initial Xf domain. This process
corresponds to perform a zoom in on specific intervals of the
variables.

In the case of categorical variables, we split the node into a
number of child nodes equal to the number of possible values
for the variable. In the computation of the FGain, we compute
the cardinality as:

|Sl| =
nl∑
i=1

TN(1, µS(xi)) (8)

where Sl is the set of values which correspond to the l-th
categorical value.

The learning algorithm builds the fuzzy decision tree by
splitting each node until one of the following termination
conditions is met:

1) the node does not contain at least three examples;
2) the node contains examples which belong to the same

class;



3) in case of datasets with only categorical variables, all
the variables have been used in the path and therefore
no variable can be used to perform the split;

4) the value of FGain is lower than a threshold ε. In the
experiments, we adopted ε = 10−6;

5) in the case of continuous variables, at least two sub-
sets generated by splitting the parent node contain a
minimum number s of examples. In the experiments,
we fixed s to 1.

Fig. 2 summarizes the learning algorithm used to generate
the fuzzy decision trees. In our experiments, we set the number
G of randomly selected variables used to generate child nodes
to 5.

FuzzyDecisionTreeLearning(in: TTR; out:
FuzzyTree)
begin
Let S = TTR and µS(xp) = 1 for each example
xp in S;

1) Select G input variables from the
set F;

2) For each variable in G

• If the variable is continuous
◦ For each possible cut point

tf
create a strong fuzzy
partition with three
triangular fuzzy sets;
compute the FGain using
formula 7;

◦ select the fuzzy partition
with the highest FGain;

• If the variable is categorical
compute the FGain by using
formula 7;

3) choose the attribute with the
highest value of FGain;

4) split the node in child nodes
according to possible outputs of
the chosen variable;

5) compute the membership values of
each object to the child nodes;

6) Repeat steps 1-5 until nodes can be
split.

end

Fig. 2. The fuzzy decision tree learning algorithm

We do not label each leaf node with just one class, as
typically made in crisp decision trees (for instance, adopting
a majority voting strategy). Rather, each leaf node is labeled
with all the classes that have at least one example in the leaf
node: each class has a weight proportional to the number of
training examples of that class in the node. More formally, we
compute the weight wm associated with each class Cm in the
leaf node as:

wm =
|SCm

|
|S|

. (9)

where SCm
is the set of examples in S with class label equal

to Cm.

III. FUZZY RANDOM FOREST LEARNING

The algorithm used for learning the fuzzy random forests
follows the Breiman’s methodology: each fuzzy decision tree
is constructed to the maximum size and without pruning. We
recall that random forests have two stochastic elements: (1)
bagging employed for the selection of the datasets used as
input for each tree; and (2) the set of attributes considered as
candidates for each node split. These randomizations increase
the diversity of the trees and significantly improve their overall
predictive accuracy when their outputs are combined.

Let TR be the training set used for the generation of the
random forest. For learning each decision tree of the forest,
we create a tree training set TTR of size |TR| by randomly
sampling TR with replacement. Then, we apply the algorithm
described in Fig. 2 to TTR for generating the fuzzy decision
tree. We generate V trees, where V is a parameter fixed by
the user (in our experiments, we set V to 100).

Fig. 3 shows the algorithm used for the generation of the
fuzzy random forest.

FuzzyRandomForestLearning(in: TR, V; out:
Fuzzy Random Forest)
begin
Repeat the following steps V times

1) generate TTR by randomly sampling
with replacement TR;

2) call the FuzzyDecisionTreeLearning
function in Fig. 2 passing TTR and
V as input;

