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Abstract. We propose a polynomial static analysis for Brane Calculi [7], based on
Abstract Interpretation [9] techniques. The analysis provides a description of the pos-
sible hierarchical structure of membranes and of the processes possibly associated to
each membrane, together with global occurrence counting information. Our analysis
can be applied in the biological setting to investigate systems in which the information
on the number of membranes occurring in the system plays a crucial role.

1 Introduction

One of the challenges of systems biology is to understand the complex behaviour of biological
systems and networks that interact in diverse ways. There is a large amount of data concern-
ing single components and functions. The main di�culty is establishing their relationships
and inferring the overall emerging behaviour of a system. Consider, for instance, the crucial
problem of identifying biological pathways and reconstructing their inter-connections.

Computational frameworks and in silico investigation have been recently exploited to
support in vitro or in vivo experiments. Often, these frameworks come with the drawback of
high computational cost, due to the expensive inspection of the models that capture dynamic
behaviour. Static analysis provides techniques able to reduce the computational cost, at the
price of loosing precision. In particular, they provide safe over-approximations of the dynamic
behaviour: all the events that the analysis predicts may happen, while all the non predicted
events will never happen.

In this paper we propose a static analysis for Brane Calculi [7], based on Abstract In-

terpretation (AI) [9] techniques. Brane calculi have been introduced to more closely model
the behaviour of membrane-enclosed compartments. Therefore, these calculi are useful for
modelling and reasoning about a large class of biological systems. Our analysis is based on
the idea of enriching the standard information on control flow analysis (as the one in [3])
with global occurrence counting information. More specifically, we compute an abstract state
describing the possible structure of all the derivatives of the analysed system. The abstract
state provides information on the possible membrane hierarchy and on the processes that
may be associated to each membrane, together with their multiplicity. The global occurrence
counting information refers to the number of occurrences of membranes and processes, in-
dependently of their location. The analysis can be e�ciently computed in polynomial time,
thanks to the properties of the abstract semantics.

Our analysis can be applied to investigate systems in which the information on the number
of membranes in the system plays a crucial role in biological terms. One could, for instance, be
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interested in distinguishing between the case of one healthy cell that can let many molecules
pass through the cell membrane, and the case in which an ill cell can let at most one molecule
to pass. We illustrate our analysis by considering examples of communication via mobile

vesicles. A mobile vesicle containing the substance to be transmitted springs from a membrane
Source and eventually fuses with a membrane Target releasing its content X inside of it. We
consider two di↵erent variants of this kind of communication by expanding the encoding
proposed in [28], where there are two target membranes Target1 and Target2. In the first
version, the membrane Source can communicate X either to Target1 or Target2, while in the
second one, one instance of X is communicated to Target1 and the other one to Target2.
Then, we show that our analysis faithfully predicts that X cannot be simultaneously present
in both membranes in the first case, while it may occur in both in the second case, thanks to
the occurrence counting information.

Related work Static analysis techniques have been applied to many biologically-oriented cal-
culi (see, e.g. the survey in [16]). In particular, Control Flow Analysis (CFA) has been applied
to Beta-binders [26] in [2], to Brane Calculi [3], and to BioAmbients [27] in [20,22,24,25]; while
Abstract Interpretation to BioAmbients [14,13,15], and to Brane Calculi [4,5]. Many of these
works are inspired by the application of static analysis techniques [1,19,17] to Mobile Ambients
(MA) [8], from which, many bio-inspired calculi derive.

Part of the above mentioned static analyses [20,2,3,22] abstract, with di↵erent precision,
the behaviour of the investigated system by providing an approximate description of structure
of all derivatives. As a consequence, these approaches can be applied to establish invariant
properties showing that certain events will not happen in any derivatives of the analysed sys-
tem. These techniques have polynomial complexity but they provide a less precise description
of the possible topological structure of derivatives given that they do not maintain any infor-
mation on occurrence counting. The richer contextual CFA in [24], and the causality-oriented
AI-based analysis in [4,5] improve the prediction accuracy, but, still, they are not able to
observe the multiplicity.

Instead, in [14], the authors present a counting analysis for BioAmbients that is able to
express that an ambient can reside in alternative locations. This analysis has exponential
complexity and provides accurate information about the number of occurrences of ambients,
by counting the local number inside any ambient rather than their global number.

There are several static analysis frameworks that include occurrence counting information
applied to MA and to ⇡-calculus [18]. In [19,21] analyses for MA are introduced that are rather
expensive from a computational point of view. The authors propose in [19] an exponential
analysis for counting the global number of occurrences of ambients. The approach based on
CFA substantially di↵ers from our analysis, which is computed by calculating an abstract
semantics. At the expense of a higher complexity, the shape analysis in [21] uses context-
dependent counts for inferring a more accurate description of the internal structure of an
ambient, by taking care of the local multiplicity of ambients.

In [23,10,11] the author proposes a framework based on AI, applied to the ⇡-calculus
that, di↵erently from the previous proposals, is non-uniform, i.e. the analysis can distinguish
among recursive instances of agents. In this approach, the occurrence number of instances of
agents is approximated by using a relational abstraction. The analysis is quite precise and
e�cient: its complexity is polynomial. For instance, the analysis described in [10] has a worst
time cost of n4, where n is the number of processes in the initial configuration. This approach
is adequate to capture mutual exclusion and other security properties of complex mobile
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systems, formalised in ⇡-calculus. In [1] the author proposes an adaptation of these techniques
to MA, with a focus on security properties such as non-interference or confinement. In [12],
the author proposes polynomial and precise analyses for MA and BioAmbients, based on both
global and local counting. Specifically, the global analysis is the same as the one proposed
in [10] for the ⇡-calculus. This approach can handle mass preservation like invariants, which
are ubiquitous in biological systems. In particular, it is able to preserve precision when dealing
with continuations of replicated prefixes.

The static analyses proposed in [13,15,25] rely on a di↵erent approach since that they
compute an abstract transition system to approximate the system behaviour, by still exploit-
ing occurrence counting information. These techniques obviously provide useful information
to verify temporal properties but at the price of a high complexity.

Structure of the Paper. In Section 2, we recall the semantics of Brane calculi. In Section 3,
we introduce our running examples, based on hypothetical scenarios of communication via
mobile vesicles in the style of [28]. In Section 4, we present the analysis and in Section 5 we
apply it to our examples. Conclusions are drawn in Section 6.

For lack of space, we present the formal definitions only for the fragment of the calculus
that includes the Phago/Exo/Pino (PEP) and Bud interactions. This fragment is su�ciently
expressive to formalise our running examples. It is worth pointing out that our analysis can
be easily extended to the full calculus.

2 An Overview on Brane Calculus

The Brane Calculi [7] are a family of calculi based on a set of primitives inspired by biological
membrane interactions. As already mentioned, we focus here on the fragment of the calculus
that includes the Phago/Exo/Pino (PEP) and Bud interactions.

