
1

Distributed Motion Misbehavior Detection in Teams
of Heterogeneous Aerial Robots

Simone Martini∗, Davide Di Baccio∗, Francisco Alarcón Romero†,
Antidio Viguria Jiménez†, Lucia Pallottino∗‡ Gianluca Dini∗‡ and Anı́bal Ollero†§

∗Research Center “E. Piaggio,” University of Pisa, Pisa, Italy
†Fundación Andaluza para el Desarrollo Aeroespacial (FADA-CATEC), Seville, Spain

‡Dept. of Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
§Dept. of Ingenierı̀a de Sistemas y Automàtica, University of Seville, Seville, Spain

Abstract

This paper addresses the problem of detecting possible misbehavior in a group of autonomous mobile robots,
which coexist in a shared environment and interact with each other and coordinate according to a set of common
cooperation rules. Such rules specify what actions each robot is allowed to perform while achieving its individual
goals. The rules are distributed, i.e., they can be evaluated based only on the knowledge of the individual robot,
and on information that can be gathered through communication with neighbors. We consider misbehaving robots
as those robots whose behaviors deviate from the nominal assigned one, i.e., do not follow the rules, because of
either spontaneous failures or malicious tampering. The main contribution of the paper is to provide a methodology
to detect such misbehaviours by observing the congruence of actual behavior with the assigned rules as applied to
the actual state of the system. The presented methodology is based on a consensus protocol on the events observed
by robots. The methodology is fully distributed in the sense that it can be performed by individual robots based
only on the local available information, it has been theoretically proven and validated with experiments involving
real aerial heterogeneous robots.

I. INTRODUCTION

The availability of distributed systems gave rise in the late 80s to a profound rethinking of many decision
making problems and enabled solutions that were impossible before. A similar trend is now happening in
control and will soon enable a formidable number of new robotic applications. Various distributed control
policies have been proposed for formation control, flocking, sensor coverage, and intelligent transportation
(see e.g. [1], [2], [3]). The adoption of similar notions of decentralization and heterogeneity in Robotics
is advantageous in many tasks, where a cooperation among agents with analogous or complementary
capabilities is necessary to achieve a shared goal. More specifically, we are interested in distributed multi-
agent systems where each agent is assigned with a possibly different private goal, but needs to coordinate
its actions with other neighboring agents. The flexibility and robustness of such distributed systems, and
indeed their ability to solve complex problems, have motivated many works that have been presented in
literature (see e.g., [4], [5], [6], [7], [8], [9]). Although in most cases agents are modeled as identical
copies of the same prototype, this assumption is often restrictive as the different agents that forms a
society may be implemented by different makers, and with different technologies etc. heterogeneity in
these artificial systems are advantageous when e.g. a problem requires interaction of agents with similar
skills as well as agents with complementary capabilities. Most important, heterogeneity may be introduced
to model the existence of malfunctioning agents, also called intruders [10], [11]. The complexity needed
to represent such behaviors can be successfully captured by hybrid models, in which a continuous–time
dynamics describes the physical motion of each agent, while an event–based one describes the sequence

Gianluca Dini is the corresponding author (g.dini@iet.unipi.it).



2

of interactions with its neighbors. This paper addresses the problem of detecting possible misbehavior
in a group of autonomous robots, which coexist in a shared environment and interact with each other
while coordinating according to a set of common distributed rules. The objective is to provide robots the
capability of detecting agents whose behavior deviates from the assigned one, due to spontaneous failures
or malicious tampering. The objective is ambitious and indeed very difficult to be achieved without a-priori
knowledge of the interaction rules, but a viable solution can be found if the hybrid models describing
the behavior is known in advance. The proposed methodology is fully distributed in the sense that it can
be performed by individual robots based only on the local available information. It is based on a two–
step process: first, agents combines the information gathered from on–board sensors and from neighbors
by using communication and compute an a–priori prediction of the set of possible trajectories that the
observed agent should execute based on the cooperative rules (prediction phase); then, the predicted
trajectories are compared against the one actually executed and measured by the aircraft itself and if none
result close enough, the observed aircraft is selected as uncooperative (verification phase). The motion
misbehavior detection ability of a single local monitor (used in the verification phase) is limited by its
partial visibility. Robots need hence to combine the locally available information and reach an agreement
on the reputation of the observed robot. To do this, we propose a Boolean consensus protocol that differs
from those provided in [12], [13], [14]. Indeed, in this paper a consensus protocol on the events (more
precisely on the encoder map defined in the following) observed by robots is proposed. On the contrary
in the other works the consensus was on the reconstruction on the surrounding area of the observed
robot [10]. In other words, we use the consensus to reconstruct the possible presence of a robot in an area
that is not visible from all observing robots while in the other approaches a consensus protocol was used
to reconstruct the robot position in the area. Hence, in our approach the computational cost is limited.

Although the proposed method is general and can be applied to a wide range of applications, it has
been tested with experiments involving real aerial robots where the problem of detecting an intruder is
fundamental for the safety of the system.

The paper is organized as follows. We star introducing in Section II a case study example to help the
reader following the notation introduced in Section III where the hybrid model of the proposed cooperation
protocol is reported. The misbehave detection problem is formally defined in Section IV. The Boolean
consensus misbehaviour detection strategy is described in Section V where the convergence in a finite
number of steps is formally proved. Finally, in Section VI experimental setup is described and experiments’
results are reported.

II. A CASE STUDY EXAMPLE

In order to introduce the formal definitions and concepts of the paper we first start introducing a case
study example that will be used to give an intuitive idea of the formalism introduced in next sections.
The example is a simplified version of the collision avoidance strategy proposed in [15] and proved to be
safe for two aircraft. Simplifications are introduced to make the concepts introduced later simpler, hence
the example is not intended to be a realistic description of UAV scenarios.

Example 1: Consider two identical aircraft cruising at a given altitude with constant and equal linear
velocity v. Aircraft can be represented by vector (x, y, θ) ∈ R2×S1. Referring to Fig. 1(a), each aircraft
flights straight in Cruise mode until the other aircraft is detected at distance closer than d1. Whenever it
occurs, it changes instantaneously its heading angle of amount ∆θ and proceeds straight until a distance
L from nominal trajectory is reached then it changes its heading of amount −∆θ and proceed straight
(Left mode). As soon as the other aircraft is at distance larger than d2 (where d1 < d2) the aircraft changes
instantaneously its heading angle of amount −∆θ and proceeds straight until nominal trajectory is reached
then it changes its heading of amount ∆θ (Right mode) and then switch to the Cruise mode.

Let D(t) be the distance between the two aircraft at time t, the behaviour of each aircraft is reported
in Fig. 1(a) with a graphical representation of the associated hybrid model in terms of operating modes
and switching conditions, see Fig. 1(b).