3) insert the fuzzy decision tree
output from the function into the
tree ensemble;

end

Fig. 3. The fuzzy random forest learning algorithm

IV. CLASSIFICATION

Given an unlabeled example x̂, in the classification phase,
each tree of the forest outputs a list of possible classes
with associated a confidence value. The confidence value is
computed as sum of the activation degrees determined by
any leaf node of the tree for that class. The class activation
degree ADm is calculated as the product between the weight
wm associated with the class Cm in the leaf node and the
membership degree of x̂ to the leaf node. We recall that this
degree is computed as the product of the membership values
of x̂ to all the nodes in the path from the root to the leaf
node: the membership values are computed by considering
the overall fuzzy set associated with the node and not only
the part with membership values higher than 0.5, as in the
learning phase. Each activated leaf node produces a list of
class activation degrees, which are summed up to compute
the confidence value for that class. Thus, each tree outputs
a list of pairs composed by the name of the class and the
corresponding confidence value. More formally, for each class
Cm, m = 1, . . . ,M , the confidence value CVm is computed
as

CVm =

V∑
v=1

∑
∀l

wm · µl(x̂) (10)



where µl(x̂) is the membership value of x̂ to leaf node l of
the fuzzy decision tree.

Several methods have been proposed in the literature to
combine the outputs of different decision trees which compose
a random forest. In the framework of fuzzy random forest, an
interesting analysis has been performed in [20]. We experi-
mented all the methods discussed in [20] and realized that the
method, which guaranteed the best performance in terms of
accuracy, simply sums all the corresponding confidence values
for all the V lists generated by the trees and outputs the class
corresponding to the highest total confidence value.

V. EXPERIMENTAL RESULTS

In the first experiment, we tested our random forest on
twenty-eight classification datasets extracted from the KEEL
repository1. As shown in Table I, the datasets are character-
ized by different numbers of input variables (from 3 to 60),
input/output instances (from 80 to 7200) and classes (from 2
to 7). For the datasets CLE, DER, HEP, MAM, and WIS, we
removed the instances with missing values. The number of
instances in the table refers to the datasets after the removing
process.

TABLE I. DATASETS USED IN THE EXPERIMENTS (SORTED FOR
INCREASING NUMBERS OF INPUT VARIABLES).

Dataset # Instances # Variables # Classes
Haberman (HAB) 306 3 2
Hayes-roth (HAY) 160 3 3

Iris (IRI) 150 4 3
Mammographic (MAM) 830 5 2

Newthyroid (NEW) 215 5 3
Tae (TAE) 151 5 3

Bupa (BUP) 345 6 2
Appendicitis (APP) 106 7 2

Pima-532 (PIM-532) 532 7 2
Pima (PIM) 768 8 2
Glass(GLA) 214 9 6

Saheart (SAH) 462 9 2
Wisconsin (WIS) 683 9 2

Contraceptive (CON) 1473 9 3
Cleveland (CLE) 297 13 5

Heart (HEA) 270 13 2
Wine (WIN) 178 13 3

Smoking (SMO) 2855 13 3
Australian (AUS) 690 14 2

Vehicle (VEH) 846 18 4
Bands (BAN) 365 19 2

Hepatitis (HEP) 80 19 2
Image Segmentation (IMA) 2310 19 7

Thyroid (THY) 7200 21 3
Wdbc (WDB) 569 30 2

Dermatology (DER) 358 34 6
Ionosphere (ION) 351 34 2

Sonar (SON) 208 60 2

For each dataset, we performed a ten-fold cross-validation
and executed three trials for each fold with different seeds
for the random function generator (30 trials in total). All the
results presented in this section are obtained by using the same
folds for all the algorithms.

We carried out two experiments. In the first experiment,
we aimed to highlight how fuzzy random forests can achieve
values of classification accuracy considerably higher than other

1available at http://sci2s.ugr.es/keel/datasets.php[24]

fuzzy classification approaches. In the second experiment, we
analyzed the behavior of crisp and fuzzy random forests with
data affected by noise. We intended to evaluate whether the
fuzziness could help to manage noise.

A. First Experiment

In the first experiment, we compare the results generated by
our fuzzy random forests with the fuzzy classifiers generated
by two state-of-the-art fuzzy rule-based learning algorithms,
namely FURIA [25] and PAES-RCS [26].