The Phago/Exo/Pino(PEP) actions represent the biological processes of endocytosis and
exocytosis. The first indicates the process of incorporating external material into a cell, by
engulfing it with the cell membrane, while the second one indicates the reverse process.
Endocytosys is rendered by two more basic operations: phagocytosis (phago), which consists
in engulfing just one external membrane, and pinocytosis (pino), which consists in engulfing
zero external membranes. Exocytosis is instead denoted by (exo). We further use the action
(bud) to model the membrane splitting process and consists in the splitting o↵ exactly one
internal membrane. It is worth mentioning that the bud action can be encoded with a sequence
of PEP actions [7]. However, from the analysis point of view it is more convenient to use the
bud action as primitive.

We introduce the syntax and the semantics for the calculus, considering a labelled version of
the calculus. As usual in static analysis, labels are exploited to support the analysis (presented
in Sect. 4) and do not a↵ect the dynamic semantics of the calculus.

A membrane system consists of nested membranes, where each membrane has associated
a membrane process. The syntax of the labelled calculus is described in Tab. 1, where n is
taken from a countable set N of names, and where we write P 2 Sys for systems, � 2 Proc for
membrane processes, and a 2 Act for actions. Each membrane is annotated with a membrane

label � 2 d
LabM and each action is annotated with a process label � 2 LabP .

We therefore need two distinct sets of labels. We have the set of process labels LabP ,
ranged over by ↵,�, � . . .. Moreover, given a set of basic membrane labels LabM, we have
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the associated set of membrane labels

d
LabM, ranged over by �,�, . . . . The set d

LabM is
inductively defined as follows: (i) LabM ✓ d

LabM; (ii) if �,� 2 d
LabM and �, µ 2 LabP , then

phago(�,�,�, µ), pino(�,�) and bud(�,�,�, µ) 2 d
LabM.

The system �LP M� describes a membrane, decorated by label � 4 that contains the system
P and that performs the membrane process �, describing its interaction capabilities. The
construct a�.� defines a sequential process that executes an action a, decorated by label �,
and then behaves as the process �. We adopt standard syntactical abbreviations: a� stands
for a�.0, LP M� stands for 0LP M� , and �LM� is a shorthand for �L⇧M� .

P, Q ::= ⇧ | P �Q | !P | �LP M� systems Sys

�, ⌧ ::= 0 | �|⌧ | !� | a�.� membrane processes Proc

a, b ::= phagon | phagon(⇢) | exon | exon | pino(⇢) | bud
n

| bud
n

(�) actions Act

(Par)

P
l�! Q

P �R
l�! Q �R

(Brane)

P
l�! Q

�LP M� l�! �LQM�
(Struct)

P ⌘ P 0 ^ P 0 l�! Q0 ^ Q0 ⌘ Q

P
l�! Q

(Phago) phago

�
n.�|�0LP M� � phago

µ
n(⇢).⌧ |⌧0LQM� phago

l

(�,�,�,µ)����������!⌧ |⌧0L⇢L�|�0LP M�Mphago(�,�,�,µ) �QM�

(Exo) exo

µ
n.⌧ |⌧0Lexo�

n.�|�0LP M� � QM� exo

l

(�,�,�,µ)���������!P � �|�0|⌧ |⌧0LQM�

(Pino) pino

�(⇢).�|⌧LP M� pino

l

(�,�)�������!�|⌧L⇢LMpino(�,�) � P M�

(Bud) bud

µ
n(⇢).⌧ |⌧0Lbud�

n.�|�0LP M� � QM� bud

l

(�,�,�,µ)���������!⇢L�|�0LP M�Mbud(�,�,�,µ) � ⌧ |⌧0LQM�

Table 1: Syntax and Reduction Rules for (Labelled) Brane.

The semantics of the calculus is given by the reduction rules in Tab. 1, modulo the struc-
tural congruence rules, here omitted because standard (see [7]). The labelled transition rela-
tion is l�!, where P

l�! Q denotes that the system P evolves into the system Q performing a
reaction described by the transition label l 2 LabT . The set of transition labels LabT (ranged
over by l1, l2 . . . ) is defined as follows:

LabT = {pino
l

(�, �), phago
l

(�, �, �, µ), exo
l

(�, �, �, µ), bud
l

(�, �, �, µ) | �, � 2 d
LabM, �, µ 2 LabP}

Besides the standard reduction rule for congruence (Struct), and the contextual rules to
propagate reductions across parallel composition (Par) and membrane nesting (Brane),
there are the axioms specific of the membrane actions.

Rule (Phago) models the inclusion of an external membrane, labelled by �, inside a
membrane, labelled by � . The two membranes � and � exercise the actions phago

�
n and

4 For brevity, from now on, we will usually write membrane � , instead of membrane labelled by � .
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phago

µ
n(⇢), respectively. Once engulfed, the membrane � is enclosed inside a new membrane

with label phago(�,�,�, µ), which has associated the process ⇢. The corresponding transition
label is phago

l

(�,�,�, µ). Rule (Exo) models the expulsion of the membrane �, outside the
external membrane � , triggered by the actions exo�

n and exo

µ
n, respectively. The correspond-

ing transition label is exo

l

(�,�,�, µ). In the rule (Pino), the membrane �, creates a new
empty membrane, labelled by pino(�,�), inside itself. The action pino

�(⇢) is equipped with
a process ⇢ that will be associated to the new membrane. The corresponding transition label
is pino

l

(�,�). Finally, in the rule (Bud), the membrane � expels the child membrane �,
performing the actions budµ

n(⇢) and bud

�
n, respectively. The membrane � is wrapped inside a

new membrane with label bud(�,�,�, µ) and has associated the process ⇢. The corresponding
transition label is bud

l

(�,�,�, µ).
The semantics of a system is defined as a Labelled Transition System (LTS). Given P 2

Sys, we use LTS(P ) = (X,
l�!, P )5 to denote the LTS obtained from the initial system P by

applying the rules and axioms in Tab. 1. Moreover, to ensure the correctness of our analysis,
we assume that the system P is well labelled, i.e. that the process labels occurring in P are
all distinct. The analysis is not correct in general for every labelling of the initial systems.

Remark 1. It is worth briefly discussing the role of labels in our calculus. Process and mem-
brane labels will be exploited in the analysis to maintain the information on the topological
structure of systems. To decorate the new membranes introduced by reactions of the calcu-
lus, we adopt composite membrane labels that record the labels of the membrane and of the
actions that interact. This labelling technique may introduce arbitrarily nested membrane
labels (e.g. bud(�, pino(�, �),�, µ)) and even an infinite number of membrane labels.

Furthermore, we decorate the reduction steps with transition labels giving information on
the labels of the actions and on the membranes involved in the interaction. This information
will be exploited in the analysis to establish a correspondence between reduction steps and
abstract transitions.

