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Abstract

The biochemistry of a system made up of three kinds of cell is virtually impossible to

work out without the use of in silico models. Here, we deal with homeostatic

balance phenomena from a metabolic point of view and we present a new

computational model merging three single-cell models, already available from our

research group: the first model reproduced the metabolic behaviour of a

hepatocyte, the second one represented an endothelial cell, and the third one

described an adipocyte. Multiple interconnections were created among these three

models in order to mimic the main physiological interactions that are known for the

examined cell phenotypes. The ultimate aim was to recreate the accomplishment of

the homeostatic balance as it was observed for an in vitro connected three-culture

system concerning glucose and lipid metabolism in the presence of the medium

flow. The whole model was based on a modular approach and on a set of nonlinear

differential equations implemented in Simulink, applying Michaelis-Menten kinetic

laws and some energy balance considerations to the studied metabolic pathways.

Our in silico model was then validated against experimental datasets coming from

literature about the cited in vitro model. The agreement between simulated and

experimental results was good and the behaviour of the connected culture system

was reproduced through an adequate parameter evaluation. The developed model

may help other researchers to investigate further about integrated metabolism and

the regulation mechanisms underlying the physiological homeostasis.
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Introduction

Over the past decades, the advent of high-throughput biotechnologies, such as

genomics and proteomics, has allowed a better understanding of the cellular and

molecular networks on which life is based. This fact, in turn, has forced a review

of the concept of a cell as a mere collection of components to be treated separately

[1]. It has become increasingly clear that signalling pathways interact with one

another and the final biological response is shaped by these interactions. The

resulting network of interactions is quite complex and may have properties that

are non-intuitive, which are often dependent on subtle timing relations and

competitions among regulators [2]. Researchers have thus moved towards an

integrative approach aiming to unveil the system properties that can emerge from

the complex interaction of basic elements [1]. Reproducing functional tissues ex

vivo, for example, requires an understanding not only of the behaviour of

individual cells, but also of how global shape and function arise from local cellular

interactions [3].

Systems biology applies quantitative, mechanistic modelling to study genetic

networks, signal transduction pathways and metabolic networks with the aim to

yield a more global, in-depth and integrated understanding of biological systems.

From a systems biology perspective, for example, all living organisms share a

notable feature, which is afforded by the interconnection and co-execution of

different functionalities: a high level of robustness against external and internal

perturbations [4].

System level understanding of complex processes is common in engineering

disciplines and relies heavily on mathematical models, informatics and methods

from systems theory. The biological field is indeed facing an increased use of

mathematical models and computer simulations; therefore, this approach is often

referred to as ‘‘in silico biology’’. The introduction of computational methods and

instruments to complement the traditional experimental ones accelerates the

generation of new hypotheses, and the research validation cycle [5]. The

mathematical modelling of complex biological systems is of iterative and

multidisciplinary kind: hypotheses emerging from in silico analyses are validated

by experimenters, and the results are used to update the computational model

exploited, thus involving various scientific fields [1].

In silico biology also offers many advantages over in vivo and in vitro

experiments: quick predictions of phenomena of interest, a great reduction of

production costs, no ethical problems (no animal needed, in line with the ‘‘3R

rule’’ [6]), user-friendly interfaces for an easy and intuitive approach, the

damping of data dispersion, which is typical of experimentally obtained

parameters, and a broad spectrum of applications (e.g., drug testing field).

Literature offers many attempts to model and simulate molecular processes,

ranging from genetic regulatory networks to metabolic pathways, and presents

several software packages, such as MIST [7], GEPASI [8], SCAMP [9], JARNAC

[10], METAMODEL [11], E-CELL SE [12], BIOSPICE [13]. Most of these

packages have been developed for the quantitative simulation of biochemical
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metabolic pathways and are based on the numerical integration of rate equations,

focusing only on metabolic aspects, without considering the environment in

which cells are immersed. Our work group, instead, has defined a different

collection of software platforms [14] [15] [16] [17] [18] with the precise purpose

to reproduce physical-chemical and intercellular interactions, to which cells living

in a physiological or an in vitro context are typically subjected, and the effects of

these stimuli on metabolism. Starting from online metabolic pathways databases,

such as the Kyoto Encyclopedia of Genes and Genomes (KEGG), and relating

them to the systems theory language, our group developed HEMETb (HEpatocyte

METabolism mathematical model b) [16], ENMET (ENdothelial METabolism

mathematical model) [17] and ADMET (ADipocyte METabolism mathematical

model) [18], three virtual cell models reproducing the hepatocyte, the endothelial

cell and the adipocyte metabolism, respectively. A subsequent model, CREPE

(mathematical model for CRoss-talking of Endothelial cells and hePatocytE

metabolism) [19], was originated through the suitable merging of HEMETb and

ENMET in order to simulate the metabolic behaviour of static hepatocyte and

endothelial cell co-cultures. The different platforms all derived from the same

previous and stoichiometric model, HEMET (HEpatocyte METabolism mathe-

matical model) [14]. All these models, implemented in Simulink (The

MathWorks, Inc.), were able to mimic the dynamic behaviour of cell

monocultures or co-cultures as a function of variations in metabolite

concentrations, using single enzymatic reactions as basic functional blocks for all

the metabolic pathways involved. The models were characterized by a modular

structure that enabled users to explore, add/subtract and modify single modules

easily, managing models through user-friendly interfaces. The Michaelis-Menten

approach in almost-steady state regime was chosen for the mathematical

modelling of enzymatic reactions, so defining basic blocks to duplicate and

connect as needed in order to form complex reaction networks as the glycolytic or

the aminoacidic ones are. However, the cited models represented only cell

monoculture metabolic profile or the behaviour of static cell co-cultures. None of

them was able to simulate the dynamic and mutual inter-change of metabolites

and the accomplishment of homeostatic balance, which are widespread

physiological phenomena. We then decided to turn attention to these noteworthy

system properties.

