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1. Introduction

Given real numbers q > 0, ω > 0 and p > 4, we consider the following sys-
tem of Schrödinger–Maxwell type on a smooth manifold M endowed with a
Riemannian metric g:

−ε2∆gu+ u+ ωuv = |u|p−2u in M,

−ε2∆gv + v = qu2 in M,

u > 0 in M,

(1.1)

where ∆g is the Laplace–Beltrami operator on M .
We want to prove that when the parameter ε is sufficiently small, there

are many low-energy solutions of (1.1). In particular, the number of solutions
of (1.1) is related to the topology of the manifold M . We suppose, without
loss of generality, that the manifold M is isometrically embedded in Rn for
some n.

Here there is a competition between the two equations, since both share
the same singular perturbation of order ε2. In [10, 11] we dealt with a similar
system where only the first equation had a singular perturbation. In this case,
the second equation disappears in the limit. In Section 2.1 we write the limit
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problem taking care of the competition, and we find the model solution for
system (1.1).

A problem similar to (1.1), namely the Schrödinger–Newton system, has
been studied from a dynamical point of view in [9]. Also in that paper the
two equations have the ε2 singular perturbation.

Recently, Schrödinger–Maxwell-type systems received considerable at-
tention from the mathematical community, we refer the reader, e.g., to [1, 2, 5,
6, 7, 8, 15, 16]. A special case of Schrödinger–Maxwell-type systems, namely
when the system is set in R3, takes the name of Schrödinger–Poisson–Slater
equation and it arises in Slater approximation of the Hartree–Fock model.
We want here to especially mention some result of the existence of solutions,
i.e., [2, 7, 12, 15, 17], since the limit problem (1.1) is a Schrödinger–Poisson–
Slater-type equation. (For a more exhaustive discussion on Schrödinger–
Poisson–Slater equations and on the physical models that lead to this equa-
tion we refer the reader to [13, 14] and the references therein.)

Our main result is the following.

Theorem 1.1. Let 4 < p < 6. For ε small enough there exist at least cat(M)
positive solutions of (1.1).

Here we recall the definition of the Lusternik–Schnirelmann category of
a set.

Definition 1.2. Let X be a topological space and consider a closed subset
A ⊂ X. We say that A has category k relative to X (catX A = k) if A is
covered by k closed sets Aj , j = 1, . . . , k, which are contractible in X, and k is
the minimum integer with this property. We simply denote catX = catX X.

2. Preliminary results

We endow H1(M) and Lp(M) with the following equivalent norms:

∥u∥2ε =
1

ε3

∫
M

ε2|∇u|2 + u2 dµg, |u|pε,p =
1

ε3

∫
M

|u|p dµg,

∥u∥2H1 =

∫
M

|∇u|2 + u2 dµg, |u|pp =

∫
M

|u|p dµg

and we refer to Hε (resp., Lp
ε) as the space H1(M) (resp., Lp

ε) endowed with
the ∥ · ∥ε norm (resp., | · |ε,p norm). Obviously, we refer to the scalar product
on Hε as

⟨u, v⟩ε =
1

ε3

∫
M

ε2∇u∇v + uv dµg.

Following an idea by Benci and Fortunato [5], for any ε we introduce the map
ψε : H

1(M) → H1(M) which is the solution of the equation

−ε2∆gv + v = qu2 in M. (2.1)
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Lemma 2.1. The map ψ : H1(M) → H1(M) is of class C2 with derivatives
ψ′(u) and ψ′′(u) which satisfy

−ε2∆gψ
′
ε(u)[φ] + ψ′

ε(u)[φ] = 2quφ, (2.2)

−ε2∆gψ
′′
ε (u)[φ1, φ2] + ψ′′

ε (u)[φ1, φ2] = 2qφ1φ2 (2.3)

for any φ,φ1, φ2 ∈ H1(M). Moreover, ψε(u) ≥ 0.

Proof. The proof is standard. �

Remark 2.2. We observe that by simple computation, for any t > 0 we have

ψε(tu) = t2ψε(u).

In fact, if ψε(u) solves (2.1), multiplying both sides of (2.1) by t2 we get the
claim.

