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Inhibitors of the renal outer medullary potassium channel: a patent review. 

Abstract 

Introduction: Hypertension represents a substantial cardiovascular risk factor. Among anti-

hypertensive drugs, diuretics play an important role. Nevertheless, they present adverse effects like 

hypokalemia or hyperkalemia. In this panorama, inhibitors of the renal outer medullary potassium 

(ROMK) channels are emerging because they are predicted to give a diuretic/natriuretic activity 

higher than that provided by loop diuretics, without hypokaliemic and hyperkaliemic side effects.  

Areas covered: This article reviews the current literature, including all the patents published in the 

field of inhibitors of the ROMK channels for the treatment of hypertension, heart failure and 

correlated diseases. The patent examination has been carried out using electronic databases 

Espacenet. 

Expert opinion: Although anti-hypertensive drugs armamentarium enumerates a plethora of 

therapeutic classes, including diuretics, the novel class of ROMK inhibitors may find a place in this 

crowded market, because of the diuretic/natriuretic effects, devoid of worrying influence on 

potassium balance. The patent examination highlights, as a strength, the individuation of a 

successful template: almost all the compounds show noteworthy potency. However, only few 

selected compounds underwent an in vivo investigation of diuretic and anti-hypertensive activities, 

and no data on hERG channel are given in these patents. 
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Article highlights 

 Hypertension is a common chronic disease characterized by elevated systemic arterial blood 

pressure. It represents a risk factor for several cardiovascular accidents; hence, the therapy 

for hypertension is of fundamental importance. 

 Heart failure is another widespread pathologic condition which leads to edematous states 

often treated with diuretic drugs. 

 Diuretics agents have a key role, but could present adverse effects, such as for example, 

hypokalemia for loop and thiazide diuretics and hyperkalemia for amiloride.  

 A new class of diuretics, inhibitors of the renal outer medullary potassium (ROMK) 

channels, is predicted to give a diuretic/natriuretic activity higher than that provided by loop 

diuretics, thanks to ROMK channels in TALHL and CDD. 

 About twenty patent and 1700 compounds by Merck Sharpe & Dome have been examined: 

IC50 values determined in in vitro electrophysiological, thallium flux and 86Rb+ efflux assays 

are reported. Few selected compounds underwent deeper pharmacological characterization 

in vivo on rat diuresis and recording of blood pressure on spontaneously hypertensive rats. 

 On the basis of these preliminary data, some selected compounds are promising prototypes 

of a newest class of diuretic agents useful for hypertension and heart failure. 
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List of abbreviations: 

ROMK = renal outer medullary potassium  

TALHL = thick ascending limb of Henle’s loop  

CCD  = cortical collecting duct 

CT  = collecting tubule  

ENaC = epithelial sodium channel 

PKA = protein kinase A  

PIP2 = phosphatidylinositol 4,5-biphosphate  

CFTR = cystic fibrosis transmembrane conductance regulator  

HTS = high-throughput screening  

CHO = Chinese hamster ovary 

HEK = human embryonic kidney 

SAR = Structure Activity Relationships  

MSD = Merck Sharp & Dome 

SHR = spontaneously hypertensive rats  

BK = Large-conductance Ca2+-activated potassium channels  

EP  = electrophysiology  
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1. Introduction  

The renal outer medullary potassium (ROMK or Kir 1.1) channel belongs to the family of inwardly 

rectifying potassium channels and plays an important role in K+ recycling in the thick ascending 

limb of Henle’s loop (TALHL) across the luminal membrane and in K+ secretion in the collecting 

tubule (CT) and especially in the cortical collecting duct (CCD) [1-3]. At the TALHL level, the 

ROMK channel mediates the K+ efflux required by the Na+/K+/2Cl- co-transporter for NaCl 

transport, important for the urinary concentrating mechanism, and contributes to the TALHL 

transepithelial current flow and membrane potential necessary for paracellular Na+ and Ca2+ 

reabsorption (Figure 1) . Therefore, the pharmacological inhibition of the ROMK-mediated 

potassium flow into the lumen is coupled with an indirect inhibition of  the Na+/K+/2Cl- co-

transporter, without the potassium leak, typical of the direct inhibitors of this co-transporter (i.e. 

loop diuretics). Instead, on the principal cells of the CCD, the ROMK channel represents the 

fulcrum of the K+ secretion pathway, coupled with the Na+ uptake through the amiloride-sensitive-

Na+ channels (or the epithelial sodium channel, ENaC), and is essential for K+ homeostasis [4] 

(Figure 1). Consistently, the pharmacological inhibition of the ROMK channels impedes the 

K+/Na+ exchange in the CDD. Even if the ROMK channels are the most important pathway for the 

K+ secretion into the lumen, ROMK inhibition is not associated with the K+ retention and 

consequent hyperkalemia (typical of ENaC inhibition), because of the compensatory activation of 

the large-conductance Ca++-activated potassium channels (BK) (Figure 1) [5].  It is therefore 

evident that factors influencing the activity of the ROMK channel have a crucial role on K+ 

secretion and renal concentrating mechanisms, and can deeply influence diuresis and blood pressure 

regulation.  