In vivo, many physiological and pathophysiological processes involve a great

network of signalling molecules, through which cells belonging to different tissues

can communicate and cooperate in spite of physical distance [20]. The bodily

fluids flowing through the spread vascular network are then essential for this

interaction to be possible. In metabolic regulation, for instance, liver, adipose

tissue, pancreas and muscle cooperate through several biochemical pathways

triggered by hormones and small molecules, providing the body with the right

amount of energy it needs, and storing energy substrates (i.e., homeostatic

balance) [21]. This balance is usually deranged in obese and diabetic patients or in

metabolic syndrome disease [22].
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More simple in vitro or in silico models are needed to gain insight into these

complex systems and to counteract pathological states with effective therapies. In

a simplified model of energy substrate metabolism in the visceral region, three

main tissues have to be considered as the first basic elements to reproduce:

hepatic, adipose and endothelial tissues [23]. The liver has a central role because

of its multiple anabolic and catabolic functions processing all energy substrates

(fats, sugars and proteins). Adipose tissue is not only a fat storage depot, but it is

also particularly sensitive to the overall nutritional status in the body, informing

other organs about that. Endothelial cells act as modulators of molecular

signalling: indeed, metabolites are transported along the vascular network, which

connects different organs. An in vitro model of this three-tissue system already

exists concerning the glucose and lipid metabolism, the aminoacidic degradation

and the main synthetic functions [21] [24]. It is made up of a multi-

compartmental modular bioreactor (MCmB) [26] consisting of interconnected

chambers, each one housing a specific tissue of interest. Each module can be

addressed and interrogated separately and different cell types can be added

stepwise to the system. The culture medium flow links different chambers much

as the bloodstream connects different organs in the body: this system is indeed

referred to as a ‘‘dynamic connected culture system’’. The authors of studies [21]

and [24] exploited MCmB for the reproduction of a downscaled in vitro human

visceral region to study cross-talking phenomena and their effect on metabolic

regulation. They showed this culture system to be suitable for baseline studies with

cell monocultures [23] and for upgraded analysis with cultures of two or three cell

types [21] [24]. Despite its simplicity, the overall system and monocultures were

able to reproduce several characteristics of in vivo glucose and lipid metabolism

and of homeostatic mechanisms.

In this paper, we introduce a new computational multi-scale model that merge

the previous three single-cell models (HEMETb, ENMET and ADMET) with

adequate interconnections, relating metabolic regulation to molecular biochem-

ical mechanisms. We aimed to reproduce the metabolic behaviour of three

distinct cell culture systems only connected by the medium fluid flow (dynamic 3-

way connected cell culture system): we conceived the final in silico model as a

coexistence and functional integration of the three different metabolic profiles

considered, attempting to recreate the homeostatic balance observed in vitro. At

first, each cell type was modelled as a standalone entity, with its own proliferation

rate and specific metabolic pathways. The standalone models were then

‘‘connected’’ by modelling molecular interactions among them through

metabolite uptake/release phenomena, and different kinds of cellular connections,

thus generating a 3-way (Hepatic-Endothelial-Adipose) model. Then, the model

was validated against available experimental data coming from literature datasets

about the dynamic in vitro model described above. Available data concerned only

extracellular species in the culture medium besides measurements of cell

population growth.
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Materials and Methods

1. In Silico Model Basic Structure

Our model implements metabolic networks using nonlinear differential equations

and systems theory approach, and linking biochemical pathways only to

enzymatic reactions and metabolite inter-change. The presented model was

created following the basic structure and design principles of previously developed

models like HEMETb [16], ENMET [17], ADMET [18] and CREPE [19]: they all

involved Michaelis-Menten kinetics for reversible or irreversible reactions and for

the enzymatic inhibition model, and the definition of energy constraints, such as

availability of ATP or other high-energy molecules. Cell populations were

assumed as homogeneous populations whose behaviour could thus be described

by an average cell. In particular, we used a dynamic mathematical model with

lumped parameters: the usual assumption was made that each compartment (i.e.,

the medium and the cell) was a lumped phase (i.e., concentrations are constant

throughout the compartment). Conceptually, compartments correspond to

cellular structures, such as organelles, pooled biochemical components or the cell

environment, all of which are characterized by a spatial dimension. However, the

ordinary differential equations actually represented distinct pooled concentrations

at a single point and did not describe physical dimensions and therefore cell

geometry [25]: time was the only independent variable of our system. Sidoli et al.

[25] explain that mathematical models can be classified as structured or

unstructured, segregated or unsegregated, and deterministic or stochastic. Firstly,

a structured mathematical model includes a detailed description of the

intracellular processes in either the physical or the biochemical sense, whereas

these processes are only partially considered in unstructured models. In structured

models, kinetic or stoichiometric equations are used to describe the intracellular

reactions. This kind of models provides the advantages of flexibility and detail, but

it has the drawback of obtaining data for parameter determination and model

analysis with respect to the large number of equations involved. Secondly, an

unsegregated mathematical model assumes an average cell so that the cell

population can be considered homogeneous, without taking into account the

differences conferred by the cell age, size, growth rate and metabolic state. Finally,

deterministic models assume that the cells are not subject to random variability.

Stochastic models capture cellular functions using probability distributions, thus

taking into account randomness in the process. Therefore, according to these

definitions, the mathematical model we used can be classified as structured,

unsegregated, and deterministic.