FURIA (Fuzzy Unordered Rules Induction Algorithm) was
introduced in [25] as an extension of the RIPPER algorithm
[27]. The main extensions regard: i) the use of fuzzy rather
than crisp rules , ii) the exploitation of unordered rather than
ordered rule sets, and iii) the introduction of a novel rule
stretching method in order to manage uncovered examples.
The descriptions of both FURIA and RIPPER can be found in
[25] and [27], respectively.

PAES-RCS is an approach based on a multi-objective
evolutionary algorithm to learn concurrently the rule and data
bases of fuzzy rule-based classifiers. The learning process is
performed by selecting a set of rules from the set of candidate
rules and a set of conditions for each selected rule. This hybrid
scheme was denoted as rule and condition selection (RCS)
in [26]. To generate the set of candidate rules, the training set
is pre-processed by transforming each continuous variable into
a categorical and ordered variable. To this aim, a pre-defined
fuzzy partition of each input variable is exploited. Then, the
well-known C4.5 algorithm [6] is applied to the transformed
training set for generating a decision tree. Finally, the set of
candidate fuzzy rules is extracted from the decision tree: each
rule corresponds to each path from the root to a leaf node.
During the multi-objective evolutionary process, PAES-RCS
generates the rule bases of the fuzzy rule-based classifiers by
using the RCS approach and concurrently learns the MF pa-
rameters of the linguistic terms used in the rules. Accuracy and
interpretability are measured in terms of percentage of correct
classification and total number of antecedent conditions of the
rules in the rule base, respectively. In [26], the authors have
proved that PAES-RCS generates fuzzy rule-based classifiers
with accuracy and complexity statistically comparable to, and
sometimes better than, the ones generated by other state-of-
the-art MOEA-based approaches.

Table II shows, for each dataset, the average classification
rates calculated on the test set for the fuzzy random forests,
FURIA and the most accurate solution of PAES-RCS after
50,000 fitness evaluations, respectively. We observe that the
table considers only the datasets shown in [26], where PAES-
RCS was proposed.

The analysis of Table II highlights that the classification
rates achieved by the fuzzy random forests are on average
higher than the ones obtained by the other two algorithms. To
statistically validate this observation, for each algorithm, we
generate a distribution consisting of the mean values of the
accuracy of solutions on the test set by using all the datasets.
Then, we apply the Friedman test in order to compute a ranking
among the distributions [28], and the Iman and Davenport test
[29] to evaluate whether there exists a statistical difference
among the distributions. If the Iman and Davenport p-value



TABLE II. AVERAGE CLASSIFICATION RATES OBTAINED ON THE TEST
SETS BY OUR FUZZY RANDOM FORESTS, FURIA AND THE MOST

ACCURATE SOLUTIONS GENERATED BY PAES-RCS

Dataset Fuzzy
Random Forest

FURIA PAES-RCS

HAB 70.72 75.44 72.65
HAY 80.88 83.13 84.03
IRI 95.33 94.66 95.33

MAM 83.80 83.89 83.37
NEW 97.27 96.30 95.35
TAE 62.55 43.08 60.81
BUP 72.20 69.02 68.67
APP 87.73 85.18 85.09
PIM 76.48 74.62 74.66
GLA 75.13 72.41 72.13
SAH 70.51 69.69 70.92
WIS 97.13 96.35 96.46
CLE 58.36 56.20 59.06
HEA 83.89 80.00 83.21
WIN 97.28 96.60 93.98
AUS 86.00 85.22 85.80
VEH 75.38 71.52 64.89
BAN 70.89 64.65 67.56
HEP 89.58 84.52 83.21
WDB 96.01 96.31 95.14
DER 97.64 95.24 95.43
ION 92.01 91.75 90.40
SON 79.93 82.14 77.00
Mean 82.46 80.34 80.66

is lower than the level of significance α (in the experiments
α = 0.05), we can reject the null hypothesis and affirm that
there exist statistical differences between the multiple distribu-
tions associated with each approach. Otherwise, no statistical
difference exists. If there exists a statistical difference, we
apply a post-hoc procedure, namely the Holm test [30]. This
test allows detecting effective statistical differences between
the control approach, i.e. the one with the lowest Friedman
rank, and the remaining approaches.