3

(a) Evolution of aircraft based on the col-
lision avoidance policy

(b) Hybrid system associated to the
collision avoidance policy

A
C

d2

d1
B

(c) Sectors associated to each aircraft

Fig. 1. Simplified version of collision avoidance strategy proposed in [15] reported in Example 1.

To describe the motion of aircraft based on those rules we may consider a configuration vector (x, y) ∈
R2 and the control input θ ∈ {0, ±∆θ} with kinematics equations{

ẋ = v cos θ
ẏ = v sin θ

(1)

To apply the described collision avoidance policy, each aircraft must be able to recognize the presence
of another aircraft in a detection disc centered in its position and of radius d2. We then consider aircraft
with limited sensing that are able to detect the presence of other aircraft in such a detection disc. The
detection disc is then subdivided in eight sectors based on the orientation of the vehicle and the radii d1
and d2, see Fig. 1(c), i.e. the front left (SFL1 , SFL2 ), front right (SFR1 , SFR2 ), back left (SBL1 , SBL2 ) and
back right (SBR1 , SBR2 ) sectors. In order to monitor the behaviour of target aircraft h, we suppose that an
observing aircraft i, that lays in one of the sectors of h, is able to detect the presence of a third aircraft
k that is at distance less than d2 and that lays in one of the visible sectors. For example, if aircraft i
lays in sector SBR1 of aircraft h, it can detect aircraft k only if it is at distance less than d2 and inside
sectors SBL1 , SBL2 , SFR1 , SFR2 , SBR1 and SBR2 but not in SFL1 or SFL2 . For example, referring to Fig. 1(c),
an aircraft i in A can detect the aircraft k in B but not the one in C.

In case of a larger number of aircraft there exist several collision avoidance policies that have been
proved to guarantee safety of the system but are far too complex to be used as a simple illustrative
example, see e.g. the round–about policies in [16], [17].

III. A MODEL OF COOPERATION PROTOCOLS FOR ROBOTICS AGENTS

Toward our goal of designing a distributed motion misbehavior detection system that applies to very
general, heterogeneous robots, it is necessary to introduce a formalism that allows to model uniformly a
large variety of possible robots sharing sets of common rules.

Consider n robotic agentsA1, . . . ,An, whereAi is described by a vector qi in a continuous configuration
space Q. Such agents have their own dynamics, but need to collaborate with each other in order to
accomplish a common task or to achieve possibly conflict goals. We consider systems where agents’
interaction can be described by rules that are decentralized and event–based, i.e. the cooperation actions
that every agent can perform are specified according to a shared set R def

= {rule1, . . . , rulem} of rules based
only on locally measured events. To give an example, agents can be vehicles or robot moving in a shared
environment and following common driving rules so as to avoid collisions [18], [19] as also described in
the case study in previous Section. Each vehicle determines its current maneuver based on the presence or
absence of other neighboring vehicles and on its own destination. To model such cooperating networked



4

and distributed systems in the general case, we adopt a simplified version of the formalism introduced
in [20], according to which an agent Ai is specified by:
• A configuration vector qi ∈ Q, where Q is a configuration space (q = (x, y) ∈ R2 in the case study

Example 1).
• An input vector ui ∈ U , where U is a set of admissible input values; (U = {0, ±∆θ} in the case

study).
• A discrete state σi ∈ Σ, where Σ is the set of operating modes; (Σi = {Cruise, Left, Right} in the

case study).
• A dynamic map fi describing how the agent’s configuration is updated:

q̇i(t) = fi(qi(t),ui(t)) (2)

(for Example 1 the dynamic map is reported in (1)).
• A decoder map Gi describing which control values are applied in different operating modes σi, i.e.

ui(t) = Gi(qi(t), σi(tk)) , for t ∈ [tk, tk+1) .

In Example 1 we have w(t) = Gi(qi(t),Cruise) = 0, while w(t) = Gi(qi(t),Left) is a sequence of
∆θ, 0, −∆θ and 0 again. Finally, w(t) = Gi(qi(t),Right) is a sequence of −∆θ, 0, ∆θ and 0 again.

• A set of topologies ηi,1(q), . . . , ηi,κi(q) on Q, whose union defines the agent’s neighborhood in q,
i.e. N(qi) = ∪κij=1ηi,j(qi). The set of neighbouring agents is hence Ni = {Ak|qk ∈ N(qi)}, while the
set of neighbors’ configurations is Ii = {qk ∈ Q |Ak ∈ Ni}, referred in the following as influence
set of Ai.
Referring to the case study described in Example 1, for aircraft i in q we have eight topologies
corresponding to the eight sectors of the detection disc centered in q. The neighbouring agents are
aircraft in the detection disc, i.e. aircraft that are closer to i more than d2.

• An event vector si ∈ Bκi (whose components later will be referred to as sub-events) and a detection
map Si involving conditions over Q (as e.g. the presence of another agent in a specific region):

si,j(t) =
∑
qk∈Ii

1ηi,j(qi)(qk)

where
∑

represents the logical sum (or), and 1A(x) is the Indicator function of a set A. Events for
the case study are the presence of aircraft closer than d1 and the absence of aircraft at distance less
than d2. In general events can be compositions of sub–events and different events may depend on
the same sub–events. Hence, a vector of sub–events si is considered.

• A static decision map or encoder ϕi indicating the detector condition ci based on events vector si:

ci(tk) = ϕi(si,1(tk), . . . , si,κi(tk)) ;

in other words, ci(tk) is a vector of logic operations of sub–events si,j .
• An automaton δi describing how the agent’s current discrete state (or mode of operation) σi is updated

based on the detector condition ci:

σi(tk+1) = δi(σi(t), ci(tk)) . (3)

Those two last concepts applied to the case study are reported in Fig. 1(b).
It is clear that the set of rules describes the set of p operating modes, Σ

def
= {mode1, . . . ,modep},

and the set of ν logical propositions, or events, E def
= {event1, . . . ,eventν}. The occurrence of any of

these events require the current mode σi of the generic agent Ai to be changed. The generic event eventl
measured from Ai can be assigned with a logical variable ci,l ∈ B taking the value true if eventl has
been recognized by Ai and false otherwise. Although eventl depends on Q, that continuously evolves
with the time t, it only switches from true to false or vice–versa at particular times tk, with k ∈ N, when
the agents’s mode σi must be updated. Hence, the cooperation manager can be seen as a Discrete Event



5

Fig. 2. Representation of dynamics δ of the automaton of the generic cooperation manager.

System (DES) [21], and indeed an automaton (see Fig. 2), that receives cl as input and updates its state
σi according to rules of the forms
• rule0

def
= (σ(t0) = mode1); ← start in mode1;

• rulej
def
= (if σi(tk) = model and cm(tk) = true then σi(tk+1) = modep).