3 Communication via Mobile Vesicles

To illustrate our analysis, we consider hypothetical scenarios of communication via mobile
vesicles. A mobile vesicle containing the substance to be transmitted springs from a membrane
Source and eventually fuses with a membrane Target releasing its content inside of it. In
eucaryotic cells, a large variety of proteins is targeted to its final destination via mobile
transport vesicles, i.e. small membrane-enclosed sacs separated from the cytosol by a lipid
bilayer. Proteins can be contained in the vesicles (i.e. secretory proteins) or embedded in their
membrane (i.e. transmembrane proteins). Through vesicular tra�cking, proteins follow routes
involving intracellular locations (e.g. endoplasmic reticulum, Golgi apparatus or lysosomes)
as well as the plasma membrane, in the case of endo- and exocytosis. Since vesicular transport
is essential in the organisation of eukaryotic cells, understanding the mechanisms that control
vesicle budding and fusion is an active research topic in cell biology.

Roughly speaking, we are focussing on modelling the communication (through a vesicle)
of a molecule X embedded in a Source membrane to specified Target compartments. More
specifically we consider the encoding in Brane calculi presented in [28], where communica-
tion based upon the natural budding of mobile vesicle in a cell was modelled as follows. A
5 Here, X ✓ Sys stands for the set of systems that are reachable from system P .

5



vesicle containing (embedded in its membrane) a molecule that needs to be shuttled between
two compartments, buds from a membrane Source. Then, it is engulfed by another compart-
ment (the Target membrane) through phagocytosis (creating a coat membrane containing
the vesicle) and, finally, the coat of the mobile vesicle is decomposed within the membrane
Target, releasing the transported molecule in it. Here, we introduce a more general situation,
by introducing two substantially di↵erent scenarios of communication via mobile vesicles. In
both cases Source can communicate the molecule X, via a mobile vesicle, to di↵erent mem-
branes Target1 and Target2. In the first version, the membrane Source can communicate the
molecule X either to Target1 or to Target2, while in the second one, one instance of molecule
X is communicated to membrane Target1 and the other one to Target2. Both the previous
systems can be rendered along the lines of [28].

Example 1. To model the first scenario, we slightly extend the original model in [28]. In this
case we have two vesicles and two target membranes, and each vesicle can be phagocytosed
by one of the target membranes. Note that, in the biological setting, this particular kind
of non-deterministic behaviour is of great interest because it may arise, e.g. in the extracel-
lular environment of cells, where extracellular vesicles, which are small vesicles released by
donor cells, can be taken up by any recipient target cell. This transport mechanism plays an
important role in cell-to-cell communication.

The encoding of this scenario is reported in the upper part of Tab. 2, where the processes
�S , �targeti , ⌧X and ⌧ 0i (with i = 1, 2) stand for membranes processes (not specified as not
relevant at this level of abstraction), and where we decorate actions and membranes with
basic membrane labels in LabM

6. The molecule X to be transmitted is enclosed inside a
membrane labelled by � . Such membrane triggers the communication process, exercising the
action bud

�
n and leading to the gemmation of one of the two vesicles that will transport the

molecule into one of the two targets.
For simplicity, we only illustrate the dynamic evolution of the first vesicle in the lower

part of Tab. 2, where we underline the prefixes involved in each transition. The membrane �
buds from the membrane source thus creating the first vesicle. Then the vesicle fuses with
the corresponding membrane target1, by means of actions phagoµ1

n1
and exo⌫1

n1
. Note that the

membrane created by the bud reaction is decorated with the label ⇧1, while the one created
by the phago reaction with the label ⇧11. Furthermore, the bud, phago and exo reactions are
decorated with the transition labels l1, l11 and l12, respectively. The dynamic evolution of the
second vesicle is analogous.

It should be clear that in this case the molecule X cannot be simultaneously present in

membranes target1 and target2: either the molecule is transmitted to the first target or, al-

ternatively, it is transmitted to the second one.

Example 2. To model the second scenario, we again extend the original model in [28]. In
this case there are two membranes Source, each containing the molecule X that has to be
transmitted. One instance of substance X is communicated via a mobile vesicle to membrane
Target1 while the other one membrane is communicated via a mobile vesicle to membrane
Target2. Also this case may arise in the biological setting, when di↵erent types of vesicles
are simultaneously present, and each type of cell can selectively interact only with the correct
target membrane, i.e. each kind of cargo is transported to the specific programmed location

6 We also assume the system S to be well labelled.
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S
def
= �SLSource � Target1 � Target2Mskin Targeti

def
= !phago

�i
ni

(exo�i
ni

)|�targetiLMtargeti

V esiclei
def
= phago

µi
ni

.exo⌫i
ni

|⌧ 0i Source
def
= �SourceL�XLXM� Msource

�X
def
= bud

�
n|⌧X �source

def
= !bud

�1
n (V esicle1)|!bud�2

n (V esicle2)

S = �SLSource � Target1 � Target2Mskin ⌘
�SL!bud�1

n (V esicle1)|!bud�2
n (V esicle2)Lbud�

n|⌧XLXM� Msource � Target1 � Target2Mskin l1�!

�SL!bud�1
n (V esicle1)|!bud�2

n (V esicle2)LMsource � V esicle1L⌧XLXM� M⇧1 � Target1 � Target2Mskin ⌘

�SL�sourceLMsource � phago

µ1
n1

.exo⌫1
n1 |⌧

0
1L⌧XLXM� M⇧1 � !phago

�1
n1

(exo�1
n1)|�target1LMtarget1 � Target2Mskin l11��!

�SL�sourceLMsource � !phago
�1
n1

(exo�1
n1)|�target1Lexo�1

n1Lexo⌫1
n1 |⌧

0
1L⌧XLXM� M⇧1M⇧11Mtarget1 � Target2Mskin l12��!

�SL�sourceLMsource � !phago
�1
n1

(exo�1
n1)|�target1L⌧XLXM� � ⌧ 01LM⇧11Mtarget1 � Target2Mskin

where

l1 = bud

l

(�, source, �, �1) l11 = phago

l

(⇧1, target1, µ1, �1) l12 = exo

l

(⇧1, ⇧11, ⌫1, �1)
⇧1 = bud(�, source, �, �1) ⇧11 = phago(⇧1, target1, µ1, �1)

Table 2: First Scenario: Encoding (Upper Part) and Evolution of the First Vesicle (Lower
part).

via membrane fusion. This scenario may occur in intracellular vesicles in eukaryotic cells,
where membrane-enveloped vesicles travel in between organelles in the cytoplasm.

The encoding of this second scenario is reported in Tab. 3, using process and membrane
labels similar to the ones introduced in Tab. 2. Each membrane Source can communicate its
molecule X to the corresponding Target. The dynamic evolution is similar to the previous
one and it is not reported.

In this case, di↵erently from the previous one, the molecules X will eventually end up in

both membranes target1 and target2: one occurrence in target1 and the other one in target2.

S0 def
= �SLSource1 � Source2 � Target1 � Target2Mskin Targeti

def
= !phago

�i
ni

(exo�i
ni

)|�targetiLMtargeti

V esiclei
def
= phago

µi
ni

.exo⌫i
ni

|⌧ 0i Sourcei
def
= �SourceiL�XiLXM� Msource

�Xi

def
= bud

�i
n |⌧Xi �sourcei

def
= !bud

�i
n (V esiclei)

Table 3: Second Scenario: Encoding.