Many endogenous intracellular factors regulate the ROMK channel: protein kinase A (PKA), 

phosphatidylinositol 4,5-biphosphate (PIP2), ATP and pH. PKA-mediated phosphorylation on three 

separate sites regulates the channel opening process and is necessary for full channel function [6]; 
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PIP2 is an essential Kir channel cofactor, required to maintain the open state of all inward-rectifying 

potassium channels, and the ROMK channel tightly interacts with PIP2 [7]. Moreover PKC-induced 

PIP2 hydrolysis inhibits ROMK channel activity in Xenopus oocytes suggesting an explanation for 

PKC modulation of the ROMK channel in the collecting duct [8]. Differently from a classical ATP-

sensitive potassium channel, the ROMK channel is inhibited by physiological concentration of 

cytosolic ATP so long as it is expressed with the cystic fibrosis transmembrane conductance 

regulator (CFTR) [9]. Finally, intracellular pH influences ROMK channel activity, because a 

cytosolic acidification inhibits the ROMK channel and induces a long-live closed state [10]. ROMK 

channels are localized in TALHL, CT and CCD, (Figure 1) which are the sites of action of three 

different classes of diuretics respectively: a) Na+/K+/2Cl- co-transporter, responsible for ~ 30% of 

salt reabsorption, represents the pharmacological target of furosemide (the prototypical loop 

diuretic); b) the Na+ /Cl- co-transporter, responsible for ~ 7% of salt reabsorption, is the 

pharmacological target of thiazide diuretics; c) the amiloride-sensitive epithelial Na+ channels 

(ENaC), i.e. the pharmacological target of amiloride and triamterene. Due to the tight coupling 

between Na+ reabsorption and K+ secretion in the CCD, loop and thiazide diuretics are associated 

with hypokalemia, while amiloride induces hyperkalemia. On the contrary, the new class of diuretic 

drugs, able to inhibit selectively the ROMK channels, would be predicted to give a 

diuretic/natriuretic activity higher than that provided by loop diuretics (thanks to the ROMK 

channels in the TALHL), with reduced risk of hypokalemia typical of loop diuretics and thiazides 

[11], thanks to ROMK in CCD. Moreover, the observation that type II Bartter’s syndrome, a rare 

autosomal recessive salt-wasting nephropathy characterized by polyuria, hypokalemia, metabolic 

alkalosis and hypotesion, caused by inactivating mutations in the ROMK channels [12], leads to 

reduced blood pressure values [13], reinforces the belief that the ROMK channels may be new 

targets for a new class of diuretic agents employable in hypertension and edematous states such as 

heart failure.  
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2. ROMK inhibitors 

The first discovered ROMK inhibitor was a bee venom peptide, tertiapin, which was able to inhibit 

rat channel, but it was 100-fold less potent on human isoform [14,15]. In 2009, Lewis and 

colleagues, at the Vanderbilt University, through high throughput screening, discovered a small-

molecule that was an inhibitor of the ROMK channel: VU590 (7,13-bis(4-nitrobenzyl)-1,4,10-

trioxa-7,13-diazacyclopentadecane) [16]. Subsequently, the synthetic exploration of VU590, led to 

the identification of a structurally related small-molecule, VU591 (2,2I-oxybis(methylene)bis(5-

nitro-1H-benzo-[d]imidazole) [17] (Figure 2). VU590 and VU591 inhibit ROMK interacting with 

its intracellular pore with IC50 values of 0.29 and 0.24 µM, respectively. As regards the other 

inwardly rectifying channels expressed in the kidney (see Figure 1), VU590 has no activity on 

Kir2.1 and Kir4.1, but inhibits Kir7.1; while, VU591 shows a higher selectivity for Kir1.1 over 

other Kir channels. Moreover, VU591 inhibits potassium transport (without effetcs on net sodium 

transport) in the experimental model of isolated-perfused rat collecting distal tubules, suggesting an 

encouraging basis for ROMK inhibition in further in vivo experiments [16,17]. Independently from 

the studies of the Vanderbilt's group, Merck researchers carried out an high-throughput screening 

(HTS) on about 1.5 M molecules and, among them, the 4-nitrophenethyl-piperazine (Compound 1, 

Figure 3) was early, but erroneously, indicated as a lead ROMK inhibitor and submitted to 

extensive studies for identifying its possible activity on other relevant potassium channels, such as 

Kir2.1 (the inhibition of Kir2.1 channels expressed in heart ventricle is recognized in long QT 

syndrome) and hERG (hERG inhibition is considered the main undesidered mechanism of QT 

prolonging cardiotoxic drugs, such as cisapride [18]. Unexpectedly, when Compound 1 was 

subjected to repurification by HPLC, the ROMK inhibitory activity was lost. Through a careful 

examination of the LC-MS features it was discovered that the activity was not due to Compound 1, 

but to a minor impurity that was present before the repurification: 1,4-bis(4-

nitrophenethyl)piperazine (Compound 2). Compound 2 displayed good ROMK inhibitory activity 
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(IC50=0.052 µM) and excellent selectivity over the Kir2.1 and Kir2.3 channels (IC50>100 µM). 