Referring to the case study, mode1 is Cruise and one of the rules is (if σi(tk) = Cruise and cl(tk) =“aircraft
detected at distance less than d1” = true then σi(tk+1) = Left).

The decoder, connects the output of the the event–based system in (3) with the input of the time–driven
system in (2). It translates or decodes the current maneuver σi(tk) into a control law, typically involving
a feedback of the agent’s configuration of the form

ui(t) = G(qi(t), σi(tk)) , (4)

so that the autonomous controlled system

q̇i(t) = fi(qi(t),G(qi(t), σi(tk)) = f̃i(qi(t), σi(tk)) ,

correctly performs the control planned for the mode σi(tk). The decoder is an application G : Q×Σ→ U
that returns the actuators’ input during the interval [tk, tk+1) (up to next event). In this perspective, G
acts has a converter from a discrete–valued event–driven signal to a continuous– valued time–driven one.
A second block, the encoder, realizes the reverse connection: it evaluates the logical variables ci,l, for
l = 1, . . . , ν, from current value of the system configuration Q. However, in decentralized scenarios as the
ones we are considering, every agent Ai must be able to plan its motion based on its own configuration
qi and the configurations of only the agents that lay in its vicinity. Hence, the encoder output will only
depend on the influence set Ii of agent that instantaneously affects the behavior of Ai.

Due to limited visibility of its sensors, an agent Ai is able to measure the configuration qj of another
agent Aj laying in its visible region Vi. This region changes with time depending on the configurations of
Ai and its neighbors, i.e. Vi(t) = V(qi(t), Q(t)). The remaining part of the configuration space, namely
V̄i(t) = Q \ Vi(t), is the non–visible region and is composed of all those configurations that can not
be “seen” from Ai. Note that our problem requires the knowledge of also the state (σj) of an agent’s
cooperation manager, that is unmeasurable and thus will be estimated. For simplicity, we assume that
Ii ⊆ Vi, i.e. every agent is able to directly measure all information needed for planning its motion, as
otherwise data received from possibly deceiving neighbors must be further validated. As a whole, the
evolution of the continuous–valued time–driven dynamics of the physical system and that of the discrete–
valued event–driven dynamics of the cooperation manager are entangled as it happens in a hybrid system



6

H = (qi, σi, Ii). The behavior of Ai can be written more compactly as{
(q̇i(t), σi(tk+1)) = Hi(qi(t), σi(tk), Ii(t)) ,
(qi(0), σi(0)) = (q0

i , σ
0
i ) ,

(5)

where Hi : Q×Σi×Qni → TQ×Σi is the agent’s hybrid dynamic map [22] and TQ is the tangent space
of Q. We will denote with φHi

(qi(t), σi(t), Ii(t)) the evolution of system (5).

IV. MISBEHAVIOURS AND LOCAL DETECTION

Since our goal is to detect misbehaving agents, we first need to define how a misbehavior may manifest
i.e. how a behavior may deviate from the nominal one. The first assumption is that an agent Ah may
execute trajectories qh(t) that do not comply with the rules of cooperation, but the information it exchanges
with its neighbors is always correct. This can be guaranteed by the use of emerging trusted computing
platforms (see e.g. [23], [24], [25]). Secondly, we consider the fact that the cooperation manager of a
robot is implemented as a control task that runs periodically and that is scheduled every T seconds. This
means that a mode σ is started at the generic discrete time tk

def
= k T and is run up to tk+1. Then, we

assume that the local monitor of each robot and all the robots cooperation manager are synchronized,
which can be obtained by means of e.g. the distributed solution proposed in [26]. The section presents
the architecture of a monitor that can detect such misbehaviours, by using only information available to
the agent. For the sake of clarity we refer to the robot Ai with an on–board monitor as the observer robot
and to Ah as the target robot.

To begin with, consider that, if Ih is completely visible from Ai, it is sufficient to verify that the
trajectory q̄h(t) measured by the observer robot is close enough to the evolution of the cooperative model
H, i.e.

‖q̄h(t)− πQ(φHi
(q̄i(tk), σ̄i(tk), Ii(t)))‖ ≤ ε, ∀t,

where ‖·‖ is the Hausdorff distance, πQ is the projector over the set Q, and ε is an accuracy based on
the quality of available sensors.

Nonetheless, it typically holds that Ih 6⊆ Vi which makes it impossible to directly apply this simple
solution. In other words, it may occur that a robot that influences the behaviour of Ah is not visible by
Ai, For example, referring to Fig. 1(c) B is visible by A while C is not. Hence, the influence region is
partitioned as

Ih = Ih ∩ Q = Ih ∩ (Vi ∪ V̄i) =

= (Ih ∩ Vi) ∪ (Ih ∩ V̄i)
def
= Iobsh ∪ Iunobsh .

Reorder the model’s inputs as Ih = (Iobsh , Iunobsh ), where Iobsh
def
= qi,1, . . . , qi,vi is the list of configurations

known to Ai, and Iunobsh
def
= qi,vi+1, . . . , qi,nh

is the list of remaining configurations that are unknown to i.
Misbehavior of agent Ah during the period [tk, tk+1) can be found by solving the following
Problem 1 (Decentralized Intrusion Detection): Given a trajectory q̄h(t), a list Iobsh (tk) of known con-

figurations, a visibility region Vi, and a desired accuracy ε, determine if there exists an input Îh(tk) =
(Iobsh (tk), Î

unobs
h (tk)) s.t.

‖q̄h(t)− πQ(φHi
(q̄i(tk), σ̄i(tk), ˆIi(t)))‖ ≤ ε, ∀t ∈ [tk, tk+1) .

where Îh represents an “unobservable explanation” whose notion was introduced in DES [27] and used
in [28], [29]. In other words, the problem is to determine if, given the available information, there exist
unobserved conditions that influence the target robot and justify its motion based on the predefined rules.



7

A. Construction of the Local Monitor
The proposed approach is a two–step process: first, Ai computes an a–priori prediction of the set of

possible trajectories that Ah can execute based on the cooperative model Hh and the partially known
influence region (prediction phase); then, the predicted trajectories are compared against the one actually
executed by Ah and measured by Ai and if none of them result close enough, Ah is selected as
uncooperative (verification phase).

The prediction phase involves constructing a predictor H̃h that encodes all the observer’s uncertainty.
The model is composed of a nondeterministic automaton whose state σ̃h ∈ Σh represents the set of
operating modes that Ah can perform based on local information, and whose transitions δ̃ are the same as
in δ. The main challenge in the construction of the automaton is the estimation of an upper approximation
c̃i of each detector condition ch, that is achieved through the results that can be found in [30] and that
are omitted for the sake of space. We hence suppose that each monitor is able to construct a predictor
H̃h.