4 The Abstraction

The analysis computes a description of the possible structure of all the derivatives of the
system under investigation. Following the AI approach, the analysis result is calculated by
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collecting all reachable abstract states representing approximate information on the evolution
of the system. More specifically, abstract states provide information on the possible hierarchical
structure of membranes, and on the processes that may be associated to each membrane,
together with information about the possible number of occurrences of membrane and process
labels. We prove that the analysis is a safe over-approximation of the concrete behaviour.
Furthermore, we show that the properties of the abstract semantics help us in computing our
analysis in polynomial time (see Theorem 1).

Abstract Membrane Labels. To guarantee that the analysis can be computed in a finite num-
ber of steps, we need an abstraction of membrane labels. In the abstract setting, the basic
membrane labels are defined as Lab�M = LabM [ {@}, where the special symbol @ represents
the outermost membrane. Then, we derive the corresponding set of abstract membrane labels

d
Lab

�
M, ranged over by � �, ��, ..., defined as the least set s.t.: (i) Lab�M ✓ d

Lab

�
M; and (ii) if

� �,�� 2 d
Lab

�
M and �, µ 2 LabP then (� �,��,�, µ) and (� �,�) 2 d

Lab

�
M.

Note that in the previously introduced abstraction of membrane labels, arbitrarily nested
membrane labels can still arise (e.g. (� �, (��,⇥�, ⌫,⇡),�, µ)). As a consequence, we introduce
further approximations to guarantee that the abstract membrane labels generated in the
analysis are finite. We then consider the set of abstract membrane labels parametric w.r.t. the
level of nesting depth d 2 N+ defined as:

d
Lab

d

M = {��|�� 2 d
Lab

�
M and depth(��)  d} [ {(>,>,�, µ), (>,�) | �, µ 2 LabP}

where depth(��) gives the maximal number of nesting parenthesis levels occurring in ��.
Intuitively, all the abstract membrane labels with depth greater than d are approximated
with the following new special membrane labels: (>,>,�, µ) and (>,�).

This is formalised by introducing an abstraction function that maps a membrane label
into an abstract membrane label with respect to a given parameter d.

Definition 1. Let d 2 N+
and � 2 d

LabM. The abstract version of �, denoted by �• 2
d
Lab

d

M
7
, is inductively defined as follows,

1. � 2 LabM ) �• = �;

2. � = #(�, ,�, µ) with # 2 {bud, phago}) �• =
⇢

(� •, •,�, µ) if depth((� •, •,�, µ))  d
(>,>,�, µ) otherwise

3. � = #(�,�) with # 2 {pino} ) �• =
⇢

(� •,�) if depth((� •,�))  d
(>,�) otherwise

By summarising, �� denotes a generic abstract membrane label, while �• exactly denotes
the abstract membrane label that is the abstract version of the membrane label �.

Abstract States. An abstract state reports information on the parent-child relation between
membranes and a description of the processes possibly associated to each membrane. Fur-
thermore, it reports information about the possible number of occurrences of membrane and
process labels. The occurrence counting information approximates the global number of mem-
brane and process labels that may appear in any system.
7 For simplicity, we omit the explicit indication of the parameter d (assume fixed once for all).
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To describe the structure of systems, we adopt an abstract representation, formally repre-
sented by a set of pairs, i.e. by a relation, that, for any abstract membrane label ��, gives:
(i) the abstract membrane labels that may be child membranes of ��; and (ii) the sequential

processes that may be associated to membrane ��.

Definition 2 (Abstract Representation). An abstract representation R�
is a relation

R� ✓ d
Lab

d

M ⇥ (dLabd

M [ SProc), where SProc = {a�.� | a�.� 2 Proc} denotes the subset of

sequential processes. We use R�
to denote the set of abstract representations.

Given R�, if the pair (��,� �) 2 R�, then the abstract membrane � �
may be a child

membrane of the membrane ��. Similarly, if the pair (��, a�.�) 2 R�, then the sequential
process a�.� may be associated with membrane ��.

To describe occurrence counting information, we adopt the set Mul ={1,!} where each
x 2 Mul denotes a multiplicity with the expected interpretation: 1 indicates at most one
occurrence, while ! indicates any number of occurrences. The set of multiplicities Mul comes
equipped with the standard order 1  ! and with the binary addition operator +�, that, for
any x1, x2 2 Mul, gives ! as a result.

Definition 3 (Occurrence Counting). An occurrence counting function is a partial func-

tion O� : d
Lab

d

M [ LabP ! Mul. We use O�
for the set of occurrence counting functions.

By using a standard notation, an occurrence counting function O� can be alternatively
represented by a set of pairs: {(`, x) | ` 2 dom(O�) ^O�(`) = x}.

We rely on some auxiliary operators on occurrence counting functions. First, we intro-
duce the substitution operator O�[x/`] that, applied to the occurrence counting function O�,
returns the function where the multiplicity of ` 2 d

Lab

d

M [ LabP is replaced by x 2 Mul.
Moreover, we define an operator [+ that computes the addition of two functions O�

1 , O�
2 2

O�, the occurrence counting function O�
1 [+ O�

2 is defined as follows, where ` 2 d
Lab

d

M[LabP ,

O�
1 [+ O�

2(`) =

8
<

:

O�
1(`)+�O�

2(`) if ` 2 dom(O�
1) \ dom(O�

2)
O�

1(`) if ` 2 dom(O�
1), ` 62 dom(O�

2)
O�

2(`) if ` 2 dom(O�
2), ` 62 dom(O�

1)

We now have all the ingredients to define abstract states.

Definition 4 (Abstract State). An abstract state is a pair S� = (R�, O�), where R� 2 R�

is an abstract representation and O� 2 O�
is an occurrence counting function. We use S� for

the set of abstract states.

In standard AI style, the abstract states come equipped with an approximation order
(denoted by v�) that allows us to compare two approximations in terms of precision.

Definition 5 (Approximation Orders).

– Given O�
1 , O�

2 2 O�
, we say that O�

1vOO�
2 i↵ for each ` 2 d

Lab

d

M [ LabP such that ` 2
dom(O1), we have O1(`) = x1 and O2(`) = x2 with x1  x2.

– Given S�
1 , S�

2 2 S�, we say that S�
1v�S�

2 i↵ S�
1 = (R�

1, O
�
1) and S�

2 = (R�
2, O

�
2), R�

1 ✓ R�
2

and O�
1vOO�

2.
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Given the previous orders, the corresponding least upper bounds (l.u.b.), tO over occur-
rence counting functions and t� over abstract states, are defined as expected.