Unfortunately, it showed  high potency on the hERG channel (IC50=0.005µM) [19,20] (Figure 3). 

Starting from this lead compound, the Merck researchers' strategy focused on the identification of 

bioisosteric replacements of the nitro groups. Among them, benzonitriles, 5-benzo(2,1,3-

oxadiazole) and 4-phthalide groups maintained an appreciable ROMK block, but only the 4-

phthalide moiety (Compound 3) led to a very encouraging result, reducing the potency on hERG by 

about 20-fold (ROMK IC50= 0.089 µM, hERG IC50= 0.15 µM) (Figure 4). Other Structure Activity 

Relationships (SAR) showed that even small changes in the distance between the nitro groups (both 

in shortening and in lengthening), as well as methyl substitution in the core skeleton, resulted in 

loss of potency [19]. In a second generation of ROMK inhibitors (developed by Merck), researchers 

explored analogues of compound 2 in which both the nitrophenyl groups were replaced with bis-4-

cyanophenyl, bis-5-benzo (2,1,3-oxadiazole) or bis-4-phthalide. The latter showed an appreciable 

ROMK inhibitory potency, being about 20-fold selective over the hERG channel (ROMK IC50= 

0.089 µM, hERG IC50= 1.9 µM) (Compound 4, Figure 4). The hybridization of these three 

pharmacophores led to a series in which compound 5 represented the most potent ROMK inhibitor 

(ROMK IC50= 0.30 µM, hERG IC50= 0.43 µM) (Figure 4). Further investigations on compound 5 

demonstrated that halides substituents (in ortho position to the nitrile group) gave derivatives 

almost equivalent to compound 3; while, an increase in the size of the substituents determined a 

decrease in ROMK inhibitory potency. Interestingly, among them, some analogues markedly 

improved the pharmacokinetic properties [19]. As a further attempt to replace the 4-nitrophenyl 

group with bioisosteric moieties, Merck researchers synthesized a series of new di-substituted 

piperazines characterized by a 4-phthalidyl ethyl group and a 4-(1H-tetrazol-1-yl)phenyl methyl 

amide, as N-substituents [21]. Different patterns of substitutions on the tetrazole phenyl ring or on 

the phthalide ring were exploited; nevertheless, the simpler unsubstituted 5-(2-(4-(2-(4-(1H-

tetrazol-1yl)phenyl)acetyl)-piperazin-1-yl)ethyl)isobenzofuran-1(3H)-one (Compound 6, Figure 4) 

showed the most appreciable profile, because it maintained Kir1.1 inhibitory activity, was selective 
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for Kir1.1 over Kir2.1, Kir2.3, Kir4.1 and Kir7.1 and had a weakest inhibitory activity on hERG. This 

molecule, submitted to further pharmacological evaluation in vivo, showed good oral bio-

availability and a dose-dependent increase in urinary flow and urinary sodium excretion after short-

term oral administration to rats and dogs. This effect was comparable to that of hydrochlorotiazide 

(HCT) but, unlike HTC, compound 6 was not associated with the typical hypokalemia induced by 

the use of loop and thiazidic diuretics [22].  

 

3. Patenting activity of ROMK inhibitors 

Starting from the second decade of this century, Merck Sharp & Dome (MSD) company and some 

researchers of the MSD network, started an intense activity of patenting which led in a few years to 

about twenty patents. They cover approximately 1700 examples of molecules, mainly based on a 

common template constituted by “pharmacophore-linker-core-linker-pharmacophore”. In order to 

demonstrate ROMK inhibitory activity, some different tests were carried out and in particular 86Rb+ 

efflux assay that measures the ability of ROMK to permeate 86Rb+ in response to the test 

compounds. Rb+ is a K+ mimetic cation which flows across the cell membranes through all the K+ 

channels. Normally, CHO-DHFR cells, stably expressing hROMK (Kir1.1) and pre-loaded with 

86Rb+, show a time-dependent efflux of the isotope, after incubation with a Rb+-free buffer. The rate 

of this efflux depends on the number of functional K+ channels and is prevented in a concentration-

dependent manner by the presence of a channel inhibitor, allowing to calculate the IC50 of inhibitory 

activity for each test compound. Another ROMK functional assay reported in these patents is that 

based on the ability of Tl+ (another K+ mimetic cation) to permeate through open ROMK channels 

and determine an increase of fluorescence in a Tl+-sensitive dye pre-loaded into the cells. According 

to this assay, performed through FluxOR Kit (Invitrogen), HEK293 cells stably expressing hROMK 