V. CONSENSUS FOR MISBEHAVIOR DETECTION

The motion misbehavior detection ability of a single local monitor is limited by its partial visibility. In
this section we show how agents can combine the information and reach an agreement on the reputation
of other agents through communication so as to cooperatively react against intruders.

We assume that agents can communicate via one–hop links in order to reduce their detection uncertainty
and “converge” to a unique network decision. In this respect we need to introduce concepts involving
procedures and algorithms aiming to reach an agreement in networks.

A. The Consensus Algorithms
Consider a network whose communication topology is represented by an undirected graph G which is

composed by a set of nodes V = {v1, . . . , vn} linked by edges s.t. an edge ei,j means that the node vi is
able to communicate with node vj . In our case for each agent Ai ∈ Nj there exist an arc from node i to
node j associated to robots Ai and Aj respectively.

Given a graph G, a consensus algorithm is an iterative interaction rule that specifies how each node
vi updates its estimates of the generic information s ∈ S shared among neighbors based on any received
value vj , i.e. it specifies the function ξ : S × S → S which is used to compute

s+i = ξ(si, sj), for i, j = 1, . . . , n.

If the iteration of each node converges toward a common value, a consensus is reached. Typical consensus
algorithms available from the literature assume that exchanged data is represented by real numbers [31],
[32] and is typically combined according to a weighted average rule. More general cases may require
even a nonlinear combination [33], that is still not applicable in our case in which we have n uncertain
measures,

In more general cases the quantities of interest could be possibly non-convex sets, intervals, or logical
values. Motivated by this fact, we need to involve a more general class of consensus algorithms so as
to permit agents sharing locally collected information and eventually “converge” to a unique network
decision. Referring to our scenario, nodes are robots that are monitoring a common neighbor and that are
supposed to communicate as in G in order to reach an agreement on the reputation of the observed robot
Ah. Consider the vector

Rh(tk) =


r
(1)
h (tk)

r
(2)
h (tk)

...
r
(n)
h (tk)

 (6)



8

where r(i)h (tk) represents the reputation of agent Ai about agent Ah after tk steps of the consensus iterative
procedure. Our aim is to design a distributed consensus algorithm allowing us to have limk→∞Rh(tk) =
1r∗h, where r∗h is the centralized reputation vector defined as the vector that would be constructed by a
monitor collecting all initial measures and combining them according to ξ.

A possible solution allowing us to reach an agreement consists in letting agents to share the locally
estimated encoder map ϕh of target robot Ah. In other words, we propose a solution where agents share
any information that is directly measured or reconstructed by inspecting its neighborhood through logical
consensus [12]. After having established an agreement for the value of the encoder map for a generic
agent, they will use the same decision rule and hence decide for the same classification vector. The
proposed idea will be formalized and proved in following section. It is worth noting that, the proposed
consensus on the encoder map ϕh (or equivalently on the events vector ch associated to agent Ah) is the
novel contribution of this paper with respect to related works [12], [13], [14].

B. Convergence of Consensus Algorithm
Given a target robot Ah and n observing agents, the goal of the proposed intrusion detection problem is

hence to let the observing agents to exchange locally available information on the events ch that influence
the behaviour of Ah. Such information is elaborated by each agent and flows among them through a
communication network. Once an agreement on the events ch is reached the evolution of Ah is compared
with the evolution determined by ch and the hybrid dynamic map in (5). If they are not sufficiently close,
Ah is classified as a misbehaving agent.

As mentioned, the information exchanged is the event vector sh estimated by each robot. More formally,
we consider a state vector xi = (xi,1, . . . , xi,κh) ∈ B1×κh , that is a string of bits representing the values
that observing agent Ai may assign to all sub–events that influence the evolution of agent Ah.

Let X(t) = (x1(t)
T , . . . ,xn(t)T )T be the matrix in Bn×κh that represents the network state at the time

t. We assume that each agent is a dynamic node that updates its local state xi through a distributed logical
update function F that depends on its state, on the state of its neighbors and on the observed inputs which
is used to initialize the value of the state, i.e. xi(t+ 1) = Fi(X(t)). Moreover we assume that every agent
is able to produce the logical output vector Y = (y1(t)

T , . . . ,yn(t)T )T ∈ Bn×νh that correspond to the
detector condition (or events vector) ch, estimated by the n observing robots, by using an output function
D depending on the local state, i.e. yi = Di(Xi) = c

(i)
h = (c

(i)
h,1, . . . , c

(i)
h,νh

) is the event vector ch estimated
by robot Ai.

From the heterogeneous peculiarity of the system, in terms of sensors and communication devices as
well as the fact that agents are placed at different locations w.r.t. the target agent, the generic observing
agent i may or may not be able to measure the value of the j–th sub–event associated to Ah, i.e. sh,j . In
this sense, we can conveniently introduce a visibility matrix V ∈ Bn×κh where Vi,j = 1 if, and only if,
agent Ai is able to measure sh,j and Vi,j = 0 otherwise. Moreover, each agent is able to communicate only
with a subset of other agents. Therefore, to effectively accomplish the given decision task, we need that
such an information flows from one agent to another, consistently with available communication paths.

The system can hence be described by the logical functions:
X(t+ 1) = F (X(t))

xi(0) = Ũ(i)

Y (t) = D(X(t))
(7)

where F : Bn×κh → Bn×κh , Φ = Diag(ϕ, . . . , ϕ) with ϕ : Bκh → Bνh , and Ũ(i) provide s̃
(i)
h that is

an initial lower approximation of sh = (sh,1, . . . , sh,κh) based only on observation of the neighborhood
of Ah operated by the i–th agent. In this paper, component–wise inequalities are considered, i.e. a lower
approximation is a vector whose j–th component is less or equal to the j–th component of sh.

We can now introduce the consensus algorithm, i.e. the logical function F , and state the following
result



9

Theorem 1: Given a connected communication graph G, n initial estimates X(0) = (s̃
(1)T
h , . . . , s̃

(n)T
h )T ,

and a visibility matrix V with non–null columns, the distributed logical consensus system{
x+i,j = Vi,j xi,j + ¬Vi,j

(∑
k∈Ni

xk,j
)
,

xi,j(0) = s̃
(i)
h,j ,

(8)

with i = 1, . . . , n and j = 1, . . . , κh converges to the consensus state X = 1n sh in a number of steps
that is less than the graph diameter.

Proof: To prove the proposition, consider factorizing the update rule as follows. If Vi,j = 0, agent i
is unable to autonomously compute sh,j . In this case equation (8) reduces to

x+i,j = ¬Vi,j
(∑

k∈Ni
xk,j
)

=
∑

k∈Ni
xk,j .