Chemical stimuli (e.g., medium culture substances and nutrient availability)

and physical ones (e.g., the presence of flow and, only for endothelial cells, a non-

zero shear-stress value) were integrated in quantitative terms to the complex

metabolic interconnected blocks chains. The modular layout, also in agreement

with the corresponding in vitro model [24], and the user-friendly interface were

conserved. Most of the involved parameters were considered time-invariant. In

the model and during the validation phase, only temporal variations were
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evaluated for the metabolite concentrations: temporal scales for the experiments

to be completed (hours and days) were much longer than typical metabolite

transport times (generally minutes) through tissues. Metabolic pathways to

implement were defined following online databases such as KEGG [27],

BRaunschweig ENzyme DAtabase (BRENDA) [28] and consolidated biochem-

istry.

As hinted before, the basic blocks derived from Michaelis-Menten kinetic

model for irreversible enzymatic reactions:

d P½ �
dt

~{
d S½ �
dt

~
Vmax S½ �
Kmz S½ � ð1Þ

where P½ � (mM) is the product concentration, S½ � (mM) is the substrate

concentration, and Km (mM) and Vmax (mMs21) are the Michaelis-Menten

constant and the maximum catalysis rate of enzyme, respectively.

For reversible reactions, the Michaelis-Menten equation we referred to is:

d½P�
dt

~{
d½S�
dt

~
Vmaxd

½S�
Kmd

{Vmaxi
½P�

Kmi

1z
½S�

Kmd
z

½P�
Kmi

ð2Þ

where Kmd
(mM) and Kmi (mM) are the reaction Michaelis–Menten constants for

direct and inverse reaction, respectively, and Vmaxd
(mMs21) and Vmaxi (mMs21)

are the maximum catalysis rate that can be reached in direct and inverse reaction,

respectively. IfKmi~?, i.e. product release step is irreversible, Equation (2)

becomes equal to Equation (1).

Competitive enzymatic inhibition was introduced in the model by Equation

(3):

d½P�
dt

~{
d½S�
dt

~
Vmax

½S�
Kmd

Km 1z
I½ �

Ki

� �
z S½ �

ð3Þ

where I½ � (mM) represents competitive inhibitor concentration and Ki (mM) is

the inhibition constant. As in the previous case, if Ki~?, i.e. inhibitor is never

bound to enzyme, Equation (3) becomes Equation (1).

In general, metabolic pathways involve reactions with multiple substrates and/

or products and other equations have to be defined. Supposing to deal with an

nsubstrates-mproducts reaction in which all reactants are taken up at the same

instant, we can write more general equations. Therefore, equations (1) and (2)

became respectively Equation (4) and (5):

d½Pm�
dt

~{
d½Sn�

dt
~

Vmax Pn ½Sn�
KmzPn ½Sn�

ð4Þ
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d½Pm�
dt

~{
d½Sn�

dt
~

Vmax(
Pn ½Sn�

Kmd
{

Pm ½Pm�
Kmi

)

1z
Pn ½Sn�

Kmd
z

Pm ½Pm�
Kmi

ð5Þ

where Km, Kmd
and Kmi now are the mean of the corresponding Km, Kmd

and Kmi

of each component.

In this model, the maximum rates in direct and inverse reactions are supposed

equal (in accordance with their similar order of magnitude) and these parameters

include correction factors to count other non-instantaneous processes, such as

gene expression, that slow down global processes [16]. It is noteworthy that values

for kinetic parameters, such as Km and Vmax, can be found in enzyme data bank

(BRENDA), as we will see later: inevitably, this procedure introduces some

uncertainty level in the model, due to non-standard experimental protocol and

measurement units with which values are obtained [29] [30]. For most processes,

indeed, kinetic parameters are not directly accessible in vivo and existing

biochemical data usually originate from different experimental settings, cell types

and state of cells.

In accordance with systems theory approach, it is possible to reproduce entire

metabolic pathways as series of ODEs (Ordinary Differential Equations), in which

metabolite concentrations are state variables and equations (4–5) become state

equations. Considering these equations as basic Simulink blocks, according to

block diagram algebra rules and linking these basic elements in series and/or in

parallel, we can recreate an entire pathway. Each described pathway constitutes a

block chain that can be connected to other block chains in case of shared

metabolites. The block structure is user-friendly and highly expandable. It is easy,

indeed, to define new cell types by adding or removing some blocks just as we did

in previous works, when we created ENMET [17] and ADMET [18], starting from

HEMETb. Otherwise, single virtual cell models can be merged adequately to

mimic their interaction in vivo and/or in vitro, as we did developing CREPE [19]

focusing on the effect that endothelin-1 (secreted by endothelial cells) has on the

hepatic glucokinase activity.

Here is a synthesis of the main metabolic pathways already reproduced in the

previous three different virtual cells. HEMETb model describes the hepatic cell

metabolism in standard conditions (cell culture in a plastic multi-well placed in

an incubator at 37 C̊ with 5% of CO2) and with excess substrates concentration,

hence considering cell culture proliferation, nutrient uptake glycolysis, pentose

phosphate pathway, degradation of proteins, urea production, glycogen, fatty acid

and albumin syntheses, whereas excluding the other metabolic pathways, such as

b-oxidation. ENMET mimics the same principal metabolic pathways, with the

exclusion of glycogen and albumin synthesis and the addition of shear stress

generation, nitric oxide production and endothelin-1 secretion, connecting

mechanical stimuli responses (i.e., vasoactive substances production) to other

biochemical reactions. ADMET includes the following metabolic pathways:
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glucose and aminoacid uptake, glycolysis, pentose phosphate pathway, Krebs