To formally relate systems and abstract states, we introduce a translation function t�

that maps systems into abstract states. The function t� : d
Lab

d

M ⇥ Sys ! S�, presented in
Tab. 4, returns an abstract state, describing the system, with respect to an abstract membrane
that represents the enclosing membrane. The definition relies, in turn, on a corresponding
translation function for processes t� : d

Lab

d

M ⇥ Proc! S�8.

t�(��, ⇧) = (;, ;)
t�(��, P �Q) = (R�

1 [R�
2, O�

1 [+ O�
2) where t�(��, P ) = (R�

1, O�
1), t�(��, Q) = (R�

2, O�
2)

t�(��, !P ) = (R�, O�[!/`]`2dom(O�))) where t�(��, P ) = (R�, O�)

t�(��, �LP M� ) =

⇢
(R�

1 [R�
2 [ {(��, � •)}, O�

1 [+ O�
2 [+ {(� •, 1)}) if � 6⌘ 0 _ P 6⌘ ⇧

(;, ;) otherwise
where t�(� •, P ) = (R�

1, O�
1) and t�(� •, �) = (R�

2, O�
2)

t�(��, 0) = (;, ;)
t�(��, �|⌧) = (R�

1 [R�
2, O�

1 [+ O�
2) where t�(��, �) = (R�

1, O�
1) and t�(��, ⌧) = (R�

2, O�
2)

t�(��, !�) = (R�, O�[!/`]`2dom(O�)) where t�(��, �) = (R�, O�)

t�(��, a�.�) = ({(��, a�.�)}, {(�, 1)})

Table 4: Translation Function for Systems and Processes.

Based on the above defined translation function, it is immediate to derive a corresponding
abstraction function that, given a system, returns the abstract state that is its best approxi-

mation. Intuitively, the best approximation is the most precise (with respect to the order v�)
abstract state that safely represents the information contained in the system.

Definition 6 (Abstraction function). We define ↵
Sys

: Sys ! S� such that, given P 2
Sys, ↵

Sys

(P ) = (R�, O� [+ {(@, 1)}), where t�(@, P ) = (R�, O�).

The best approximation of a system is obtained by applying the translation function
t� w.r.t. the abstract membrane label @ representing the outermost membrane. Note that
the previously introduced notions can be used to express the fundamental notion of safe
approximation between abstract states and systems: an abstract state S�

safely approximates

a system P if and only if ↵
Sys

(P )v�S�. Moreover, the abstraction function is exploited to
compute the initial abstract state in the abstract semantics.

Example 3. Let us consider the system S introduced in Ex. 1 (see Tab. 2). Assuming the
parameter for the depth of abstract membrane labels d = 3, the best approximation of S is
given by the abstract state ↵

Sys

(S) = S�
0 = (R�

0, O
�
0), illustrated in Tab. 5. For convenience,

both the abstract representation R�
0 and the occurrence counting function O�

0 are described
by means of tables, on the left and on the right, respectively.

The table on the left contains one row for each abstract membrane label �� in the do-
main of R�

0. For each �� the corresponding row reports in the second column, the set of
8 For simplicity, we use t� for both abstract systems and processes.
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membrane children processes

@ skin

skin source, targeti �S

source �
bud

�i
n (V esiclei)

targeti phago

�i
ni

(exo�i
ni

), �targeti

� X bud

�
n, ⌧X

membrane/process multiplicity

@ 1
skin, source 1

target1, target2 1
� 1
� 1

�1, �2, �1, �2 !

Table 5: The Abstract State ↵
Sys

(S) = S�
0 = (R�

0, O
�
0), where i = 1, 2.

abstract membrane labels that may be children of ��, and in the third column the set of
sequential processes that may be associated to membrane ��. More formally, children(��) =
{⇥� | (��,⇥�) 2 R�

0 } and processes(��) = {� | (��,�) 2 R�
0}. Hence, the third line can be

read as the membrane source may include the membrane � , and it may have associated the
processes bud�1

n (V esicle1) and bud

�2
n (V esicle2).

The table on the right reports the multiplicities for each abstract membrane and process
label in the domain of O�

0 . For instance, the membrane labels skin and source have multi-
plicity 1, while the process labels �i and �i (with i = 1, 2) come with multiplicity !. The
corresponding prefixes occur indeed under the scope of a replication (see the rules in Tab. 4).

Abstract Transitions. The abstract semantics is given in terms of the abstract transition
relation l��!� among abstract states, where l� 2 Lab

�
T is the abstract transition label describing

the reaction. The abstract transitions are obtained by introducing inference rules for abstract
states that model the abstract counterpart of the membrane interactions possible in the
concrete system.

The set of abstract transition labels Lab

�
T

9 (ranged over by l1
�, l2

�, . . . ) is defined as in the
concrete case, by replacing membrane labels with abstract membrane labels. Thus, we have:

Lab

�
T = {pino

l

(��,�), bud
l

(� �,��,�, µ), exo
l

(� �,��,�, µ), phago
l

(� �,��,�, µ) |
� �,�� 2 d

Lab

d

M,�, µ 2 LabP}

Due to the lack of space, we comment here only on the abstract inference rule, given
in Tab. 6, corresponding to the (Bud) interaction. The abstract inference rules (Phago

�
),

(Exo

�
), (Pino

�
) in Tab. 7, corresponding to (Phago), (Exo), (Pino) reactions can be

derived in similar way from their concrete versions.
Rule (Bud

�
) uses an auxiliary operator co to modify an occurrence counting function O�

according to a given multiplicity x.

co(O�, x) =
⇢

O�[!/`]`2dom(O�) if x = !
O� otherwise

Rule (Bud

�
) simulates the concrete (Bud) rule, by modelling the gemmation of a mem-

brane �� from another membrane � � that may synchronise on actions bud

µ
n(⇢) and bud

�
n.

9 For simplicity, we omit the explicit indication of the parameter d when is clear from the context.
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This requires that: (i) the abstract membrane �� is reported as a possible child of the mem-
brane � � (i.e. (� �,��) 2 R�); (ii) according to the abstract representation R�, the actions
cobud and bud may be associated to membranes � � and ��, respectively. Furthermore, it
must be the case that the multiplicities of the process labels µ and � associated to the actions
are defined.

The abstract transition label l� is derived, as in the concrete case, by combining the labels
of the membranes and of the actions involved. The resulting abstract state is obtained by
enriching the abstract state (R�, O�) with information reporting the e↵ects of the possible
movement of the membrane �� out from the membrane � �. This requires to update both
the abstract representation and the occurrence counting function. Note that the membrane
introduced by the bud reaction is described by the abstract membrane label ⇧�, obtained by
approximating the membrane (��,� �,�, µ) according to its depth.

The abstract representation is extended by introducing the abstract membrane ⇧� as a
possible child of the membrane �� (in turn, parent of � �), and �� as a possible child of
membrane ⇧�. Moreover, we have to introduce information on the membrane processes that
may be associated to membranes � �, �� and ⇧�. In the case of membrane ⇧�, this requires to
add R�

2 obtained by applying the translation function to process ⇢ related to cobud. Similarly,
in the case of the membranes � � and �� the related abstract representations R�

3 and R�
4 are

obtained by applying the continuations of the two coactions (� and ⌧), respectively.
Finally, the occurrence counting function is updated by adding one occurrence of mem-

brane ⇧� introduced by the bud reaction and the occurrence counting functions O�
2 , O�

3 , and
O�

4 , obtained by the translations the process ⇢ and of the continuations of the coactions. Note
that co operator allows us to propagate the ! multiplicity, in the case of the continuations of
prefixes under replication.