(hKir1.1), pre-loaded with the dye and then exposed to a thallium-containing medium, show a time-

dependent increase in fluorescence which in proportional to the number of functional channels. The 

incubation of cells with a channel inhibitor leads to concentration-dependent attenuation of 
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fluorescence and allows to determine accurately the IC50 values of inhibition due to the incubation 

of test compounds. Some authors highlight important limitations of Tl+ flux-based high-throughput 

screen: the optical properties of the fluorescent probe could be affected by tested compounds. 

Besides, small-molecules could alter endogenous pathways of Tl+ flux in HEK293 cells, giving a 

false-positive hits. Finally, Tl+ has a low solubility in chloride-containing buffers and this implies 

the use of low concentrations of Tl+ or of non-physiological buffers . However they conclude that 

the limitations of this useful assay could be exceeded by voltage clamp electrophysiology, which is 

considered the "gold-standard" method for ion channel pharmacology [23]. 

The third in vitro assay, employed to give IC50 values for inhibitors, consisted in the measurements 

of the electrical current generated by the permeation of potassium through the channel. For these 

electrophysiological experiments, three different platforms: Ion Works, QPatch or manual patch 

clamp were used. To define a test compound as a ROMK inhibitor, it must show potencies of at 

least 1 µM or lower in one or more of the three above assays [24]. 

In vivo assays, concerning rat diuresis and the recording of systolic blood pressure on spontaneously 

hypertensive rats (SHR) after test compound administration, are reported in patents exhamined, but 

only for the fewest selected agents. 

Diuretic efficacy was carried out on Sprague-Dawley rats which received a per os dosage of the 

selected compounds. Then animals urine was collected for four hours by the use of a metabolic 

cage. For studies on hypertension, SHR were implanted with a telemetric device able to record 

blood pressure for 30 seconds every 10 minutes. Hydrochlorothiazide (25mg/Kg/day, per os) was 

included as reference diuretic drug. The selected compounds were administered in a sigle oral 

gavage each day for a typical duration of three to fourteen days [25]. 
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3.1 MSD Corp. WO2012058134 A1 

Patent application publication number WO2012/058134 A1, describes ROMK inhibitors having the 

generic formula reported in Figure 5A wherein A and B are mono and/or bicyclic aromatic groups; 

R2 is –H, -C1-6  alkyl, -C3-6 cycloalkyl, -CF3, -CH2OH, or –CO2R, or R2 can be joined up with R1 or 

R10a to form a ring; R3 is –H, -C1-6 alkyl, -C3-6 cycloalkyl, -OH, -F, -OC1-3 alkyl, or –CH2OH, or R3 

can be joined up with R10b to form a ring. The authors claim to have performed the three in vitro 

assays on cells and the two in vivo assays on rats (described in the previous paragraph) and they 

highlight the ROMK electrophysiological assay IC50 (µM) for a selection of compounds showing 

levels of potency lower than 1 µM, (as required to be defined as a ROMK inhibitor). Examples of 

these selected compounds are shown in Figure 5B and 5C [25]. 

3.2 MSD Corp. WO2013039802 A1 

In this second patent MSD describes several compounds having, as a shared structure, the formula 

reported in Figure 6A characterized by a piperidine core. Examples of tested compounds were 

tested in the electrophysiology assay and found to have a therapeutic level of potency. In this patent, 

the in vivo method of rat diuresis was also described, but examples of promising compounds are 

highlighted through 86Rb+ efflux assay which allowed to identify new molecules showing values of 

IC50 ≤ 0.2 µM (such as the compound shown in Figure 6B) or through Thallium flux assay in 

which different compounds, (example 6C) showed an IC50 ≤ 0.1 µM [26]. 

3.3 MSD Corp. WO2013062900 A1 and WO2013062892 A1 

The third patent of the MSD series shows compounds deriving from a general structure 

characterized by an oxo-piperazinic core, as reported in Figure 7A. Derivatives of this general 

formula underwent Thallium flux assay. Different examples showed appreciable levels of potency 

(IC50 values lower than 0.25 µM): in particular compounds reported in Figure 7B and in Figure 7C 

were the most potent of this series [27]. Starting from the same general structure 7A, but with 

different substituents, a further patent reported another series of potential ROMK inhibitors tested 

through 86Rb+ efflux assay or Thallium flux assay. Among these examples, two structurally 
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correlated molecules showed the best IC50 values: the compound reported in Figure 7D (that is a 

mixture of two enantiomers) and the compound shown in Figure7E (that is composed of two 

diastereomers) [28]. 