Moreover, since each column of V is non–null by hypothesis, there is at least one observing robot, say
the m–th, with complete visibility on the j–th topology ηh,j , which implies s̃(m)

h,j = sh,j . Note that we
have s̃(m)

h,j ≥ s̃
(i)
h,j since s̃(i)h,j is a lower approximation of sh,j . Since G is connected, the real value sh,j

is propagated from agent m to the rest of the network, which implies that there exists a time N̄ ≤
Diam(G) <∞ after which

xi,j =
n∑
k=1

xk,j = s̃
(q)
h,j = sh,j .

If instead Vi,j = 1, agent i has complete knowledge of the j–th topology ηh,j and its update rule (8)
specializes to

x+i,j = Vi,j xi,j = xi,j ,

and its initial estimate is s̃(i)h,j = sh,j . It trivially holds that xi,j = sh,j , which proves the theorem.
It is worth noting that the hypothesis on the column of V corresponds to the fact that each topology of
Ah is visible by at least one of the observing agents.

Once a consensus has been reached on the event vector sh we still need to prove that the output of
system (7) solves the intrusion detection problem and allows to identify if the target robot follows or not
the predefined rules.

Theorem 2: Given a connected communication graph G, a visibility matrix V with non-null columns,
an output function Φ = (ϕ, . . . , ϕ) s.t. ϕ(sh) = ch, the distributed logical consensus system (7) where F
is given by (8) solves Problem 1.

Proof: To prove the theorem we need to prove that the vector (6) is such that r(i)h (N̄) = r∗h with
N̄ < ∞ and i = 1, . . . , n. With Theorem 1 we proved that X(N̄) = 1n sh. This means that Φi(xi) =

ϕ(sh) = ch and the predictor H̃h
(i)

(q̃
(i)
h , σ̃

(i)
h , Ĩ

(i)
h ), i = 1, . . . , n, (introduced in Section IV-A) is initialized

with the value σ̃(i)
h (0) corresponding to the most conservative hypothesis on the activation of ch which is

the same for all observing agents, i.e. σ̃(i)
h (0) = σ̃∗h(0), i = 1, . . . , n where σ̃∗h(0) = σ̃h(0) in the case the

estimated event vector c̃h is equal to ch. Thus, we have that the estimated state σ̃(i)
h , i = 1, . . . , n becomes

σ̃
(i)
h (tk+1) = δ̃(σ̃

(i)
h (tk), c̃

(i)
h (tk+1))

= δ̃(σ̃∗h(tk), c̃h(tk+1))) = σ̃∗h(tk+1)

According to this, we can compute αr as

‖q̄h(t)− πQ(φH̃(q̄h(t),
i σ̃

(i)
h (tk), I

i
h(t)))‖ = αr, (9)

∀t ∈ [tk, tk+1, i = 1, . . . , n.

If αr > ε we have that the trajectory of Ah is not compatible with the nominal one and hence it is
considered as misbehaving, i.e. r(i)h =misbehaving, i = 1, . . . , n which proves the theorem.



10

VI. APPLICATION TO REAL SCENARIO:A CASE STUDY SPECIFICATION

In the EU Project PLANET, we consider an Highly Automated Airfield scenario in which UAVs
operations (including taking off, flying and landing) are highly automated with none or minor human
intervention. In the scenario we consider multiple UAVs that share the same aerial space and that cooperate
according to a set of predefined cooperation rules in order to safely perform operations. In this context, a
UAV misbehaves when its behavior deviates from the assigned rules due to any cause including failures,
malicious tampering, wind, and guidance problems. Given, the possible safety consequences, a misbehavior
must be thus detected by the other UAVs so that appropriate countermeasures can be taken.

In order to practically verify the effectiveness of the MMD theory presented in the previous sections,
we consider a scenario involving four UAVs that cooperate to avoid collisions. We assume that UAVs, in
order to avoid collisions and maintain safety, can take the same set of maneuvers, namely, i) to accelerate
up to maximum speed (FAST); ii) to change route to the right with a predefined angle (RIGHT) upon detecting
a possible collision with another UAV. We also assume that UAVs have the same model of dynamics and
controllers and that they can communicate in one-hop.

A. Experimental Setup
The described scenario will involve two real UAVs and two simulated UAVs, i.e., UAVs whose behavior

will be simulated by a Simulink Model. In the following paragraph we will briefly describe the main
characteristics of the simulator and of the 2 real UAVs: the “Skywalker” and the “Locomove” aircraft.

1) Simulator: In Fig. 3 is reported the Simulink model used for the simulations aiming at evaluating
the MMD.

It is composed by two kind of different blocks: the Airplane block (Fig. 5(a)) and the Monitor Block
(Fig. 5(b)). The airplane block represents the aircraft standard model which has been implemented
according to the agents model defined in Section III. In particular, the event–driven dynamics implements a
cooperative behavior based on simple rules to avoid collisions among aircraft while executing the assigned
task. Indeed, each aircraft follows the assigned flight plan, and if a collision is detected it changes its
route to right with a predefined angle following the rules represented in Fig. 4. It is worth noting that the
minimum distance that triggers a collision alarm in aircraft is chosen such as, if the behavior is correct,
aircraft are allowed to avoid themselves in any conditions.

The time driven dynamics has been provided by CATEC and it approximates the behavior of the real
aircraft that will be then used in the experiments (see Section VI-A).

The monitor block represents the distributed Motion Misbehavior Detection system presented in Sec-
tion V. In particular it implements the proposed two–step process: first, the aircraft combines the infor-
mation gathered from on–board sensors and from neighbors by using communication and computes an
a–priori prediction of the set of possible trajectories that the observed aircraft should execute based on
the cooperative rules (prediction phase); then, the predicted trajectories are compared against the one
actually executed and measured by the aircraft itself and if none result close enough, the observed aircraft
is selected as uncooperative (verification phase).

2) The Locomove and the Skywalker Aircraft: The “Locomove” (Fig. 6(a)) is an UAV, designed,
developed, and built in FADA-CATEC. It is sufficiently lightweight and has an adequate size such that
it can be hand launched. The maximum take-off weight is 5.5 kg. A minimum endurance of 40 min is
achieved and as power plant an electrical motor powered with LiPo batteries is used . The payload is
500−600 g which allows the user to implement different sensors for a wide range of applications. In full
autonomous mode, the aircraft is able to land in flat grounds with wide clearance to obstacles. The UAV
lands over its belly, which has a reinforcement to avoid any damage in the fuselage. The aircraft uses a
ground based realtime barometric pressure corrections server to precisely measure the altitude over the
ground level at the landing area. For the touchdown phase, the aircraft also uses a sonar range finder.