(Bud

�
)

(��, � �) 2 R�, (� �, ��) 2 R�,

(� �, bud
µ
n(⇢).⌧) 2 R�, (��, bud�

n.�) 2 R�, O�(�) = x, O�(µ) = y

(R�, O�)
l��!� (R� [R�

1 [R�
2 [R�

3 [R�
4, O� [+ {(⇧�, 1)} [+ O�

2 [+ co(O�
3 , x) [+ co(O�

4 , y))
R�

1 = {(��, ⇧�), (⇧�, ��)},
t�(⇧�, ⇢) = (R�

2, O�
2), t�(��, �) = (R�

3, O�
3), t�(� �, ⌧) = (R�

4, O�
4)

where l� = bud

l

(��, � �, �, µ) and ⇧� =

(
(��, � �, �, µ) if (��, � ��, µ) 2 d

Lab

d
M,

(>,>, �, µ) otherwise

Table 6: Abstract Inference Rule for (Bud).

The Analysis. The analysis of a system P provides an abstract state describing the possible
topological structure of all the derivatives of P together with occurrence counting information
on membrane and process labels. We aim at calculating such abstract state by collecting all
the abstract states that can be reached from the initial one ↵

Sys

(P ), by applying the abstract
inference rules.
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(Phago

�
)

(��, ��) 2 R�, (��, � �) 2 R�,

(��, phago�
n.�) 2 R�, (� �, phago

µ
n(⇢).⌧) 2 R,� O�(�) = x, O�(µ) = y

(R�, O�),
l��!� (R� [R�

1 [R�
2 [R�

3 [R�
4, O� [+ {(⇧�, 1)} [+ O�

2 [+ co(O�
3 , x) [+ co(O�

4 , y))

R�
1 = {(� �, ⇧�), (⇧�, ��)}

t�(⇧�, ⇢) = (R�
2, O�

2), t�(��, �) = (R�
3, O�

3), t�(� �, ⌧) = (R�
4, O�

4)

where l� = phago

l

(��, � �, �, µ) and ⇧� =

(
(��, � �, �, µ) if (��, � ��, µ) 2 d

Lab

d
M,

(>,>, �, µ) otherwise

(Exo

�
)

(��, � �) 2 R�, (� �, ��) 2 R�,

(� �, exoµ
n.⌧) 2 R�, (��, exo�

n.�) 2 R�, O�(�) = x, O�(µ) = y

(R�, O�)
l��!� (R� [R�

1 [R�
2 [R�

3 [R�
4, O� [+ co(O�

3 , x) [+ co(O�
4 , y)),

R�
1 = {(��, ⇥�) | (��, ⇥�) 2 R�}, R�

2 = {(� �, ⌧ 0) | ⌧ 0 2 sub(C, x, exo�
n.�)},

C = {�0 | (��, �0) 2 R�} t�(� �, �) = (R�
3, O�

3), t�(� �, ⌧) = (R�
4, O�

4)

where l� = exo

l

(��, � �, �, µ) and sub(C, x, a�.�) =

⇢
C \ {a�.�} if x = 1
C otherwise

(Pino

�
)

(��, pino�(⇢).�) 2 R�

(R�, O�)
l��!� (R� [R�

1 [R�
2 [R�

3, O� [+ {(⇧�, 1)} [+ O�
2 [+ co(O�

3 , O�(�)))
R�

1 = {(��, ⇧�)}, t�(⇧�, ⇢) = (R�
2, O�

2), t�(��, �) = (R�
3, O�

3)

where l� = pino

l

(��, �) and ⇧� =

(
(��, �) if (��, �) 2 d

Lab

d
M,

(>, �), otherwise

Table 7: Abstract Inference Rules for (Phago), (Exo), and (Pino).

Nevertheless, the application of the abstract inference rules without a strategy would
lead us to have a correct, but very coarse approximation, especially as far as the counting
information is concerned. The reason is that, in principle, any enabled reaction would be
applied several times. As a consequence, infinite copies of the corresponding membranes and
processes are introduced, even though there are cases in which this behaviour cannot occur
in the dynamic evolution of the system. Our strategy for overcoming this problem consists
in exploiting occurrence counting information to determine which abstract transitions apply
to an abstract state. This allows us to more faithfully model the concrete behaviour and
therefore to gain precision in our analysis.

We start by analysing the information given by abstract transition labels, and by distin-
guishing: (i) the abstract transitions that require updating the occurrence counting informa-
tion more than once, from (ii) those that require to do it just once. Intuitively, the former
model concrete transitions that may occur more than once in a concrete derivation, while the
latter model concrete transitions that occur at most once.

13



To this aim, we need to define the multiplicity of abstract transition labels in a given
abstract state, computed by the function mul : S� ⇥ Lab

�
T ! Mul defined as follows:

mul((R�, O�), l�) =

8
<

:

! if l� = pino

l

(��,�) ^O�(�) = !,
! if l� = a

l

(� �,⇥�,�, µ), a
l

2 {bud
l

, exo
l

, phago
l

} ^O�(�) = O�(µ) = !,
1 otherwise

Note that the multiplicity assigned to an abstract transition label entirely depends on the
multiplicity of labels associated to the actions that participate in the reaction. For any kind
of reaction if all the involved actions have multiplicity !, then also the associated abstract
transition label has multiplicity !. In this case indeed the reaction may be applied more than

once in the corresponding concrete derivations. On the contrary, if at least one of the actions
involved in the reaction has multiplicity 1, then the corresponding reaction may be executed
no more than once in any derivation of the concrete system.

The multiplicity of transition labels is indeed exploited to compute the abstract semantics,
where abstract states are enriched with information on the involved abstract transitions labels.
More precisely, we have configurations in the form T � ⇤ S�, where S� 2 S� is an abstract
state and T � ✓ Lab

�
T is a set of abstract transition labels representing the reactions that have

been already exercised. We use C� to denote the set of configurations.
To describe the evolution of configurations we introduce two meta-inference rules that

encode our strategy for the application of abstract rules. These rules allow us to define the
evolution of a configuration T �⇤(R�

1, O
�
1) into another configuration, whenever there exists an

abstract reaction (R�
1, O

�
1) l��!� (R�

2, O
�
2). The choice of the meta-inference rule depends on the

multiplicity of the abstract transition label l� associated to the reaction, i.e. mul((R�
1, O

�
1), l�).

(R�
1, O

�
1) l��!� (R�

2, O
�
2) ^ (l� 62 T � _ (l� 2 T � ^mul((R�

1, O
�
1), l�) = !)

T � ⇤ (R�
1, O

�
1) l��!B T � [ {l�}⇤ (R�

2, O
�
2)

(1)

(R�
1, O

�
1) l��!� (R�

2, O
�
2) ^ (l� 2 T � ^mul((R�

1, O
�
1), l�) = 1)

T � ⇤ (R�
1, O

�
1) l��!B T � ⇤ (R�

2, O
�
1)

(2)

We can apply the first rule (1), provided that either the reaction l� has never been applied
before (l� 62 T �) or its multiplicity is !. Thus, either the reaction associated to l� can be
applied only once and it has not been realised or it can be realised any number of times.
In both cases, the resulting configuration is obtained by recording that the reaction l� has
now been performed, and by updating both the abstract representation and the occurrence
counting information.