3.4 MSD Corp. WO2012058116 

This patent describes ROMK inhibitors, having the generic formula shown in Figure 8A, 

characterized by a piperazine core, wherein R5 and R6 are independently -H, -C1-6 alkyl or -

C(O)OC1-3alkyl; and X, X1, Y and Y1 are independently -H or -C1-6 alkyl; or Y1 can be joined up 

with Z2 to form a fused ring system. In the series of examples described in this patent, two 

derivatives exhibited remarkable levels of potency determined respectively by 86Rb+ efflux assay 

(as in the case of the two diastereomers reported in Figure 8B) or through Thallium flux assay (for 

compounds in Figure 8C) [29]. 

3.5 MSD Corp. WO2014015495 A1 

Patent application publication number WO2014/015495 A1 (having an update in the number of 

examples in the patent application publication number US2014/0031349 A1), describes a series of 

compounds having the generic formula shown in Figure 9A, characterized by a aza-spirocyclic 

core, which have remarkable levels of potency determined by electrophysiological assay 

(compound described by Figure 9B) or Thallium flux assay (compound in Figure 9C). Four 

selected compounds, described in this patent, were tested also in the in vivo measurement of systolic 

pressure on SHR: in this assay, compounds administered per os at doses in the range of 0.3 to 10 

mg/Kg promoted a typical reduction in the daily mean systolic blood pressure, ranging from 6 to 24 

mmHg. An example of the compounds tested in vivo is reported in Figure 9D [30,31]. 

3.6 MSD Corp. WO2010129379 and US20140142115. 

Patent application publication number WO2010/129379 (having an update in the patent application 

publication number US2014/0142115 A1), focuses on a piperazine core and describes compounds 

having the general formula represented in Figure 10A. Although several described derivatives 

showed appreciable level of ROMK inhibitory potency in the electrophysiology assay, as for 
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example compound in Figure 10B, there is a compound (reported in Figure 10C) which exhibited a 

remarkable profile in most of the biological assays, such as thallium flux, electrophysiology, rat 

diuresis evaluation and recording of systolic blood pressure on SHR. In particular, compound 10C, 

which has a symmetrical structure, is a 5,5'-{piperazine-1,4-diylbis[(1R)-1-hydroxyethane-2,1-

diyl]}bis(4-methyl-2-benzofuran-1 (3H)-one) and besides exhibiting very low levels of IC50, is one 

of the selected derivatives able to induce a 2-9 fold increase in urine volume with respect to the 

vehicle. 10C belongs to a restricted group of compounds able to determine a reduction of systolic 

pressure levels from 8 mmHg to 32 mmHg, when administered per os at doses ranging from 3 to 10 

mg/Kg. [32,33]. 

3.7 MSD Corp. WO2014085210 A1 

In this patent, examples with a piperidine-based core are illustrated and a general formula was 

identified in Figure 11A. ROMK inhibitors with good levels of potency in two in vitro assays, 

thallium flux and electrophysiology, were individuated: the compound shown in Figure 11B is a 

good example. However, also other compounds were highlighted because of an appreciable IC50 

value in the Thallium flux assay and an anti-hypertensive activity in the in vivo assay based on the 

measurement of systolic pressure on SHR. In fact, according to the results shown in this patent, 

compounds like 11C, administered per os at doses in the range 0.3-10 mg/Kg, caused a reduction in 

daily mean systolic blood pressure ranging from 6 mmHg to 24 mmHg [34]. 

3.8 MSD Corp. WO2013028474 A1 and WO2014099633 A2 

Patent WO2013/028474 A1 describes a series of ROMK inhibitors having a general formula 

characterized by a heterobicycle (one of the two fused rings is pirazine) and shown in Figure 12A. 

Some examples, like the compound reported in Figure 12B, are highlighted because of their low 

IC50 values both in thallium flux and in electrophysiology assays. Instead, other compounds, as for 

example 12C, are described as anti-hypertensive because of their ability to low systolic pressure in 

SHR, in a range of 7-21 mmHg, after oral administration of doses from 3mg/Kg to 10 mg/Kg [35]. 
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A very similar general structure (Figure 12D) was described in patent WO2014/099633 A2, in 

which compound illustrated in Figure 12E results the best example as concerns IC50 values both in 

thallium flux and in electrophysiology assays [36]. 