Lemma 2.3. The map Tε : Hε → R given by

Tε(u) =

∫
M

u2ψε(u) dµg

is a C2 map and its first derivative is

T ′
ε(u)[φ] = 4

∫
M

φuψε(u) dµg.

Proof. The regularity is standard. The first derivative is

T ′
ε(u)[φ] = 2

∫
uφψε(u) +

∫
u2ψ′

ε(u)[φ].

By (2.1) and (2.2) we have

2

∫
uφψε(u) =

1

q

(
−ε2

∫
∆
(
ψ′
ε(u)[φ]

)
ψε(u) +

∫
ψ′
ε(u)[φ]ψε(u)

)
=

1

q

(
−ε2

∫
ψ′
ε(u)[φ]∆ψε(u) +

∫
ψ′
ε(u)[φ]ψε(u)

)
=

∫
ψ′
ε(u)[φ]u

2,

and the claim follows. �

At this point, we consider the following functional Iε ∈ C2(Hε,R):

Iε(u) =
1

2
∥u∥2ε +

ω

4
Gε(u)−

1

p

∣∣u+∣∣p
ε,p
, (2.4)

where

Gε(u) =
1

ε3

∫
Ω

u2ψε(u) dx =
1

ε3
Tε(u).

By Lemma 2.3 we have

I ′ε(u)[φ] =
1

ε3

∫
Ω

ε2∇u∇φ+ uφ+ ωuψε(u)φ−
(
u+

)p−1
φ,

I ′ε(u)[u] = ∥u∥2ε + ωGε(u)−
∣∣u+∣∣p

ε,p
.
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Then if u is a critical point of the functional Iε, the pair of positive functions
(u, ψε(u)) is a solution of (1.1).

We define the following Nehari set:

Nε =
{
u ∈ H1(M) \ 0 : Nε(u) := I ′ε(u)[u] = 0

}
.

The Nehari set has the following properties (for a complete proof see [11]).

Lemma 2.4. If p > 4, Nε is a C2 manifold and infNε ∥u∥ε > 0.
If u ∈ Nε, then

Iε(u) =

(
1

2
− 1

p

)
∥u∥2ε + ω

(
1

4
− 1

p

)
Gε(u)

=

(
1

2
− 1

p

) ∣∣u+∣∣p
p,ε

− ω

4
Gε(u)

=
1

4
∥u∥2ε +

(
1

4
− 1

p

) ∣∣u+∣∣p
p,ε
,

(2.5)

and the Palais–Smale condition holds for the functional Iε on Nε.
Finally, for all w ∈ H1(M) such that |w+|ε,p = 1 there exists a unique

positive number tε = tε(w) such that tε(w)w ∈ Nε. The number tε is the crit-
ical point of the function

H(t) = Iε(tw) =
1

2
t2∥w∥2ε +

t4

4
ωGε(w)−

tp

p
.

2.1. The limit problem

Consider the following problem in the whole space:
−∆u+ u+ ωuv = |u|p−2u in R3,

−∆v + v = qu2 in R3,

u > 0 in R3.

(2.6)

In an analogous way we define the function ψ∞(u) as a solution of the second
equation and, as before, we can define a functional

I∞(u) =
1

2
∥u∥2H1 +

ω

4
G(u)− 1

p

∣∣u+∣∣p
p
,

where G(u) =
∫
R3 u

2ψ∞(u) dx, and the Nehari manifold

N∞ =
{
u ∈ H1(R3) \ 0 : I ′∞(u)[u] = 0

}
.

It is easy to prove that (see [12]) the value

m∞ = inf
N∞

I∞

is attained at least by a function U which is a solution of problem (2.6).
We will refer to problem (2.6) as the limit problem. We set

Uε(x) = U
(x
ε

)
and the function Uε will be the model solution for a solution of problem (1.1).
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3. Main ingredient of the proof

We sketch the proof of Theorem 1.1. First of all, it is easy to see that the
functional Iε ∈ C2 is bounded from below and it satisfies the Palais–Smale
condition on the complete C2 manifold Nε. Then we have, by well-known re-
sults, that Iε has at least cat Idε critical points in the sublevel

Idε =
{
u ∈ H1 : Iε(u) ≤ d

}
.