We can apply the second rule (2), if the reaction related to l� has multiplicity 1 and
has already been applied (l� 2 T �). In this case, it may indicate that the concrete reaction
approximated by l� can be performed in another context, di↵erent from the one considered
before. This requires updating the abstract representation reporting the e↵ects of the move,
while the occurrence counting information does not have to be modified since it already
reports the correct multiplicities of the membrane and process labels involved in the move.

Example 4. To illustrate the application of meta-inference rule (1) let us consider the ab-
stract state ↵

Sys

(S) = S�
0 = (R�

0, O
�
0) of Ex. 3 (see Tab. 5) describing the best approx-

imation of the system S, presented in Ex. 1. Note that we can apply the abstract rule
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(Bud

�
) to ↵

Sys

(S), because its premises are fulfilled: (i) (skin, source), (source,� ) 2 R�
0

and (ii) (�, bud�
n), (source, bud

�1
n (V esicle1)) 2 R�

0. Furthermore, O�
0(�1) and O�

0(�) are de-

fined. As a consequence, we have ↵
Sys

(S)
l�1�!� S�

1 , where l�1 = bud

l

(�, source, �,�1) and
the state S�

1 = (R�
1, O

�
1) is the one depicted in Tab. 8. Hence, considering the configu-

membrane children processes

@ skin

skin source, targeti, ⇧
�
1 �S

source �
bud

�i
n (V esiclei),

targeti phago

�i
ni

(exo�i
ni

), �targeti

� X bud

�
n, ⌧X

⇧�
1 = (�, source, �, �1) � phago

µ1
n1

.exo⌫1
n1 , ⌧ 01

membrane/process multipl.

@ 1
skin, source, 1

target1, target2, 1
�, ⇧�

1 1
�, µ1 1

�1, �2, �1, �2 !

Table 8: The Abstract State S�
1 = (R�

1, O
�
1), where i = 1, 2.

ration ; ⇤ ↵
Sys

(S) = S�
0 , we can apply meta-inference rule (1), since l�1 62 ;, obtaining

; ⇤ ↵
Sys

(S)
l�1�!B {l�1} ⇤ S�

1 . Note that, since O�
0(�) = 1 (while O�

0(�1) = !) we have that
mul((R�

0, O
�
0), l�1) = 1.

The analysis of a system P provides an abstract state that is obtained by collecting (taking
the l.u.b.) all the abstract states that can be reached from the initial configuration ;⇤↵

Sys

(P ),
by applying the meta-inference rules (1) and (2).

Definition 7 (The Analysis). We define a function A� : Sys! S� such that for P 2 Sys

we have A�(P ) = t�{S�|T�⇤S�2X�
P }

S�
, where X�

P = lfp(F�({;⇤↵
Sys

(P )}))10 and the function

F� : }(C�) ! }(C�) defined as F�(X�
1 ) = X�

1 [ {C�
2 | C�

1
l��!B C�

2 , C�
1 2 X�

1}.

Despite the fact that the analysis involves a fixed point over a power domain, which seems
to admit exponentially long increasing paths, the analysis can be computed in polynomial
time. For its computation there is no need to deal with power sets: crafting a single maximal
path is enough to compute the fixed point, which is a singleton set. This allows us to obtain
a polynomial bound. It can be shown indeed that the analysis can be e↵ectively computed by
building a single maximal path starting from the initial configuration and ending into a final
configuration, i.e. a configuration that cannot further evolve according to the meta-inference
rules (1) and (2).

This property relies on the following result.

Theorem 1. Let P 2 Sys be well labelled and let C�
1 , C�

2 2 C� be two configurations such that

C�
1 , C�

2 2 lfp(F�({;⇤ ↵
Sys

(P )})), as defined in Def. 7. If C�
1 and C�

2 are final configurations

then C�
1 = C�

2 .

10 where lfp is the least fixed point.
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The previous property allows us to calculate the analysis of a system without computing
all the configurations that can be reached from the initial one. Indeed,A�(P ) can be computed
by building a single path

T �
0 ⇤ S�

0 , T �
1 ⇤ S�

1 , . . . , T �
m ⇤ S�

m

where (i) T �
0 = ;, S�

0 = ↵
Sys

(P ); (ii) T �
m ⇤ S�

m is a final configuration; and, (iii) for each
i 2 [1, m] the corresponding configuration is obtained by applying the meta-inference rules (1)
and (2) to the previous configuration T �

i�1 ⇤ S�
i�1. Note that this path is an ascending

chain since, for each i 2 [0, m � 1], either T �
i ⇢ T �

i+1 and S�
i v�S�

i+1 or T �
i ✓ T �

i+1 and
S�

i <�S�
i+1. Hence, we have that the analysis of system P precisely coincides with the final

state, i.e. A�(P ) = S�
m.

The above reasoning guarantees that the analysis can be computed in polynomial time,
observing that the number of abstract membranes and transition labels arising in the compu-
tation of the analysis is polynomial, when fixing the maximum depth d to a constant value.

Finally, we present the main theorem that shows that the analysis of a system safely

approximates its concrete behaviour, described by the concrete LTS. This means that each
derivative P 0 of P is over-approximated by the abstract state calculated by the analysis of P .

Theorem 2 (Safety). Let P 2 Sys be a well labelled system and let LTS(P ) = (X,
l�!, P ).

We have that

� t�P 02X ↵
Sys

(P 0)
�v�A�(P ).

5 Our Analysis at work

We now apply our analysis to the systems presented in Sect. 3 (assuming again d = 3 analo-
gously as in Sect. 4). We illustrate in more the details the analysis of the system S of Ex. 1,
whose first steps have been introduced in Ex. 3 and Ex. 4. Since the analysis of the system
S0 described in Ex. 2 is similarly obtained, we only comment its results.

Example 5. The analysis of the system S shown in Tab. 2 of Ex. 1 is computed starting from
the initial configuration ;⇤ ↵

Sys

(S), where ↵
Sys

(S) = S�
0 = (R�

0, O
�
0) is the abstract state of

Tab. 5 (commented in Ex. 3).
The final configuration is given by {l�1, l�11, l�12, l�2, l�21, l�22}⇤S�, where S� = (R�, O�) is the

abstract state in Tab. 9, and the abstract transition labels for i = 1, 2 are:

l�i = bud

l

(�, source, �,�i), l�i1 = phago

l

(⇧�
i , targeti, �i, µi), l�i2 = exo

l

(⇧�
i ,⇧�

i1, ⌫i,�i).

Here, the abstract transition labels l�1, l�11 and l�12 are the abstract versions of the transition
labels l11 and l12 in Tab. 2. They represent the (bud), (phago) and (exo) reactions performed
by the first vesicle, respectively. Analogously, the abstract transition labels l�2, l�21 and l�22
represent the labels introduced by the similar evolution of the second vesicle. Note that in
this case all the abstract transition labels have multiplicity 1, and consequently only the
meta-inference rule (2) can be applied to the final configuration. As a consequence, at this
point, no matter which reaction is applied, the final configuration cannot further evolve, and,
in particular, the information counting information cannot be updated anymore.