3.9 MSD Corp. WO2014126944 A2 and US20140336177 A1 

Structural analogies with the general formulas previously described in patents WO2013/028474 A1 

and WO2014/099633 A2 are detectable in two other subsequent patents: WO214/126944 A2 with 

general formula reported in Figure 13 A, and US2014/0336177 with the general formula shown in 

Figure 13D. From in vitro experiments, the example represented in Figure 13B emerges as a 

ROMK inhibitor with appreciable values of IC50 both in the Thallium flux and the 

electrophysiology assays. Compound in Figure 13C and its analogues were selected for the in vivo 

recording of systolic blood pressure on SHR after oral administration in doses from 3mg/Kg to 10 

mg/Kg: in this assay, the selected compounds were able to evoke a lowering of the systolic blood 

pressure of a 9,5-21 mmHg. In patent US2014/0336177, among several compounds deriving from 

the general formula 13D, compounds 13E showed an appreciable IC50 value in the Thallium flux 

assay and a remarkable IC50 value in the electrophysiological one. It was also selected for a 

deepening in vivo study on SHR. Like other selected compounds, it promoted a lowering of the 

systolic blood pressure of 7-25 mmHg after oral administration in doses from 3mg/Kg to 10 mg/Kg 

[37,38].  

3.10 MSD Corp. US20140309213 A1, US20140288042 A1 and US20140275020. 

Patents US2014/0309213 A1 and US2014/0288042 A1 describe a series of ROMK inhibitors 

having the same general formula (Figure 14A) but, despite this similarity, substituents and the core 

are characterized by different chemical moiety: for example, in the case of patent US2014/0309213 

A1 the core could be a diazatricyclo, a diazabicyclo heptan, a diazabicyclo octane, a diaza-spiro 

octane, a oxa-diazabicyclo nonane or a piperazine. While, in the case of patent US2014/0288042 

A1, we can find a diazaspiro nonane, a diazaspiro decane, a diazaspiro undecane, a diazabicyclo 

heptan, a pyrrolo-pyrrolo and a pyrrolo-piperidine. In both patents, ROMK inhibitors were tested 
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through thallium flux and electrophysiology assays and some compounds like those depicted in 

Figure 14B (described in patent US2014/0309213 A1) or the example represented in Figure 14C 

(highlighted in patent US2014/0288042 A1) showed an appreciable value of IC50 in both the in vitro 

assays [39,40]. Patent US2014/0275020 presents ROMK inhibitors having the general formula 

(Figure 14D) very similar to that represented in Figure 14A, with different cores mainly 

represented by amino-pyrrolidin, amino-cyclo-pyrrolidin, amino-methyl pyrrolidin, amino-methyl-

piperidine and azetidin moieties. Again compounds like, for example, those illustrated in Figure 

14E,  were tested through the two assays of Thallium flux and electrophysiology, and showed 

profiles compatible with a ROMK inhibitor [41]. 

3.11 MSD Corp. WO2014150132 A1 and WO2015017305 A1 

These recent patents on ROMK inhibitors share a spirocyclic moiety at the core position. In 

particular in patent WO2014/150132 A1 we can find the general structure represented in Figure 

15A and characterized by a diaza-spirodecanone core and  by a tetrazole and an oxo-dihydrofuran 

as lateral pharmacophores. Two of the most representative derivatives described in this patent 

(Figure 15B and C) showed remarkable values of IC50 obtained through thallium flux assay and 

anti-hypertensive activity on SHR when administered per os at doses in the range of 0.1-10 mg/Kg 

resulting in typical reductions in daily mean systolic blood pressure ranging from 5 to 33 mmHg. 

On the other hand, in patent WO2015/017305 A1, the spirocyclic moiety of the general formula 

shown in Figure 15D was mainly represented by diaza-spirodecano or diaza-spiro-undecan pirazine 

as in two of the most potent ROMK inhibitors highlighted in Figure 15E and F evaluated through 

the thallium flux assay [42,43]. 

 

4. Conclusions 

The last five years represented a period of continuous flourishing in the field of synthesis and 

pharmacological characterization of ROMK inhibitors: about twenty patents covering 

approximately 1700 examples of molecules were presented by MSD. For all these molecules, at 
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least data on in vitro determination of IC50 as ROMK inhibitors were shown and often the tested 

compounds showed IC50 values lower than 1 µM in one or more of the three in vitro assays 

described (the necessary condition for defining a molecule as a ROMK inhibitor). Selected 

compounds of some patents (as for example compound represented in Figure 10C)  were reported 

to display diuretic activity on a Sprague-Dawley rat diuresis model: in fact they were able to induce 

up to 9-fold increase in urine volume after an oral dose of 1-3 mg/Kg. Other compounds (as for 

example  molecules reported in Figure 9D, 10C, 11C, 12C, 13C, 13E, 15B and 15C) were reported 

to lower blood pressure (about 6-24 mmHg), after oral administration of doses in a range 0.1-

10mg/Kg to SHR implanted with a telemetric device that allowed a continuous recording of systolic 

blood pressure [30-38; 42,43]. However although the pharmacokinetic in vivo or the activity on 

other types of potassium channels, were often unrevealed, clinical data should certainly be obtained 

in the future and the support of computational modeling studies could be useful to define ligand-

ROMK interactions [44] , we can assert that this impressive development of novel selective ROMK 

inhibitors constitutes a promising basis for the birth of a newest class of diuretics. 