The “Skywalker” (Fig. 6(b)) is instead a commercial product. It is lightweight and it has an adequate
size such that it can be hand launched. The maximum take-off weight is 3 kg. It has a minimum endurance



11

n_Air & n_target

In1

In2

In3

In4

Trajectory Plots

Sim Rate
Simulation Rate

posRel_tot

velNED_tot

ghost_posRel_Air2

ghost_velNED_Air2

Monitor_Airplane_3

posRel_tot

velNED_tot

ghost_posRel_Air2

ghost_velNED_Air2

Monitor_Airplane_1

posRel

ghost_posRel

agentMonitor

normErr

Misbehaviour Plot_Air3

posRel

ghost_posRel

agentMonitor

normErr

Misbehaviour Plot_Air1

[ghost_velNed_21]

[ghost_posRel_21]

[target_3]

[ghost_velNed_tot]

[ghost_posRel_tot]

[target_2]

[target_1]

[velNed_tot][posRel_tot]

[velNed_4]

[velNed_3]

[target_tot]

[velNed_2]

posRel_4

posRel_3

posRel_2

[target_4]

[ghost_velNed_23]

[ghost_posRel_23]

[velNed_1]

[posRel_1]

posRel_3

[posRel_1]

[posRel_tot]

[velNed_tot]

[posRel_tot]

[velNed_tot] [posRel_tot]

[ghost_posRel_21]

posRel_2

[ghost_posRel_23]

posRel_2

[posRel_tot]

[velNed_tot]

[ghost_velNed_21]

[ghost_velNed_23]

[ghost_velNed_24]

[posRel_tot]

[posRel_tot]

[velNed_tot]

[posRel_tot]

[ghost_posRel_21]

[ghost_posRel_23]

[ghost_posRel_24]

[target_tot]

[target_3]

[target_1]

[target_2]

[target_4]

[velNed_3]

[velNed_1]

[velNed_tot]

[velNed_2]

[velNed_4]

posRel_2

posRel_4

[velNed_tot]

[posRel_tot]

Display2

Display1

0

0

1

3

4

In1

Collision Allert

posREL_tot

velNED_tot

posRel_4

velNED_4

target_4

Airplane_4

posRel_tot

velNed_tot

posRel_Air3

velNed_Air3

curr_target_Air3

Airplane_3(UDP_connection)

posREL_tot

velNED_tot

posRel_2

velNED_2

target_2

Airplane_2

posRel_tot

velNed_tot

posRel_Air1

velNed_Air1

curr_target_Air1

Airplane_1(UDP_connection)

? Simulator_ca_mmd_udp_4air_LUCIA*

Fig. 3. The Simulink Model used for the simulations.

Fig. 4. Rules with related automaton used in the experiments.

of 30 min since it uses an electrical motor powered with LiPo batteries. The payload is 250−300 g which
allows the user put on–board the sensors for different kind of applications.



12

n_Air & n_target

In1

In2

In3

In4

Trajectory Plots

Sim Rate
Simulation Rate

posRel_tot

velNED_tot

ghost_posRel_Air2

ghost_velNED_Air2

Monitor_Airplane_3

posRel_tot

velNED_tot

ghost_posRel_Air2

ghost_velNED_Air2

Monitor_Airplane_1

posRel

ghost_posRel

agentMonitor

normErr

Misbehaviour Plot_Air3

posRel

ghost_posRel

agentMonitor

normErr

Misbehaviour Plot_Air1

[ghost_velNed_21]

[ghost_posRel_21]

[target_3]

[ghost_velNed_tot]

[ghost_posRel_tot]

[target_2]

[target_1]

[velNed_tot][posRel_tot]

[velNed_4]

[velNed_3]

[target_tot]

[velNed_2]

posRel_4

posRel_3

posRel_2

[target_4]

[ghost_velNed_23]

[ghost_posRel_23]

[velNed_1]

[posRel_1]

posRel_3

[posRel_1]

[posRel_tot]

[velNed_tot]

[posRel_tot]

[velNed_tot] [posRel_tot]

[ghost_posRel_21]

posRel_2

[ghost_posRel_23]

posRel_2

[posRel_tot]

[velNed_tot]

[ghost_velNed_21]

[ghost_velNed_23]

[ghost_velNed_24]

[posRel_tot]

[posRel_tot]

[velNed_tot]

[posRel_tot]

[ghost_posRel_21]

[ghost_posRel_23]

[ghost_posRel_24]

[target_tot]

[target_3]

[target_1]

[target_2]

[target_4]

[velNed_3]

[velNed_1]

[velNed_tot]

[velNed_2]

[velNed_4]

posRel_2

posRel_4

[velNed_tot]

[posRel_tot]

Display2

Display1

0

0

1

3

4

In1

Collision Allert

posREL_tot

velNED_tot

posRel_4

velNED_4

target_4

Airplane_4

posRel_tot

velNed_tot

posRel_Air3

velNed_Air3

curr_target_Air3

Airplane_3(UDP_connection)

posREL_tot

velNED_tot

posRel_2

velNED_2

target_2

Airplane_2

posRel_tot

velNed_tot

posRel_Air1

velNed_Air1

curr_target_Air1

Airplane_1(UDP_connection)

? Simulator_ca_mmd_udp_4air_LUCIA*

(a) Airplane Simulink block

n_Air & n_target

In1

In2

In3

In4

Trajectory Plots

Sim Rate
Simulation Rate

posRel_tot

velNED_tot

ghost_posRel_Air2

ghost_velNED_Air2

Monitor_Airplane_3

posRel_tot

velNED_tot

ghost_posRel_Air2

ghost_velNED_Air2

Monitor_Airplane_1

posRel

ghost_posRel

agentMonitor

normErr

Misbehaviour Plot_Air3

posRel

ghost_posRel

agentMonitor

normErr

Misbehaviour Plot_Air1

[ghost_velNed_21]

[ghost_posRel_21]

[target_3]

[ghost_velNed_tot]

[ghost_posRel_tot]

[target_2]

[target_1]

[velNed_tot][posRel_tot]

[velNed_4]

[velNed_3]

[target_tot]

[velNed_2]

posRel_4

posRel_3

posRel_2

[target_4]

[ghost_velNed_23]

[ghost_posRel_23]

[velNed_1]

[posRel_1]

posRel_3

[posRel_1]

[posRel_tot]

[velNed_tot]

[posRel_tot]

[velNed_tot] [posRel_tot]

[ghost_posRel_21]

posRel_2

[ghost_posRel_23]

posRel_2

[posRel_tot]

[velNed_tot]

[ghost_velNed_21]

[ghost_velNed_23]

[ghost_velNed_24]

[posRel_tot]

[posRel_tot]

[velNed_tot]

[posRel_tot]

[ghost_posRel_21]

[ghost_posRel_23]

[ghost_posRel_24]

[target_tot]

[target_3]

[target_1]

[target_2]

[target_4]

[velNed_3]

[velNed_1]

[velNed_tot]

[velNed_2]

[velNed_4]

posRel_2

posRel_4

[velNed_tot]

[posRel_tot]

Display2

Display1

0

0

1

3

4

In1

Collision Allert

posREL_tot

velNED_tot

posRel_4

velNED_4

target_4

Airplane_4

posRel_tot

velNed_tot

posRel_Air3

velNed_Air3

curr_target_Air3

Airplane_3(UDP_connection)

posREL_tot

velNED_tot

posRel_2

velNED_2

target_2

Airplane_2

posRel_tot

velNed_tot

posRel_Air1

velNed_Air1

curr_target_Air1

Airplane_1(UDP_connection)

? Simulator_ca_mmd_udp_4air_LUCIA*

(b) Monitor Simulink block

Fig. 5. Components of the Simulink Model.