cycle, aminoacid degradation, fatty acid and triglyceride synthesis, lipolysis, and

the energy function. In particular, this model mimics the behaviour of a human

white fat cell that responds to various compositions of the culture medium, with

glycerol and free fatty acid release, which are the main indicators of fat cell

activity. In the present work, we focused our attention on the integration of

metabolism for the three different cell phenotypes and we dealt with these

metabolic pathways: a suitable revision of cell culture proliferation models, the

maintenance of glycemic balance, the uptake or release processes for specific

metabolites, the triglyceride/free fatty acid cycle and glyceroneogenesis. These

topics are individually discussed below. The additions regarding detailed

carbohydrate metabolism and other metabolic aspects were necessary to describe

interactions among different cell types. To take a couple of examples: we had to

implement anabolic pathways, such as gluconeogenesis, to account for a glucose

release process; similarly, we had to introduce glycerol metabolism pathway to

validate our model against experimental glycerol concentration data. Novelties

and improvements introduced with regard to the model presented are described

in details in the following sections. Fig. 1 shows the main interface of the

complete model (for further details on the state variables and the state equations

employed in our model, see S1, S2 and S3 Tables).

2. Cell Proliferation Models

In HEMET, HEMETb and ENMET cell proliferation was modelled with a logistic

function, which is characterized by the following general quadratic form:

dN(t)
dt

~C:N(t){b:N(t)2 ð6Þ

where C and b are respectively cell growth rate and death rate. In ADMET,

adipose population was considered constant over time. In CREPE, a less compact

equation (derived from Equation (6)) was implemented and its analytical

expression is reported here below with respect to endothelial cell growth:

dNET(t)
dt

~CET :NET(t)| 1{
aET :NET tð Þ

Aw
{

SC

S
:NET tð Þ

� �
ð7Þ

In equation (7), the death term correlates both with contact inhibition (second

term in square brackets) and substrate lack (third term in square brackets). For

further details on the significance of each coefficient and subscript, please see ref.

[21].

In this work, we defined a cell proliferation model for each cell phenotype

considered. Available literature data were collected, looking for works with

methodological consistency in terms of cell lines and culture conditions. These

data were extracted through graphical analysis and then elaborated with Curve

Fitting Toolbox (The MathWorks, Inc.) to test hypotheses and estimate parameter

values.
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Numerical data about hepatocytes derived from the study [31], where HepG2

immortalized cell line was used as the experimental model both in static and

dynamic (i.e., with medium flowing through the bioreactor) culture conditions.

Upon validating the logistic model (Equation (6)) against these data and

estimating parameter values, we defined the final form of the logistic equation to

implement as the one published by Verhulst [32] in 1838:

dN(t)
dt

~C:N(t)| 1{
1
K
:N(t)

� �
ð8Þ

where C is the proliferation rate (h21) and the negative term relating to N2 tð Þ
accounts for contact inhibition phenomena, which are typical of HepG2 cells. In

particular, K is the carrying capacity of the system. We also considered the

Fig 1. The main interface of the complete (3-way connected) model developed in this work. There are three principal blocks, represented by cell
images: from top to bottom, they correspond to networks of reactions describing endothelial, adipose and hepatic metabolism. On the right side, it is possible
to see blocks simulating extracellular fatty acid and glycerol concentrations.

doi:10.1371/journal.pone.0111946.g001
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absence of a delay term at the start of proliferation (thinking of hepatic cells as

already adapted to culture conditions) and the absence of a death term due to

substrate lack (supposing nutrients were sufficient for the short duration of the

experiments).

Estimated mean coefficient values were used for the implementation phase:

Cmean~0:034385 h21 and Kmean~5:294:105 cells.

Data about endothelial cells proliferation came from the study [33], where

baseline experiments were conducted comparing HepG2 and endothelial

population behaviour: results showed that endothelial cell proliferation was

negligible if compared with the one of hepatocytes, other things being equal. In

addition, cultures started with settled cells and, because of the 48 h duration of the

same experimental tests, endothelial cells did not show contact inhibition

phenomena, nor underwent substrate lack [33]. Taken together, these observa-

tions led us to consider endothelial population constant over time and equal to

the number of cells initially seeded N0ð Þ.
Adipocytes were similarly treated: experiments considered in the subsequent

validation phase involved only mature adipocytes, while culture conditions and

the duration of experiments did not allow cells to differentiate, as well explained

and confirmed by cell counting tests in the work [34]. Therefore, adipose

population was considered time-invariant and equal to its initial value N0ð Þ.
For endothelial cells and adipocytes, cell proliferation model was described by

the following equation:

N tð Þ~N0 ð9Þ

Seeding values for different cell phenotypes are specified below.

These simple equations about cell proliferation may clash with the detailed

enzymatic step introduced in the model (see below), but we choose not to take

into account other aspects, e.g. turn over of different metabolites, in order to

make our final model less complex. We instead focused our modelling efforts on

metabolic pathways. Equations (8) and (9) were implemented for static as well as

for dynamic cultures, according to what stated in the work [23], which we selected

for the validation phase: Vinci et al. did not report numerical data about cell

growth, but they affirmed that cell counting tests were performed demonstrating

that the dynamic flux did not influence the examined cell proliferation processes.