In Table III we show the Friedman rank and the Iman and
Davenport p-value for each algorithm. We observe that the
statistical hypothesis of equivalence is rejected. Thus, we have
to apply the Holm post-hoc procedure considering our fuzzy
random forests as control algorithm (associated with the lowest
rank and in bold in the Table). As shown in Table IV, we
observe that the fuzzy random forests statistically outperform
both FURIA and PAES-RCS.

TABLE III. RESULTS OF THE NON-PARAMETRIC STATISTICAL TESTS
ON THE CLASSIFICATION RATES COMPUTED ON THE TEST SET FOR THE

FUZZY RANDOM FORESTS, FURIA AND THE MOST ACCURATE SOLUTIONS
GENERATED BY PAES-RCS

Algorithm Friedman rank Iman and Davenport
p-value

Hypothesis

Fuzzy Random Forest 1.413
FURIA 2.2609 0.00134950 Rejected

PAES-RCS 2.3261

TABLE IV. HOLM POST HOC PROCEDURE FOR α = 0.05

i algorithm z-value p-value alpha/i Hypothesis
2 PAES-RCS 3.096281 0.00196 0.025 Rejected
1 FURIA 2.875118 0.004039 0.05 Rejected

B. Second experiment

To verify whether fuzzy random forests, thanks to the use
of fuzziness, are more robust than crisp random forests to
noise, we first executed the classical and fuzzy random forests
on all the datasets in Table I. As regards crisp random forest,
we adopted the classical implementation proposed by Breiman
[17]. Then, we perturbed the datasets by adding noise to the
label data. In particular, we adopted the procedure proposed
in [20]: we changed the class of the objects in the training set
with probabilities 10% and 20%.

Table V shows the average classification rates achieved by
classical and fuzzy random forests on the original datasets.
We can observe that the classification rates are similar, also
if fuzzy random forests achieve on average a classification
rate higher than crisp random forests. Table VI shows the
average classification rates on the test sets achieved by classical
and fuzzy random forests trained by employing training sets
with classes randomly changed with probabilities 10% and
20%, respectively. We observe that with the increase of the
noise, the differences between the mean values of the average
classification rates tend to increase.

TABLE V. AVERAGE CLASSIFICATION RATES OBTAINED ON THE TEST
SETS BY FUZZY AND CRISP RANDOM FORESTS.

Dataset Fuzzy RF Crisp RF
HAB 70.72 71.26
HAY 80.88 80.38
IRI 95.33 95.40

MAM 83.80 81.24
NEW 97.27 95.01
TAE 62.55 49.79
BUP 72.20 74.38
APP 87.73 86.48

PIM-532 78.45 77.75
PIM 76.48 75.41
GLA 75.13 77.45
SAH 70.51 70.11
WIS 97.13 96.94
CON 51.86 51.73
CLE 58.36 57.36
HEA 83.89 83.04
WIN 97.28 97.15
SMO 65.01 63.29
AUS 86.00 85.72
VEH 75.38 74.71
BAN 70.89 72.73
HEP 89.58 88.73
IMA 96.20 97.81
THY 97.30 99.59
WDB 96.01 95.87
DER 97.64 97.15
ION 92.01 93.09
SON 79.93 82.90
Mean 81.63 81.16

To statistically validate this observation, we applied a non-
parametric test, namely the Wilcoxon signed-rank test for
pairwise comparison of two sample means [31], on the results
obtained by the two ensembles on the original dataset, and
on the datasets randomly changed with probabilities 10% and
20%, respectively.