Hence, we can conclude that A�(S) = S� = (R�, O�). For clarity, the membrane hierarchy
described by abstract representation R� is shown in the tree in Fig. 1, where the nodes
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membrane children processes

@ skin

skin source, targeti, ⇧
�
i �S

source �
bud

�i
n (V esiclei),

targeti ⇧�
i1, � phago

�i
ni

(exo�i
ni

), �targeti

� X bud

�
n, ⌧X

⇧�
i = (�, source, �, �i) �

phago

µi
ni

.exo⌫i
ni| {z }

V esiclei

,

exo

⌫i
ni

, ⌧ 0i
⇧�

i1 = (⇧�
i , targeti, �i, µi) ⇧�

i exo

�i
ni

, V esiclei, ⌧
0
i

membrane/process multipl.

@ 1
skin, source, 1

target1, target2, 1
�, ⇧�

1 , ⇧�
2 1

⇧�
11, ⇧

�
21 1

�, µ1, µ2, ⌫1, ⌫2 1
�1, �2 1

�1, �2, �1, �2 !

Table 9: The Abstract State S� = (R�, O�), where i = 1, 2.

represent the abstract membrane labels and the edges represent the parent-child relation. It
is worth noting that the information provided by R� predicts that the membrane � , which
encloses the molecule X, may end up in membrane target1, as well as in membrane target2.
However, the occurrence counting information expressed by O� guarantees that the membrane
� will never reside at the same time inside the membranes target1 and target2. To point this
out the two alternative inclusions of membrane � inside the membranes target1 and target2
the lines are displayed with dotted edges (blue in the pdf) in Fig. 1. Note that without applying
the meta-inference rules (1) and (2), and by repeatedly updating the occurrence counting
information, while applying abstract inference rules, we would obtain that O�(� ) = !, thus
losing the information necessary to determine the alternative presence of membrane � in the
two target membranes.

@

skin

⇧�
1

�

X

source

�

XX

target1 target2

⇧�
11 �

⇧�
1

X

⇧�
21 �

⇧�
2

X

⇧�
2

�

X

Fig. 1. The Membrane Hierarchy Tree described by R�.

Example 6. The analysis of the system S0 described in Tab. 3 of Ex. 2 is given be the abstract
state S0� = (R0�, O0�) illustrated in Tab. 10. The analysis result is obtained as in Ex. 5
starting from the corresponding initial configuration. Note that the abstract representation
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R0� roughly describes the same information reported in Ex. 5, while the occurrence counting
information O0� makes a di↵erence. Given that the multiplicity of membrane � is in this case
!, the analysis reveals that � may be enclosed at the same time inside membranes target1
and target2

11.
We can then conclude that our analysis, thanks to the occurrence counting information,

allows us to observe that the two biological systems introduced in Sect. 3 exhibit a di↵erent
dynamical behaviour. In both cases, the analysis predicts that molecule X may end up both
in target1 and in target2, but only in the first scenario the two inclusions are alternative.

Note that, in general, information on the possible presence/absence of a component in a
membrane could also be exploited when developing a biological model, to detect errors in the
model specification.

membrane children processes

@ skin

skin
source, targeti,
⇧�

i , ⇧�
Dij

�S

source �
bud

�i
n (V esiclei),

targeti ⇧�
i1, ⇧

�
Dij1, � phago

�i
ni

(exo�i
ni

), �targeti

� X bud

�i
n , ⌧X

⇧�
i = (�, source, �i, �i) �

phago

µi
ni

.exo⌫i
ni| {z }

V esiclei

,

exo

⌫i
ni

, ⌧ 0i
⇧�

Dij = (�, source, �i, �j) � exo

⌫j
nj , V esiclej , ⌧

0
j

⇧�
i1 = (⇧�

i , targeti, �i, µi) ⇧�
i exo

�i
ni

, V esiclei, ⌧
0
i

⇧�
Dij1 = (⇧�

Dij , targetj , �j , µj) ⇧�
Dij exo

�j
nj , V esiclej , ⌧

0
j

membrane/process multipl.

@ 1
skin, 1

source, � !

�1, �2 1
target1, target2, 1

⇧�
1 , ⇧�

2 1
⇧�

11, ⇧
�
21 1

⇧�
D12, ⇧

�
D21 1

⇧�
D121, ⇧

�
D211 1

µ1, µ2, ⌫1, ⌫2 1
�1, �2 1

�1, �2, �1, �2, !

Table 10: The Abstract State S0� = (R0�, O0�), where i, j = 1, 2 and i 6= j.

6 Conclusions

We presented an analysis based on Abstract Interpretation techniques for approximating the
behaviour of biological systems described in Brane Calculi [7]. The analysis consists in two
components. The first component, which over-approximates the possible membrane hierarchy,
is obtained by adapting static analysis techniques used for process algebras handling biological
compartments (see e.g. [20,2,3,4,5]). The less standard occurrence counting component of the
analysis is used to predict whether some component may occur at most once in any system
reachable from the initial one. The two components influence each other. In particular, the
prediction on the possible membrane hierarchy is refined with global occurrence counting
information, thus allowing us to increase the precision with respect to the previous static
approaches for Brane Calculi [3,4,5]. Note that the analyses providing occurrence counting

11 Note that giving the two membrane sources the same label does not influence the result.
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information proposed for BioAmbients [14,13,15,25], the sibling bio-inspired calculus, cannot
be straightforwardly adapted to Brane Calculi. A careful labelling technique for membranes is
required indeed because of bitonality, i.e. the fact that brane interactions possibly introduce
new membranes, in order not to mix what is inside a membrane with what is outside (entities
can be shuttled inside or outside, only if wrapped by another membrane).

To validate the applicability of our analysis in the biological setting, we applied it to
two minimal examples of communication via mobile vesicles that exhibit di↵erent dynami-
cal behaviours with respect to the presence of a molecule X inside two target membranes:
simultaneous in the second case, but not in the first one. Despite its simplicity, without the
occurrence counting, the analysis failed to detect di↵erences between the two cases, thus
not predicting that, in the first case, X cannot be simultaneously present in the two target
membranes, while in the second case, it may occur in both.

As future work, we would like to improve the accuracy of our approach. In particular, we
would like to better analyse the systems that contain di↵erent instances of the same membrane
or of the same process, and to better handle replication. One possible direction would be to
refine our analysis by providing local occurrence counting information in the style of [14,15].
In this way, we could apply our approach to more complex biological case studies, such as the
one modelled in [6], for investigating the relationships occurring among events. Note that the
formalisation of the LDL Cholesterol Degradation pathway in Brane Calculi presented in [6]
requires a version of the calculus with recursive definitions in place of replication. Recursive
definitions have been shown useful to provide a more intuitive modelling of real systems with
an infinite behaviour.
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