(a) (b)

Fig. 6. The Locomove (Fig. 6(a)) and the Skywalker (Fig. 6(b)).

3) The Autopilot: Both the Skywalker and the Locomove in fully autonomous mode are flying under
the control of an autopilot which has been developed by CATEC. CATEC’s autopilot has been designed
to serve as a generic prototyping platform of GNC algorithms allowing the adoption of a model based
design approach with rapid prototyping capability. It provides a wide enough diversity of interfaces to be
able to connect different sensors and payloads and implements appropriate safety mechanisms in order to
assure safe operations (Fig 7). This autopilot has been used in the PLANET project to develop guidance,
navigation and control algorithms and allows the integration of Simulink models, so developing and testing
different algorithms is easy and fast.

Fig. 7. The main hardware subsystems that are part of the autopilot.

The software of the autopilot has been designed with the Matlab Simulation tool Simulink. It is designed
in a modular way, so it is made up of modules and each of them has a certain and specific function.
They connect/communicate each other by means of a set of interfaces that has been defined in order to
standardize the design methodology. The different modules that form the overall system are: estimator,
navigator, controller, RC signals manager and a manager of signals for servos (Fig 8). Each module is
independent and exchangeable, so different estimation, navigation or control algorithms can be tested by



13

Fig. 8. Autopilot Software Overview: modules and interfaces.

adding a new module that fulfills the required interfaces.

Fig. 9. Estimator blocks diagram.

The estimator is reported in Fig. 9. It receives the data from the sensors: position and velocity from
GPS, accelerations, rates and magnetic field components from the IMU and pressure data from the ADS.
The main function of this module is to provide an accurate estimation of the aircraft states (global and
relative position, ground speed, airspeed and attitude). For that purpose, the estimator combines inertial
measurements with GPS information in an optimal way in order to have states information with high
frequency and similar or lower position error than the GPS data has.

The navigator deals with the commands given in the Flight Plan. It combines the states of the aircraft
(State Data) with the flight plan commands in order to generate the references (Navigator References) that
must be followed by the controller. The references are generated depending on the flight mode: route of
waypoints, take-off, landing, cruise flight, loitering, etc. The controller is responsible for the generation of
signals for the actuators in order to have the required behavior in the aircraft so it follows the commands
of the flight plan. The controller receives the Navigator References and the State Data, computes the
error between the desired state and the current state and after a sequence of several loops generates the
commands for the actuators. The output signals from the controller must be adapted to signals for the
servos. In this module, the conversion from controller signal to I2C or PWM signal is done.

B. Experimental Results
Consider the distributed system composed of 4 autonomous UAVs presented above (Fig 11). The four

UAVs, namely A1 (cyan), A2 (red), A3 (green), A4 (blue) are flying over waypoints on the ground that
are represented by black points. A1 (cyan), A4 (blue) are simulated , while A2 (red) is the Locomove,
and A3 (green) is the Skywalker. An image of the real scenario with plotted trajectories and waypoints
is reported in Figure 10.

With reference to Figure 11, assume that the observed Locomove A2 is performing a FAST maneuver
even though a collision with A1 should be detected. The UAV is uncooperative as its (actual) trajectory
is different from that expected from the cooperation rules. Actually, according to the expected trajectory,
A2 should perform a RIGHT maneuver to avoid collision with A1.

Monitors on UAVs A1, A3, and A4 combine the information from the on-board sensors and the
information gathered from the other UAVs to learn whether A2 is cooperative or not. Experiments shows



14

Fig. 10. Picture of the real scenario with plotted trajectories and waypoints.

(a) t = 5 (b) t = 6 (c) t = 7

(d) t = 8 (e) t = 9 (f) t = 10

Fig. 11. Experiments run of the scenario described in Section VI-A. The Locomove (red) UAV is violating the assigned rules since it is
not applying any collision avoidance rule.



15

that UAVs A1, A3, and A4 correctly execute the monitor and consent on the uncooperativeness of UAV A2.
Indeed, Figures 12(a)–12(b) show the run of monitors of UAVs A1, A3, and A4, respectively. They
correctly look like the same. Each one displays that the actual trajectory of UAV A2 differs from the
expected one. In the experiment, A3, the Skywalker, triggers an alarm for the misbehavior of A2, the
Locomove, allowing the system to take an adequate countermeasures.

(a) Monitor of A1 (b) Monitor of A3 (c) Monitor of A4

Fig. 12. Run of the monitors of A1, A3, and A4 when A2 misbehaves (see Fig.11).

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented a method for designing distributed algorithms for detecting misbe-
haviours in systems composed of a group of autonomous cooperative objects. The detection mechanism
that we have presented give robots the ability to monitor the behavior of neighbors and to detect robots that
do not follow the assigned cooperation rules, due to spontaneous failure or malicious intent. The method
is fully distributed and is based on a local monitor that can be systematically built once the cooperation
rules are specified. Although the method is general and can be applied to a wide range of applications, it
has been tested with simple experiments involving real UAVs: results have been encouraging and motivate
future research on this topic aiming at using the MMD as a method to monitor real systems composed
of aircraft sharing the environment. Furthermore, starting from the previous experience on work [14],
[34], future developments of MMD will consider the Byzantine Generals disagreement problem for the
consensus approach in order to add the necessary redundancy in sensors to make the MMDS robust also
to the failure of them.

ACKNOWLEDGMENTS

This work has been supported by the European Commission within the Integrated Project PLANET,
“PLAtform for the deployment and operation of heterogeneous NETworked cooperating objects,” grant no.
FP7-2010-257649 (http://planet.etra-id.com/); the Italian Ministry of Education, University and Research
within the PRIN project TENACE, “Protecting National Critical Infrastructures from Cyber Threats,” grant
no. 20103P34XC 008 (http://www.dis.uniroma1.it/∼tenace/); and, the Tuscany Region within the project
PITAGORA, “Innovative technologies and processes for Airport Management” under the POR CReO
2007-2013 Framework.