 

5. Expert opinion 

Presently, the area of marketed cardiovascular drugs is widely covered and especially anti-

hypertensive drugs are well represented by several classes with a variety of mechanisms of action 

which allow to satisfactorily treat most patients with suitable therapies. Of course, every therapy 

presents weaknesses and adverse effects; this makes extremely interesting and still compelling 

every improvement of the pharmacological armamentarium in this field. Hence, although it seems 

very difficult to find a place for a new class of drugs in this area, this challenge is even more 

attractive and timely, and the work is harder than in other pharmacological fields. In the widest 

number of cardiovascular drugs, endowed with very heterogeneous mechanisms of action, diuretics 

are widely used, in monotherapy or in association with other drugs, in the pharmacological 

treatment of hypertension and heart failure (together with other non-cardiovascular uses). In 
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particular, treatment with diuretics, such as thiazide ones, often represents an effective first-line 

approach to hypertension [45]. Indeed, thiazide diuretics are equivalent to other classes of 

antihypertensive agents in reducing cardiovascular events in hypertensive patients and are 

considered even superior than beta-blockers and angiotensin-converting enzyme inhibitors in 

reducing stroke incidence. Loop diuretics, less used in hypertension, are more effective in 

improving the outcomes of heart failure. Even ENaC blockers, such as amiloride, are used for 

hypertension, often associated with other drugs. However, although the above currently used 

diuretic drugs are endowed with an overall positive risk-benefit balance, they are not devoid of 

worrying side effects. In fact, they cause clear class-related alteration of potassium homeostasis: 

loop and thiazide diuretics are associated with hypokalemia, while inhibitors of ENaC induce 

hyperkalemia. The novel class of ROMK inhibitors, described in the patents examined, was 

designed to act as diuretics. This new class of diuretic drugs is expected to give a diuretic/natriuretic 

activity higher than that provided by loop diuretics, with limited effects on potassium homeostasis 

[11]. Therefore, ROMK inhibitors can actually represent an improvement worth pursuing. In my 

opinion, this is the premise for believing that they may constitute, in the next few years, a new class 

of diuretics employable, alone or in combination with other drugs, in hypertension and edematous 

states such as heart failure. The patent examination highlights as a strength, the individuation of a 

successful chemical template: almost all the compounds, based on this template, showed high levels 

of potency in the inhibition of the ROMK channels. As a further strength, some of these 

compounds, for example compounds 10C, showed diuretic effects on Sprague-Dawley rats and anti-

hypertensive activity on spontaneously hypertensive rats. However, in these early patents, the 

ROMK inhibitory activity of all the molecules was tested by means of suitable in vitro assays, but 

only very few selected compounds underwent an in vivo pharmacological evaluation of the possible 

effects on diuresis and blood pressure. Moreover, no data on the activity of these new molecular 

entities on other types of potassium channels, as for example the hERG are given in these patents 

and this knowledge could make the difference between a promising compound and a molecule with 
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dramatic adverse effects. Also pharmacokinetic data should be produced as soon as possible, in 

order to complete the profile candidates for possible clinical uses. 

In conclusion, this new class of ROMK inhibitors is still at the beginning of its history; in the 

coming years, a more detailed pharmacological profile of these new molecules will be furnished 

and will allow a different approach to diuresis based on this new exciting mechanism of action. 
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Figure 1. The role of ROMK channels in the thick ascending limb of Henle loop (TALHL) and 

cortical collecting duct (CCD) cells. Co-localization and interaction with the Na+/K+/2Cl- 

co-transporter, the Na+/K+-ATPase, the epithelial Na+ channels (ENaC), the potassium 

channels like the “Big-conductance” Ca2+-activated potassium channels (BK) and the 

“inwardly rectifying” Kir7.1, Kir2.3, Kir4.1. 
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Figure 2. Small-molecule ROMK inhibitors discovered at Vanderbilt University. 
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Figure 3. First ROMK inhibitors discovered by Merck through HTS (Compound 1) and, after 

careful examination of LC-MS, through the identification of impurity as the real ROMK 

inhibitor (Compound 2) 
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Figure 4. Compound 3,4,5,6 are ROMK inhibitors synthesized by Merck medicinal chemistry 

during SAR investigation on lead compound 2. 
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Figure 5. A The general formula reported in the patent by Merck Sharp & Dohme Corp. Inhibitors 

of the renal outer medullary potassium channel. WO058134 A1; 2012. B and C are two 

examples of compounds highlighted in the patent through electrophysiological (EP) assay. 
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Figure 6. A The general formula reported in the patent by Merck Sharp & Dohme Corp. Inhibitors 

of the renal outer medullary potassium channel. WO039802 A1; 2013. B and C are two 

examples of compounds highlighted in the patent through 86Rb+ efflux and Thallium (Tl+) 

assays, respectively. 
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Figure 7. A The general formula reported in the patent by Merck Sharp & Dohme Corp. Inhibitors 

of the renal outer medullary potassium channel WO2013/062900 A1 and in 

WO2013/062892 A1. B and C are two examples of compounds highlighted in the patent 