3. Integrated Metabolism

The main organs taking part in energy metabolism differ in their specific enzyme

content: each one is specialized for storing, using or producing different kinds of

energy substrates such as triglycerides (TGs), proteins or glycogen. Because

glucose and fatty acids are alternative substrates, sometimes competing, many

interactions among metabolic pathways involve them [35]. This type of inter-

organ cooperation is afforded by an intense and coordinated metabolic cross-

talking.
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For example, one of the main roles of the liver is the maintenance of glycemic

levels: this organ is able to perceive a fasted state and then enhance glucose

synthesis and its exportation to other tissues. In co-cultures described in [47],

hepatocytes were shown to reduce their glucose uptake rate, in favour of glucose

dependant cell populations. As discussed later, this homeostatic behaviour was

tested in the validation phase of our workflow. Concerning lipid metabolism

instead, an enzyme with a key-role is lipoprotein lipase [48], which is localized on

the luminal surface of endothelium and is responsible for the hydrolysis of

circulating TGs, once they are released by the hepatic tissue.

3.1. Fatty Acid and Glycerol Transport Mechanisms

The transportation of molecules through the cell membrane bilayer is of

paramount importance for the organism vitality [35]. Here, we focus on two

kinds of transport proteins and on their role in homeostatic mechanisms.

The liver is one of the main regulators of metabolite flux, removing metabolites

from blood or releasing them in it. In particular, fatty acid uptake phenomena in

hepatocytes have been intensely investigated, for example [36]. Circulating free

fatty acids (FFA), coming from lipolysis of stored TGs in adipocytes and from

dietary fat, are an important source of lipids for the hepatocytes. Once in

hepatocytes, FFA may either undergo b-oxidation in mitochondria, to produce

both energy for the cell and ketone bodies, or be converted to TGs, which can be

used for the production of very low-density lipoproteins, then exported. Excess

TGs may be stored in lipid droplets.

Kinetic studies, employing almost-physiological conditions, have shown that

FFA uptake rates can best be interpreted as the combination of a saturable

component and a linear non-saturable one [37] and that the uptake rate depends

on the unbound FFA concentration. However, the values for diffusion constant

are generally very small if compared to those typical of facilitated transport

parameters, thus the contribution of diffusion to uptake rate may be reduced or

neglected in an analytical model [38]. Therefore, the total FFA uptake by

hepatocytes depends on both the concentration of FFA in plasma and the capacity

of the cells for FFA uptake. For hepatic and adipose tissues, various proteins

mediate fatty acid transport through the membrane. One of the best known is

fatty acid translocase (FAT, also referred to as CD36) [39] [40]. In physiological

concentration conditions for total plasma fatty acids (bound and unbound, 0.45

mM), saturation kinetic prevails and it is well described by a Michaelis-Menten

model equation:

d S½ �
dt

~
Vmax: S½ �
Kmz S½ � ð10Þ

where S½ � is the unbound FFA concentration and Vmax and Km are kinetic

parameters relating to protein mediated transport, in analogy to what seen for

enzymes.

In this work, in order to simplify fatty acid transport modelling, only a

saturable kinetic was chosen with the mediation of a single kind of protein, CD36,
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for all three cell phenotypes involved. Kinetic parameters for long-chain fatty acids

were studied for adipocytes, hepatocytes [37] and endothelial cells [41] through

[3H]-oleate uptake assays. As shown in Table 1, we used these measurements,

adequately elaborated, to implement our in silico model.

In our body, adipocytes are one of the major sources of glycerol, which is in

turn one of the main substrates of hepatic gluconeogenesis [42]. Briefly, during

fasting, energy stored as TGs in adipocytes, is made available to other tissues by

release of fatty acids, which are exported by special fatty acid transporters, and of

glycerol, which is exported through suitable porins referred to as aquaglycer-

oporins type 7 (AQP7). The preferred hepatic gluconeogenic substrate, glycerol,

directly flows in the liver via the portal vein and passes through aquaglyceroporin

type 9 (AQP9) reaching the hepatocyte cytoplasm, where it is converted into

glycerol-3-phosphate. This is in turn a substrate for gluconeogenesis or, along

with fatty acids, it is then esterified to TGs. Multiple research groups have reached

the same conclusion: these two proteins (AQP7 and AQP9) form an axis for

energy transfer characterized by a coordinated regulation [42]. Glycerol transport

through aquaglyceroporins pores is an example of facilitated diffusion and it is

driven by the concentration gradient existing between extracellular and

intracellular compartments [43]. When molecules diffusion through plasma

membrane is analysed, Fick’s law often takes on this form:

J~{P:A:DC ð11Þ

where P (cm/s) is the permeability coefficient of the membrane for a given

substance and can be experimentally defined. This coefficient includes the

diffusion coefficient D (cm2/s) and the membrane thickness Dx (cm), while A is

the membrane area and DC stands for the concentration difference. Glycerol

permeability values for cell membranes expressing AQP7 and AQP9 can be found

in literature as defined through [14C]-labelled solute assays and radioactivity

measurements. In this work, we assumed a diffusive process thoroughly mediated

by aquaglyceroporins to mimic glycerol transport in hepatic and adipose tissues.

Permeability coefficients for AQP7 [44] and AQP9 [45] [46] were calculated

starting from available glycerol uptake rate values and surface to volume ratios for

cells, as reported in Table 2.

Table 1. Fatty Acid Translocase kinetic parameters for hepatic (CD36EP), endothelial (CD36ET) and adipose (CD36AD) cells in a saturable process.