REFERENCES

[1] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and theory,” IEEE Transactions on Automatic Control, vol. 51,
no. 3, pp. 401–420, 2006.

[2] A. Danesi, A. Fagiolini, I. Savino, L. Pallottino, R. Schiavi, G. Dini, and A. Bicchi, “A scalable platform for safe and secure decentralized
traffic management of multi-agent mobile system,” ACM Proc. Real–World Wireless Sensor Network, 2006.

[3] B. McQueen and J. McQueen, Intelligent transportation systems architectures. Artech House Publishers, 1999.
[4] C. Kube and E. Bonabeau, “Cooperative transport by ants and robots,” Robotics and autonomous systems, vol. 30, no. 1-2, pp. 85–102,

2000.



16

[5] L. Pallottino, V. Scordio, A. Bicchi, and E. Frazzoli, “Decentralized cooperative policy for conflict resolution in multivehicle systems,”
IEEE Transactions on Robotics, vol. 23, no. 6, pp. 1170–1183, 2007.

[6] F. Bullo, J. Cortés, and S. Martinez, Distributed control of robotic networks. Princeton University Press, 2007.
[7] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in networked multi-agent systems,” Proceedings of the IEEE,

vol. 95, no. 1, p. 215, 2007.
[8] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE

Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.
[9] J. Fax and R. Murray, “Information flow and cooperative control of vehicle formations,” IEEE Transactions on Automatic Control,

vol. 49, no. 9, pp. 1465–1476, Sept. 2004.
[10] A. Fagiolini, M. Pellinacci, G. Valenti, G. Dini, and A. Bicchi, “Consensus-based distributed intrusion detection for multi-robot systems,”

in Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, may 2008, pp. 120 –127.
[11] F. Pasqualetti, A. Bicchi, and F. Bullo, “Distributed intrusion detection for secure consensus computations,” in Proc. 46th IEEE Conf.

on Decision and Control, New Orleans, LA, USA, 12–14 December 2007, pp. 5594–5599.
[12] A. Fagiolini, E. Visibelli, and A. Bicchi, “Logical Consensus for Distributed Network Agreement,” in IEEE Conf. on Decision and

Control, 2008, pp. 5250–5255.
[13] A. Fagiolini, S. Martini, D. Di Baccio, and A. Bicchi, “A self-routing protocol for distributed consensus on logical information,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010. IROS 2010., 2010.
[14] S. Martini, D. Di Baccio, A. Fagiolini, and A. Bicchi, “Robust network agreement on logical information,” in 18th IFAC World Congress,

IFAC 2011, 2011.
[15] C. Tomlin, G. Pappas, and S. Sastry, “Conflict resolution for air traffic management: a study in multiagent hybrid systems,” Automatic

Control, IEEE Transactions on, vol. 43, no. 4, pp. 509–521, Apr 1998.
[16] J. Kosecka, C. Tomlin, G. Pappas, and S. Sastry, “Generation of conflict resolution manoeuvres for air traffic management,” in Intelligent

Robots and Systems, 1997. IROS ’97., Proceedings of the 1997 IEEE/RSJ International Conference on, vol. 3, Sep 1997, pp. 1598–1603
vol.3.

[17] L. Pallottino, V. Scordio, A. Bicchi, and E. Frazzoli, “Decentralized cooperative policy for conflict resolution in multivehicle systems,”
Robotics, IEEE Transactions on, vol. 23, no. 6, pp. 1170–1183, Dec 2007.

[18] S. Kato, S. Nishiyama, and J. Takeno, “Coordinating mobile robots by applying traffic rules,” in Proc. of the lEEE/RSJ International
Conference onIntelligent Robots and Systems, vol. 3, 1992.

[19] A. Bicchi, A. Danesi, G. Dini, S. La Porta, L. Pallottino, I. M. Savino, and R. Schiavi, “Heterogeneous wireless multirobot system,”
Robotics and Automation Magazine, IEEE, vol. 15, no. 1, pp. 62–70, 2008.

[20] A. Bicchi, A. Fagiolini, and L. Pallottino, “Towards a society of robots: Behaviors, misbehaviors, and security,” Robotics & Automation
Magazine, IEEE, vol. 17, no. 4, pp. 26–36, 2010.

[21] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2006.

[22] J. Lygeros, “Lecture notes on hybrid systems,” in Notes for an ENSIETA workshop. Citeseer, 2004.
[23] S. Pearson and B. Balacheff, Trusted computing platforms: TCPA technology in context. Prentice Hall PTR, 2003.
[24] B. Chen and R. Morris, “Certifying program execution with secure processors,” in USENIX HotOS Workshop, 2003, pp. 133–138.
[25] R. Gallo, H. Kawakami, and R. Dahab, “Fortuna-a framework for the design and development of hardware-based secure systems,”

Journal of Systems and Software, 2013.
[26] L. Schenato and G. Gamba, “A distributed consensus protocol for clock synchronization inwireless sensor network,” IEEE Conf. on

Decision and Control, Dec 2007.
[27] A. Giua and C. Seatzu, “Fault detection for discrete event systems using petri nets with unobservable transitions,” in Proc. IEEE

Conference on Decision and Control and European Control Conference, 2005, pp. 6323–6328.
[28] F. Basile, P. Chiacchio, and G. De Tommasi, “Improving on-line fault diagnosis for discrete event systems using time,” 2007, pp.

26–32.
[29] Y. Ru, M. Cabasino, A. Giua, and C. Hadjicostis, “Supervisor Synthesis for Discrete Event Systems with Arbitrary Forbidden State

Specifications,” in IEEE Conf. on Decision and Control, 2008, pp. 1048–1053.
[30] S. Martini, A. Fagiolini, G. Zichittella, M. Egerstedt, and A. Bicchi, “Decentralized classification in societies of autonomous and

heterogenous robots,” in ICRA. Proceedings of the IEEE International Conference on Robotics and Automation, 2011.
[31] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in networked multi-agent systems.” Proceedings of the IEEE,

vol. 95, no. 1, pp. 215–233, 2007.
[32] R. Olfati-Saber, , and R. N. Murray, “Consensus Problems in Networks of Agents with Switching Topology and Time–Delays,” IEEE

Transactions on Automatic Control, 2004.
[33] J. Cortès, “Distributed algorithms for reaching consensus on general functions,” Automatica, vol. 44, no. 3, pp. 726–737, Mar. 2008.
[34] A. Bicchi, A. Fagiolini, G. Dini, and I. M. Savino, “Tolerating, malicious monitors in detecting misbehaving robots,” in Safety, Security

and Rescue Robotics, 2008. SSRR 2008. IEEE International Workshop on. IEEE, 2008, pp. 109–114.