We prove that, for ε and δ small enough, it holds that

catM ≤ cat
(
Nε ∩ Im∞+δ

ε

)
, (3.1)

where m∞ has been defined in the previous section.
To get estimate (3.1) we build two continuous operators:

Φε :M → Nε ∩ Im∞+δ
ε ,

β : Nε ∩ Im∞+δ
ε →M+,

where

M+ = {x ∈ Rn : d(x,M) < R}
with R small enough so that cat(M+) = cat(M). Without loss of generality,
we can suppose that R = r is the injectivity radius of M , in order to simplify
the notations.

Following an idea in [4], we build the operators Φε and β such that

β ◦ Φε :M →M+

is homotopic to the immersion i :M →M+. By a classical result on topology
(which we summarize in Remark 3.1) we have

catM ≤ cat
(
Nε ∩ Im∞+δ

ε

)
,

and the first claim of Theorem 1.1 is proved.

Remark 3.1. Let X1, X2 and X3 be topological spaces with X1 and X3

homotopically identical. If g1 : X1 → X2 and g2 : X2 → X3 are continuous
operators such that g2 ◦ g1 is homotopic to the identity on X1, then

catX1 ≤ catX2.

4. The map Φε

For every ξ ∈M we define the function

Wξ,ε(x) = Uε

(
exp−1

ξ x
)
χ
(
| exp−1

ξ x|
)
, (4.1)

where χ : R+ → R+ is a cutoff function, that is, χ ≡ 1 for t ∈ [0, r/2), χ ≡ 0
for t > r and |χ′(t)| ≤ 2/r. Here expξ are the normal coordinates centered at
ξ ∈M and r is the injectivity radius ofM . We recall the following well-known
expansion of the metric g in normal coordinates:

gij(εz) = δij + o(ε|z|), |g(εz)|1/2 = 1 + o(ε|z|). (4.2)
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We can define a map

Φε :M → Nε,

Φε(ξ) = tε(Wξ,ε)Wξ,ε.

Remark 4.1. We have that Wε,ξ ∈ H1(M) and the following limits hold uni-
formly with respect to ξ ∈M :

∥Wε,ξ∥ε → ∥U∥H1(R3),

|Wε,ξ|ε,t → ∥U∥Lt(R3) for all 2 ≤ t ≤ 6.

Lemma 4.2. We have that

lim
ε→0

Gε(Wε,ξ) = G(U) =

∫
R3

qU2ψ(U) dx

uniformly with respect to ξ ∈M .

Proof. For the sake of simplicity, we set ψε(x) := ψε(Wε,ξ)(x), and we define

ψ̃ε(z) = ψε

(
expξ(εz)

)
χr (|εz|) for z ∈ R3.

It is easy to see that ∥ψ̃ε∥H1(R3) ≤ C∥ψε∥ε. Moreover, by (2.1),

∥ψε∥2ε ≤ C∥Wε,ξ

∥∥2
12/5, ε

∥∥ψε∥ε ≤ C∥U∥212/5∥ψε∥ε,

so ψ̃ε is bounded in H1(R3) and there exists ψ̄ ∈ H1(R3) such that, up to

extracting a subsequence, ψ̃εk ⇀ ψ̄ weakly in H1(R3).
First, we want to prove that ψ̄ is a weak solution of

−∆v + v = qU2,

that is, ψ̄ = ψ∞(U). Given f ∈ C∞
0 (R3), we have that spt f ⊂ B(0, T ) for

some T > 0, so eventually spt f ⊂ B(0, r/εk), where spt f is the support of
the function f . Thus we can define

fk(x) := f

(
1

εk
exp−1

ξ (x)

)
and we have that fk(x) is compactly supported in Bg(ξ, r). By definition of
ψε(x) we have∫

M

ε2k ∇gψεk∇gfk + ψεkfk dµg = q

∫
M

W 2
εk,ξ

fk dµg. (4.3)

By the change of variables, x = expξ(εkz) and by (4.2) we get

1

ε3k

∫
M

ε2k ∇gψεk∇gfk + ψεkfk dµg

=

∫
B(0,r/εk)