Cellular Fatty Acid
Translocase Function Km (mM) Vmax (mM h21cell21) Reference

CD36EP Fatty acid uptake 113?1026 8.76 [37]

CD36ET Fatty acid uptake 25?1026 0.17 [51]

CD36AD Fatty acids uptake 101?1026 0.0025 [37]

doi:10.1371/journal.pone.0111946.t001
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3.2. Glyceroneogenesis and the Triglyceride/Fatty Acid Cycle

During fasting in all mammals, triglyceride stored in adipose tissue is hydrolysed

by a hormone-sensitive lipase to produce free fatty acids and glycerol. Glycerol is

exported to the liver, whereas in the adipose tissue there is a considerable re-

esterification of FFA depending on intracellular glycerol-3-phosphate concentra-

tion. The triglyceride/fatty acid cycle includes local intracellular recycling, within

the adipose tissue, and extracellular or systemic recycling, through the formation

of TGs in the liver. Intracellular recycling appears to represent almost 20–30% of

the total, whereas non-adipose tissue recycling (primarily hepatic) accounts for

50% of re-esterification of fatty acids in healthy adults after an overnight fast [49].

It is clear that this cycle requires the constant generation of glycerol-3-phosphate

for triglyceride synthesis.

The liver can readily use the glycerol as a source of glycerol-3-phosphate thanks

to a considerable glycerol kinase activity. In adipose tissue, instead, there is a

special pathway for the generation of glycerol-3-phosphate from precursors other

than glucose: it is termed glyceroneogenesis and it is an abbreviated version of

gluconeogenesis. Indeed, the tissue contains both pyruvate carboxylase and the

cytosolic form of phosphoenolpyruvate carboxykinase. Therefore, any variation in

adipocyte glucose uptake and in glyceroneogenesis flux, notably affects

triglyceride/fatty acid cycle in these cells [49].

4. New and Specific Metabolic Pathways Introduced

4.1. Hepatic Pathways

In order to reproduce hepatic cell behaviour with regard to metabolic

homeostasis, we introduced the following aspects in the model: gluconeogenesis,

glycogenolysis, glycerol metabolism, FFA and TG syntheses, glucose uptake and

release, fatty acid uptake, triglyceride release and glycerol uptake.

Gluconeogenesis is the generation of glucose from non-carbohydrate carbon

substrates such as pyruvate. In this work, only two substrates of that kind were

considered: aminoacids and adipose glycerol. This way proceeds in opposite

direction with respect to glycolysis and three specific enzymes counteract

glycolytic irreversible kinetic steps, whereas the other seven gluconeogenic

reactions are catalysed by the remaining glycolytic enzymes. The gluconeogenic

enzymes introduced are pyruvate carboxylase (PYC, 6.4.1.1, irreversible),

phosphoenolpyruvate carboxykinase (PEPCK-C, 4.1.1.32, reversible) and fruc-

tose-1,6-bisphosphatase (FBPase, 3.1.3.11, irreversible).

Table 2. Aquaglyceroporin permeability values for hepatic (AQP9) and adipose (AQP7) glycerol transport.

Aquaglyceroporins Function Pglycerol (m h21) Reference

AQP9 Glycerol uptake 0.396?1023 [46]

AQP7 Glycerol release 0.09?1023 [44]

doi:10.1371/journal.pone.0111946.t002
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Glycogenolysis involves mobilization and degradation of glycogen stores to

produce directly available energy substrates and implies the breakage of a 1?4ð Þ
and a 1?6ð Þ bounds. The new enzymes are glycogen phosphorilase (GPase,

2.4.1.1, reversible, in vitro) and a-1,6-glycosidase (A16G, 3.2.1.33, irreversible).

The result is the production of glucose and glucose-6-phosphate.

As discussed above, glycerol uptake was modelled through the first Fick’s law as

a pore mediated (AQP9) diffusive process. Once in the hepatocyte, glycerol can

become a gluconeogenic substrate through the combined action of glycerol kinase

(GroK, 2.7.1.30, irreversible) and of phosphate glycerol dehydrogenase (G3PDH,

1.1.1.8, reversible). The ATP-dependent phosphorilation catalyzed by glycerol

kinase gives glycerol-3-phosphate, which can also become a substrate for TG

synthesis.

Fatty acid transport instead was treated with a saturation kinetic through

transmembrane protein CD36. FFA and TG syntheses were then modelled

following the kinetic approach reported in [18]. TGs were supposed to directly

pass through the cell membrane and reach the extracellular compartment. For

glucose, a bidirectional movement and a proportional term of release/uptake was

implemented with regard to intracellular/extracellular glucose concentration,

respectively.

The hepatic metabolic pathways implemented are summarized in Fig. 2.

4.2. Endothelial Pathways

In order to reproduce endothelial cell behaviour with regard to metabolic

homeostasis, we considered the following metabolic pathways: gluconeogenesis,

FFA and TG syntheses, lipolytic action of lipoprotein lipase, glucose uptake and

release, fatty acid uptake.

On the inner surface of capillaries, circulating TGs can be hydrolyzed to form

glycerol and FFA thanks to the action of the extracellular enzyme lipoprotein

lipase (LPL, 3.1.1.34, irreversible). The neighbouring cells can reabsorb energy

products. This metabolic aspect is involved only in the 3-way connection scheme,

where hepatic TGs act as enzymatic substrate. In regards to fatty acid release, we

referred to data reported in study [51]. We supposed that only 40% of available

TGs was converted into FFA and 3 nmol of the latters were obtained from each

nanomole of TGs.

All the other pathways were implemented as described above for the

hepatocyte. The endothelial cell metabolism implemented is summarized in

Fig. 3.

4.3. Adipose Pathways

In order to reproduce adipocyte behaviour with regard to metabolic homeostasis,

we dealt with the subsequent pathways: glyceroneogenesis, glucose uptake and

release, fatty acid uptake and release, intracellular re-esterification of fatty acids,

glycerol release.