Table VII shows the results of the Wilcoxon test. Here,
R+ and R− represent the ranks corresponding to the fuzzy
and crisp random forests, respectively. We observe that the p-
values for the original datasets and the datasets changed with
probability 10% are higher than the level of significance α =



TABLE VI. AVERAGE CLASSIFICATION RATES OBTAINED ON THE TEST
SETS BY FUZZY AND CRISP RANDOM FORESTS TRAINED BY USING

DATASETS WITH THE CLASSES RANDOMLY CHANGED WITH
PROBABILITIES 10% AND 20%, RESPECTIVELY.

Class Noise
Dataset 10% 20%

Fuzzy RF Crisp RF Fuzzy RF Crisp RF
HAB 71.98 71.08 71.78 69.10
HAY 77.13 78.25 71.63 72.50
IRI 94.27 95.20 92.73 88.67

MAM 82.31 80.04 78.14 76.35
NEW 97.09 94.63 94.12 90.92
TAE 54.41 47.02 53.10 44.27
BUP 70.20 70.06 67.84 66.35
APP 89.00 85.39 88.79 85.21

PIM-532 78.81 77.30 76.99 75.27
PIM 75.72 75.12 75.12 74.20
GLA 75.96 76.94 71.15 75.49
SAH 71.24 68.97 69.71 66.26
WIS 96.70 95.98 96.03 95.13
CON 50.16 49.11 49.25 48.42
CLE 58.14 56.59 57.60 57.76
HEA 82.41 81.59 79.04 76.56
WIN 96.49 96.19 91.09 92.16
SMO 64.35 60.99 60.50 56.49
AUS 84.96 84.77 81.86 80.09
VEH 74.22 74.24 71.01 71.80
BAN 70.44 71.45 69.36 71.49
HEP 82.71 85.08 82.49 82.27
IMA 96.08 97.32 95.90 95.58
THY 96.83 99.59 96.26 99.37
WDB 95.58 95.70 95.20 94.28
DER 97.53 97.57 96.70 97.52
ION 88.88 91.20 86.11 86.88
SON 79.81 80.83 75.75 76.85
Mean 80.48 79.94 78.40 77.40

TABLE VII. RESULTS OF THE WILCOXON SIGNED-RANK TEST ON THE
ACCURACY OF BOTH FUZZY AND CRISP RANDOM FORESTS FOR α = 0.05

Comparison R+ R− p-value Hypothesis
Without noise
Fuzzy RF vs Crisp RF 240 166 ≥ 0.2 Not Rejected

10% noise
Fuzzy RF vs Crisp RF 247 159 ≥ 0.2 Not Rejected

20% noise
Fuzzy RF vs Crisp RF 291 115 0.04512 Rejected

0.05. Thus, the null hypothesis is not rejected. In the case of
datasets changed with probability 20%, the p-values are lower
than α = 0.05 and therefore the null hypothesis is rejected.
This result confirms that fuzzy random forests are less sensitive
to noise data than crisp random forests.

VI. CONCLUSIONS

In this paper, we have proposed a novel approach to the
generation of a fuzzy decision tree in the context of fuzzy
random forests. Although random forests have proved to be
very accurate classifiers, they have not been extensively studied
in the fuzzy community: only a few works have proposed
approaches for generating fuzzy random forests and discussed
their application to benchmark datasets. These approaches
however build fuzzy partitions of the continuous attributes
before starting the execution of the learning algorithm. Unlike
these approaches, we create the fuzzy partitions during the gen-
eration of the tree by adopting an approach which iteratively
zoom in on specific intervals of the universe.

We have shown that our fuzzy random forests outperform
two recently proposed fuzzy rule-based classifier. Further, we
have discussed how the use of fuzziness allows increasing the
capability of random forests to manage noisy datasets with
respect to classical crisp random forests.
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