[
gij(εkz)∂iψ̃εk(z)∂jf(z) + ψ̃εk(z)f(z)

] ∣∣g(εkz)∣∣1/2 dz
=

∫
B(0,T )

∇ψ̃εk(z)∇f(z) + ψ̃εk(z)f(z) dz + o(εk),
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thus, by the weak convergence of ψ̃ε we get

1

ε3k

∫
M

ε2k ∇gψεk∇gfk + ψεkfk dµg →
∫
R3

∇ψ̄(z)∇f(z) + ψ̄(z)f(z) dz (4.4)

as εk → 0. In the same way we get

q

ε3k

∫
M

W 2
εk,ξ

fk dµg = q

∫
B(0,r/εk)

U2(z)f(z)
∣∣g(εkz)∣∣1/2 dz

= q

∫
R3

U2(z)f(z) dz + o(εk)

and
q

ε3k

∫
M

W 2
εk,ξ

fk dµg → q

∫
R3

U2(z)f(z) dz. (4.5)

By (4.3), (4.4) and (4.5) we get that, for any f ∈ C∞
0 (R3) it holds that∫

R3

∇ψ̄∇f + ψ̄f = q

∫
R3

U2f,

which proves that

ψ̃εk ⇀ ψ∞(U) weakly in H1(R3). (4.6)

To conclude, again by change of variables we have

Gεk

(
Wεk,ξ

)
=

1

ε3k

∫
Bg(ξ,r)

W 2
εk,ξ

ψ
(
Wεk,ξ

)
dµg

=

∫
R3

U2(z)χ2
(
|εkz|

)
ψ̃εk

∣∣g(εkz)∣∣1/2 dz.
Since U2 ∈ L6/5(R3), one has

U2(z)χ2
(
|εkz|

) ∣∣g(εkz)∣∣1/2 → U2(z) strongly in L6/5(R3),

that, combined with (4.6), concludes the proof. �

Proposition 4.3. For all ε > 0 the map Φε is continuous. Moreover, for any
δ > 0 there exists ε0 = ε0(δ) such that, if ε < ε0, then Iε (Φε(ξ)) < m∞ + δ.

Proof. It is easy to see that Φε is continuous because tε(w) depends contin-
uously on w ∈ H1

g (M).

At this point, we prove that tε(Wε,ξ) → 1 uniformly with respect to
ξ ∈M . In fact, by Lemma 2.4, tε(Wε,ξ) is the unique solution of

t2
∥∥Wε,ξ

∥∥2
ε
+ ωGε

(
tWε,ξ

)
− tp

∣∣Wε,ξ

∣∣p
ε,p

= 0

which, in light of Remark 2.2, can by rewritten as∥∥Wε,ξ

∥∥2
ε
+ ωt2Gε

(
Wε,ξ

)
− tp−2

∣∣Wε,ξ

∣∣p
ε,p

= 0.

By Remark 4.1 and Lemma 4.2 we have the claim. In fact, we recall that,
since U is a solution of (2.6), it holds that

∥U∥2H1(R3) + ωG(U)− |U |pLp(R3) = 0.
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At this point, we have

Iε
(
tε
(
Wε,ξ

)
Wε,ξ

)
=

(
1

2
− 1

p

)∥∥Wε,ξ

∥∥2
ε
t2ε + ω

(
1

4
− 1

p

)
t4εGε

(
Wε,ξ

)
.

Again, by Remark 4.1 and Lemma 4.2 and since tε(Wε,ξ) → 1 we have

Iε
(
tε
(
Wε,ξ

)
Wε,ξ

)
→

(
1

2
− 1

p

)
∥U∥2H1(R3) + ω

(
1

4
− 1

p

)
G(U) = m∞,

which concludes the proof. �

Remark 4.4. We set mε = infNε Iε. By Proposition 4.3 we have

lim sup
ε→0

mε ≤ m∞. (4.7)

5. The map β

For any u ∈ Nε we can define a point β(u) ∈ Rn by

β(u) =

∫
M
xΓ(u) dµg∫

M
Γ(u) dµg

,

where

Γ(u) =

(
1

2
− 1

p

)
1

ε3
|u+|p − ω

4

1

ε3
u2ψε(u).