For the glyceroneogenesis, we exploited enzymatic blocks already implemented

in the available adipocyte model: pyruvate carboxilase, phosphoenolpyruvate

In Silico Models for Hepatic-Endothelial-Adipose Interaction
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carboxykinase (now reversible), and glycerol-3-phosphate dehydrogenase. The

adipose intracellular component of the previously described triglyceride/fatty acid

cycle accounts for about 25% of the re-esterification of the total TGs produced by

the cells themselves. As done for the hepatocyte, glycerol release was modelled as a

pore mediated (AQP7) diffusive process for glycerol coming from TG hydrolysis.

The whole adipocyte metabolism implemented is summarized in Fig. 4.

Fig 2. Block diagram showing an overall view of the metabolic pathways with respective interconnections implemented for hepatic cell. High-
energy molecules (ATP, NADH, etc.) metabolism and energy function are not included for clarity, because they influence every subsystem.

doi:10.1371/journal.pone.0111946.g002

Fig. 3. Block diagram showing an overall view of the metabolic pathways with respective interconnections implemented for endothelial cell. The
model of the shear-stress acting on the cell is also reported.

doi:10.1371/journal.pone.0111946.g003
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4.4. Selected Simulations and Metabolite Concentrations in the Culture Medium

As we will see later, a key point of the validation phase is the comparison between

simulated metabolite concentrations and the measured ones for glucose, fatty

acids and glycerol. For each metabolite in the culture medium, a corresponding

extracellular integrator was implemented in the model. Initial condition values

were specified basing upon available experimental data [23] [24].

At first, in this work, single-cell simulations were compared with baseline

monoculture experiments focusing on static conditions. Then, two kinds of

configuration were studied to investigate about the metabolic homeostasis of the

same in vitro cell systems in dynamic conditions: single-cell simulations, which

were compared with baseline monoculture studies carried out in the presence of

the medium flow, and simulations for a three-cell in silico model, which were

compared with results from the 3-way connected culture system, were examined.

As the configuration changed, from single-cell model to three-cell model, so did

state equations for metabolites of interest (i.e., cell specific terms were added or

deleted from the equations). Extracellular metabolite concentrations for the 3-way

connected system were described through the following three state equations:

d GluEX½ �
dt

~{CETgNET GluEX½ �zRETgNET GluET½ �

{CADg NAD GluEX½ �zRADgNAD GluAD½ �

{CEPgNEP GluEX½ �zREPgNEP GluEP½ �

ð12Þ

d FAEX½ �
dt

~{CD36ET :NETz0,40:3:TGET :NET

{CD36AD:NADz3:HSL: 1{0:25ð Þ

{CD36EP:NEPzLPL:NEP

ð13Þ

Fig. 4. Block diagram showing an overall view of the metabolic pathways with respective interconnections implemented for adipose cell.

doi:10.1371/journal.pone.0111946.g004
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d GroEX½ �
dt

~zAQP7:NAD{AQP9:NEP ð14Þ

where GluEX½ �, FAEX½ � and GroEX½ � are extracellular glucose, fatty acid and

glycerol concentrations respectively, GluET½ �, GluAD½ � and GluEP½ � are instead

intracellular glucose concentrations, NET½ �, NAD½ �and NEP½ � are the number of cells

for the three phenotypes considered, Cs and Rs are cellular glucose uptake and

release rates, respectively; the other terms are enzymatic rates for corresponding

enzymes or transport proteins. Equations (12), (13) and (14) inevitably consisted

of many terms: in order to reproduce metabolic interactions among different cell

types, we had to consider uptake and release phenomena for mutually inter-

changed metabolites. Those equations allowed us to correlate measured

extracellular metabolite concentrations with metabolic processes occurring inside

the cells. The same equations were exactly used for all of our simulations

concerning the 3-way connected system. For the sake of simplicity, equations are

reported in the text only for the complete model. Simpler equations were

implemented for single-cell simulations (for details, see S2 Table). All the values

used for new kinetic enzyme parameters are listed in Table 3 and Table 4.

5. Validation Procedure

The validation phase was based upon three studies [21] [23] [24], characterized by

a logical and temporal order. The same group of authors conceived them to

analyse metabolic homeostasis in the human visceral region.

The duration of all their experiments was equal to 48 h, so we assumed that one

simulation time unit was equivalent to 4 h and each simulation lasted 12 time

units. We used ode 23 s (stiff/Mod.Rosenbrock) as numerical integration method.

The cell simulators did not take into account any change of the culture medium.

Extracellular concentration data were available from the three works for four

different sampling times (0, 15, 24 and 48 h) and for glucose, fatty acid and

glycerol concentrations. We extracted their numerical values exploiting tables or

graphical analysis of plots reported. Extracted values were expressed as means with

respective standard deviation and they were often affected by an unmodifiable

large deviation [23] [24], as we will see below. In order to analyse the differences

between the dynamic and static monocultures, the authors of study [23] chose to

focus on the net change of metabolite concentrations in the culture medium

between 0 and 48 h, as after this time cells were thought to be adapted to seeding

and culture conditions. We adopted the same approach for the comparison

between simulation and experimental data, focusing on the first and the last data

points. As for glucose and aminoacid concentrations (input variable), we decided

to use the known Eagle’s MEM formulation values, as reported in Table 5.

Currently, as for intracellular metabolite concentration, quantitation of all the

metabolites in a cellular system in a given state at a given point in time is

impossible, because of the lack of simple automated analytical strategies that can
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effect this in a reproducible and robust way. The main challenges are the chemical

complexity and heterogeneity of metabolites, the dynamic range of the measuring

technique, the throughput of the measurements, and the extraction protocols

[50]. Using mass spectrometry, comprehensive surveys of cell metabolite

concentrations have been made, but they are available only for Escherichia coli and

Saccharomyces cerevisiae. In our model, intracellular metabolite concentrations

were modelled through corresponding integrator blocks: given the lack of precise

data, we hypothesised that cells were empty at the beginning of the simulations

and we therefore set the initial condition value to zero for each intracellular

integrator.