WO2013/062900 A1 through Thallium (Tl+) assay while D and E are two examples of 

compounds highlighted in the patent WO2013/062892 A1 through 86Rb+ efflux and 

Thallium (Tl+) assays, respectively. 
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Figure 8. A The general formula reported in the patent by Merck Sharp & Dohme Corp. Inhibitors 

of the renal outer medullary potassium channel. WO2012/058116. B and C are two 

examples of compounds highlighted in the patent through 86Rb+ efflux and Thallium (Tl+) 

assays, respectively. 
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Figure 9.A The general formula reported in the patent by Merck Sharp & Dohme Corp. Inhibitors 

of the renal outer medullary potassium channel. WO2014/015495 A1 and US2014/0031349 

A1. B and C two examples of compounds highlighted in the patent through 

electrophysiological and Thallium (Tl+) assays, respectively. D is an example of compounds 

selected for the in vivo assay on SHR systolic pressure. 
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Figure 10.A The general formula reported in the patent by Merck Sharp & Dohme Corp. Inhibitors 

of the renal outer medullary potassium channel. WO2010/129379 and US2014/0142115 A1. 

B is an example of compounds showing remarkable IC50 value in 86Rb+ efflux assay and C is 

a 5,5'-{piperazine-1,4-diylbis[(1R)-1-hydroxyethane-2,1-diyl]}bis(4-methyl-2-benzofuran-1 

(3H)-one), example of a compound showing appreciable values in all the biological assays 

both in vitro and in vivo. 
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Figure 11.A The general formula reported in the patent by Merck Sharp & Dohme Corp. Inhibitors 

 of the renal outer medullary potassium channel. WO2014/085210 A1. The B example shows 

 appreciable values of IC50 in thallium (Tl+) and electrophysiology (EP) assays. The C 

 example shows appreciable values of IC50 in thallium (Tl+) and anti-hypertensive activity on 

 SHR in vivo. 
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Figure 12.A The general formula reported in the patent by Merck Sharp & Dohme Corp. Inhibitors 

 of the renal outer medullary potassium channel. WO2013/028474 A1. The B example shows

 appreciable values of IC50 in Thallium (Th) and electrophysiology (EP) assays. The C 

 example shows and anti-hypertensive activity on SHR in vivo. Figure 12D The general 

 formula reported in the patent by Merck Sharp & Dohme Corp. Inhibitors of the renal outer 

 medullary potassium channel. WO2014/099633 A2. The 12E example shows appreciable 

 values of IC50  in Thallium (Tl+) and electrophysiology (EP) assay. 
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Figure 13.A The general formula reported in the patent by Merck Sharp & Dohme Corp. Inhibitors 

 of the renal outer medullary potassium channel. WO2014/126944 A2. The B example shows

 appreciable values of IC50 in Thallium (Tl+) and electrophysiology (EP) assays. The C 

 example shows and anti-hypertensive activity on SHR in vivo. Figure 13D The general 

 formula reported in the patent by Merck Sharp & Dohme Corp. Inhibitors of the renal outer 

 medullary potassium channel. US2014/0336177 A1. The 13E example shows appreciable 

 values of IC50  in Thallium (Tl+), electrophysiology (EP) assays and anti-hypertensive 

 activity on SHR in vivo. 
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Figure 14.A The general formula reported in the patents by Merck Sharp & Dohme Corp. 

 Inhibitors of the renal outer medullary potassium channel. US2014/0309213 A1 and 

 US2014/0288042 A1. The B example shows appreciable values of IC50 in Thallium (Tl+) 

 and electrophysiology (EP) assays in the patent US2014/0309213 A1. The C example shows 

 appreciable values of IC50 in Thallium (Tl+) and electrophysiology (EP) assays in the patent 

 US2014/0288042 A1. Figure 14D The general formula reported in the patent by Merck 

 Sharp & Dohme Corp. Inhibitors of the renal outer medullary potassium channel. 

 US2014/0275020. The E example shows appreciable values of IC50 in Thallium (Tl+) and 

 electrophysiology (EP) assays in this patent. 
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Figure15.A The general formula reported in the patent by Merck Sharp & Dohme Corp. Inhibitors 

 of the renal outer medullary potassium channel. WO2014/150132 A1. The B and C 

 examples show appreciable values of IC50 in Thallium (Tl+) and anti-hypertensive activity 

 on SHR in vivo. Figure 15D The general formula reported in the patent by Merck Sharp & 

 Dohme Corp. Inhibitors of the renal outer medullary potassium channel. WO2015/017305 

 A1. The E and F examples show appreciable values of IC50 in Thallium (Tl+) flux assay in 

 this patent. 
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