Immediately, since
∫
M

Γ(u)dµg = Iε(u) ≥ mε, the function β is well defined
in Nε.

Lemma 5.1. There exists α > 0 such that mε ≥ α for all ε.

Proof. Take w such that |w+|ε,p = 1 and tε = tε(w) such that tεw ∈ Nε. By
(2.5) we have

Iε(tεw) =
t2ε
4
∥w∥2ε +

(
1

4
− 1

p

)
tpε ≥

(
1

4
− 1

p

)
tpε .

Moreover, we have inf |w+|ε,p=1 tε(w) > 0. In fact, suppose that there exists a

sequence wn such that |w+|ε,p = 1 and tε(wn) → 0. Since tε(wn)wn ∈ Nε it
holds that

1 = |w+
n |ε,p =

1

tε(wn)p−2

(
∥wn∥2ε + ωGε(tε(wn))

)
≥ 1

tε(wn)p−2
∥wn∥2ε.

Also, there exists a constant C > 0 which does not depend on ε such that
|w+

n |ε,p ≤ |wn|ε,p ≤ C∥wn∥ε, so

1 ≥ 1

Ctε(wn)p−2
→ +∞

that is a contradiction. This proves that mε ≥ α for some α > 0. �
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Now we have to prove that, if u ∈ Nε ∩ Im∞+δ
ε , then β(u) ∈M+.

Let us consider the following partitions of M . For a given ε > 0 we say
that a finite partition

Pε =
{
P ε
j

}
j∈Λε

of M is a “good” partition if

(1) for any j ∈ Λε the set P ε
j is closed;

(2) P ε
i ∩ P ε

j ⊂ ∂P ε
i ∩ ∂P ε

j for any i ̸= j;
(3) there exist r1(ε), r2(ε) > 0 such that there are points qεj ∈ P ε

j for which
Bg(q

ε
j , ε) ⊂ P ε

j ⊂ Bg(q
ε
j , r2(ε)) ⊂ Bg(q

ε
j , r1(ε)), with r1(ε) ≥ r2(ε) ≥ Cε

for some positive constant C;
(4) lastly, there exists a finite number ν(M) ∈ N such that every ξ ∈ M is

contained in at most ν(M) balls Bg(q
ε
j , r1(ε)), where ν(M) does not de-

pend on ε.

Remark 5.2. We recall that there exists a constant γ > 0 such that, for any
δ > 0 and for any ε < ε0(δ) as in Proposition 4.3, given any “good” partition
Pε =

{
P ε
j

}
j
of the manifold M and for any function u ∈ Nε ∩ Im∞+δ

ε there

exists, for an index j̄, a set P ε
j̄
such that

1

ε3

∫
P ε

j̄

|u+|p dx ≥ γ. (5.1)

Indeed we can proceed verbatim as in [10, Lemma 12], considering that, since
I ′(u)[u] = 0,

∥u∥2ε =
∣∣u+∣∣p

ε,p
− 1

ε3

∫
M

ωu2ψ(u) ≤
∣∣u+∣∣p

ε,p

=
∑
j

∣∣u+j ∣∣pε,p ≤ max
j

{∣∣u+j ∣∣p−2

ε,p

}∑
j

∣∣u+j ∣∣2ε,p,
where u+j is the restriction of the function u+ on the set Pj , and arguing as

in [3, Lemma 5.3], we obtain that for some C > 0 it holds that∑
j

∣∣u+j ∣∣2ε,p ≤ Cν
∥∥u+∥∥2

ε
,

and there the proof follows since

max
j

{∣∣u+j ∣∣p−2

ε,p

}
≥ 1

Cν
.

Proposition 5.3. For any η ∈ (0, 1) there exists δ0 < m∞ such that for any
δ ∈ (0, δ0) and any ε ∈ (0, ε0(δ)) as in Proposition 4.3, for any function
u ∈ Nε ∩ Im∞+δ

ε we can find a point q = q(u) ∈M such that∫
Bg(q,r/2)

Γ(u) > (1− η)m∞.



10 M. Ghimenti and A. M. Micheletti

Proof. First, we prove the proposition for u ∈ Nε ∩ Imε+2δ
ε .

By contradiction, we assume that there exists η ∈ (0, 1) such that we
can find two sequences of vanishing real number δk and εk and a sequence of
functions {uk}k such that uk ∈ Nεk ,

mεk ≤ Iεk(uk)

=

(
1

2
− 1

p

)
∥uk∥2εk + ω

(
1

4
− 1

p

)
Gεk(uk)

≤ mεk + 2δk ≤ m∞ + 3δk

(5.2)

for k large enough (see Remark 4.4), and for any q ∈M ,∫
Bg(q,r/2)

Γ(uk) ≤ (1− η)m∞.

By the Ekeland principle and by definition of Nεk we can assume that∣∣I ′εk(uk)[φ]∣∣ ≤ σk∥φ∥εk as σk → 0. (5.3)

By Remark 5.2 there exists a set P εk
k ∈ Pεk such that

1

ε3k

∫
P

εk
k

|u+k |
p dµg ≥ γ,

so, we choose a point qk ∈ P εk
k and we define, in analogy with the proof of

Lemma 4.2,

wk(z) := uk
(
expqk(εkz)

)
χ
(
εk|z|

)
,

where z ∈ B(0, r/εk) ⊂ R3. Extending trivially wk by zero to the whole R3,
we have that wk ∈ H1(R3) and, by (5.2),

∥wk∥2H1(R3) ≤ C∥uk∥2εk ≤ C.

So there exists a w ∈ H1(R3) such that, up to subsequences, wk → w weakly
in H1(R3) and strongly in Lt

loc(R3) for 2 ≤ t < 6. Moreover, we set

ψk(x) := ψε(uk)(x) and ψ̃k = ψk

(
expqk(εkz)

)
χ
(
εk|z|

)
.

Arguing as in Lemma 4.2, we get that ψ̃k → ψ∞(w) weakly in H1(R3) and
strongly in Lt

loc(R3) for all 2 ≤ t < 6.

Again, given f ∈ C∞
0 (R3), with spt f ⊂ B(0, T ) for some T > 0, we can

define

fk(x) := f

(
1

εk
exp−1

ξ (x)

)
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and, by (5.3), we have ∣∣I ′εk(uk)[fk]∣∣ → 0 as k → ∞.

Now, by change of variables we have

I ′εk(uk)[fk]

=
1

ε3k

∫
M

ε2k∇guk∇gfk + ukfk + ωqukψkfk − (u+k )
p−1fk dµg

=

∫
B(0,T )

[
gij(εk)∂iwk∂jf + wkf + ωqwkψ̃kf − (w+

k )
p−1f

] ∣∣g(εkz)∣∣1/2 dz
=

∫
R3

∇wk∇f + wkf + ωqwkψ̃kf − (w+
k )

p−1fdz + o(εk)

→
∫
R3

∇w∇f + wf + ωqwψ∞(w)f − (w+
k )

p−1f dz = I ′∞(w)[f ]

and, by (5.3), we get that w is a weak solution of the limit problem (2.6) and
that w ∈ N∞. By Lemma 5.2 and by the choice of qk we have that w ̸= 0, so
w > 0 and I∞(w) ≥ m∞.

Now, consider the functions

hk :=
1

ε3
∣∣u+k ∣∣1/p( expqk(εkz)) ∣∣gqk(εkz)∣∣1/2p IBg(qk,r),

where IBg(qk,r) is the indicatrix function onBg(qk, r). Since |uk|ε,p is bounded,
then hk is bounded in Lp(R3) so, it converges weakly to some h̄ ∈ Lp(R3).
We have that h = |w+|1/p. Take f ∈ C∞

0 (R3), with spt f ⊂ B(0, T ) for some
T > 0. Since, eventually B(0, T ) ⊂ B(0, r/2εk), |u+k |1/p(expqk(εkz)) = w+

k

on B(0, T ). Moreover, on B(0, T ) we have∣∣gqk(εkz)∣∣1/2p = 1 + o(εk).

Thus, since wk ⇀ w in Lp(R3) we get∫
R3

hkf dz →
∫
R3

|w+|1/pf dz

for any f ∈ C∞
0 (R3). In the same way we can consider the functions

jk =
1

ε3

(
gij(εkz)∂iuk

(
expqk(εkz)

)
× ∂juk

(
expqk(εkz)

) ∣∣gqk(εkz)∣∣1/2)1/2

IBg(qk,r),

lk :=
1

ε3
∣∣uk∣∣1/2( expqk(εkz)) ∣∣gqk(εkz)∣∣1/4 IBg(qk,r).

We have that jk, lk ∈ L2(R3) and that jk ⇀ |∇w|1/2, lk ⇀ |w|1/2 in L2(R3).
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At this point, since w ∈ N∞ and by (5.2), we get

m∞ ≤ I∞(w) =
1

4
∥w∥2H1 +

(
1

4
− 1

p

) ∣∣w+
∣∣p
p

≤ lim inf
k→∞

1

4
∥jk∥2L2 +

1

4
∥ik∥2L2 +

(
1

4
− 1

p

)
|hk|pp

≤ 1

4
∥uk∥2ε +

(
1

4
− 1

p

) ∣∣u+k ∣∣pp
≤ m∞ + 3δk,

so w is a ground state for the limit problem (2.6).
Given T > 0, by the definition of wk we get, for k large enough,∫

B(0,T )

[(
1

2
− 1

p

)(
w+

k

)p − ω

4
w2

kψ̃k

]
g(εkz) dz

=
1

ε3

∫
B(qk,εkT )

(
1

2
− 1

p

)(
u+k

)p − ω

4
u2kψε(uk) dµg

=

∫
B(qk,εkT )

Γ(uk) dx ≤
∫
B(qk,r/2)

Γ(uk) dx

≤ (1− η)m∞

(5.4)

and, if we choose T sufficiently large, this leads to a contradiction since

wk → w and ψ̃k → ψ∞(w) in Lt(B(0, T ))

for any T > 0. Since

m∞ = I∞(w) =

(
1

2
− 1

p

) ∣∣w+
∣∣p − ω

4
G(w),

it is possible to choose T such that (5.4) is false, so the proposition is proved
for u ∈ Nε ∩ Imε+2δ

ε .
The above arguments also prove that

lim inf
k→∞

mεk ≥ lim
k→∞

Iεk(uk) = m∞

and, in light of (4.7), this leads to

lim
ε→0

mε = m∞. (5.5)

Hence, when ε and δ are small enough, Nε ∩ Im∞+δ
ε ⊂ Nε ∩ Imε+2δ

ε and the
general claim follows. �

Proposition 5.4. There exists δ0 ∈ (0,m∞) such that for any δ ∈ (0, δ0) and
any ε ∈ (0, ε(δ0)) (see Proposition 4.3), for every function u ∈ Nε ∩ Im∞+δ

ε

it holds that β(u) ∈M+. Moreover, the composition

β ◦ Φε :M →M+

is homotopic to the immersion i :M →M+.
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Proof. By Proposition 5.3, for any function u ∈ Nε∩Im∞+δ
ε , for any η ∈ (0, 1)

and for ε, δ small enough, we can find a point q = q(u) ∈M such that∫
B(q,r/2)

Γ(u) > (1− η)m∞.

Moreover, since u ∈ Nε ∩ Im∞+δ
ε , we have

Iε(u) =

∫
M

Γ(u) ≤ m∞ + δ.

Hence

|β(u)− q| ≤
∣∣∫

M
(x− q)Γ(u)

∣∣∫
M

Γ(u)

≤

∣∣(1/ε3) ∫
B(q,r/2)

(x− q)Γ(u)
∣∣∫

M
Γ(u)

+

∣∣(1/ε3) ∫
M\B(q,r/2)

(x− q)Γ(u)
∣∣∫

M
Γ(u)

≤ r

2
+ 2diam (M)

(
1− 1− η

1 + δ/m∞

)
,

and the second term can be made arbitrarily small, choosing η, δ and ε suf-
ficiently small. The second claim of the proposition is standard. �
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