Results and Discussion

1. Identification of Correction Factors and Validation for Cell

Monocultures

First of all, we validated single-cell models against data from baseline studies [23],

in which the effect of the medium flow on metabolic behaviour was evaluated,

thus distinguishing static and dynamic conditions. During baseline experiments

[23], 250N103 hepatocytes and 200 mg of adipose tissue (about 300N103 cells) were

Table 5. Data about glucose and aminoacid concentration values employed in the presented in silico model. They refer to Eagle’s MEM culture medium
formulation.

Chemical component Concentration [mM]

L-Alanine 0.281

L-Arginine 0.723

L-Asparagine 0.605

L-Aspartate 0.990

L-Cysteine 0.620

L-Glutamate 0.510

L-Glutamine 0.007

L-Glycine 0.666

L-Histidine 0.271

L-Isoleucine 0.396

L-Leucine 0.396

L-Lysine 0.496

L-Methionine 0.101

L-Phenilalanine 0.194

L-Proline 0.347

L-Serine 0.238

L-Threonine 0.403

L-Tryptophan 0.049

L-Tyrosine 0.286

L-Valine 0.393

D-Glucose 5.551

doi:10.1371/journal.pone.0111946.t005
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cultivated in static wells or inserted in modular bioreactor chambers (MCmB 2.0)

with extremely low shear stress for cell cultures. 80N103 endothelial cells were

seeded in static conditions or transferred to a laminar flow chamber for dynamic

tests.

Proliferation data were not available from the same work for a comparison with

simulated data. We implemented the proliferation models discussed above. Then,

according to what is affirmed in [23], where flow is said not to influence

mitogenesis, we assumed cell growth simulation results to be valid for both the

conditions examined. Fig. 5 shows different cell growth profiles, which

characterize our in silico models.

As far as metabolic profiles are concerned, a new pop-up variable to select was

introduced in silico aiming to reproduce the difference between the presence

(dynamic conditions) and absence (static conditions) of the culture medium flow

(S1(A) and S1(B) Figures). For each case tested, a different set of initialization

values was associated to that variable: the sets consisted of heuristically estimated

correction factors that were applied to enzyme kinetic parameters (S1(C) Figure).

The function of the correction factors was to modify selectively kinetic parameters

according to different culture conditions and to reproduce the main features of

metabolic profiles experimentally observed. The identification of correction

Fig. 5. The simulated cell growth profiles in function of time. These profiles result from the implementation
of the proliferation models discussed in the text. Solid line, dash-dotted line and dashed line represent
hepatocyte number, endothelial cell number and adipocyte number, respectively.

doi:10.1371/journal.pone.0111946.g005
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factors to apply allowed us to make hypotheses about the differential activation of

metabolic pathways in the culture conditions considered.

1.1. Hepatocyte Monoculture

For hepatocyte monocultures, we obtained a general and good agreement between

experimental and simulated behaviours in the static as well in the dynamic

situation and Fig. 6(A), 6(B), 6(C) and 6(D) show that. With regard to glucose

concentration, no net change was experimentally observed in static conditions,

but there was a significant cellular glucose uptake in the presence of flow [23]: we

modelled this difference through an over-regulation of glucose uptake rate in the

dynamic case. During the experiments, fatty acid uptake was present in both

conditions with a complete removal over time, which was more rapid in the

dynamic setup [23]. In silico, we obtained the same behaviour through an

Fig. 6. Measured [23] and simulated glucose and fatty acid trends in the culture medium for hepatic monocultures. Upper figures refer to static
conditions, the other ones describe dynamic conditions. Solid lines represent the simulated data, while circles (for the static case) and squares (for the
dynamic case) represent the corresponding experimental data. Measured values are expressed as means ¡ standard deviation for experiments run at least
in triplicate: numerical values are reported in [23] and error bars represent the standard deviation. (A) Glucose trend in static conditions. (B) Fatty acid trend
in static conditions. (C) Glucose trend in dynamic conditions. (D) Fatty acid trend in dynamic conditions.

doi:10.1371/journal.pone.0111946.g006
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adequate regulation of kinetic parameters for both glucose and fatty acid uptake

processes. In vitro, hepatocytes showed glycerol uptake over time, principally in

dynamic conditions [23]: as suggested by the authors of the experimental study,

aquaglyceroporins probably play a key-role in this uptake process. We indeed

concentrated on the implementation of AQP9 and the regulation of its kinetic

parameters, so obtaining fair results (S2(A) and S2(B) Figures).

1.2. Endothelial Cell Monoculture

The endothelial cell simulator included shear stress parameters in dynamic

conditions. As far as glucose and fatty acid metabolism was concerned, the model

was able to reproduce the mean experimental behaviour observed [23], only in

static conditions, as shown in Fig. 7(A) and 7(B). It was more difficult to mimic

glucose uptake and fatty acid release in dynamic conditions, probably because of

Fig. 7. Measured [23] and simulated glucose and fatty acid trends in the culture medium for endothelial monocultures. Upper figures refer to static
conditions, the other ones describe dynamic conditions. Solid lines represent the simulated data, while circles (for the static case) and squares (for the
dynamic case) represent the corresponding experimental data. Measured values are expressed as means ¡ standard deviation for experiments run at least
in triplicate: numerical values are reported in [23] and error bars represent the standard deviation. (A) Glucose trend in static conditions. (B) Fatty acid trend
in static conditions. (C) Glucose trend in dynamic conditions. (D) Fatty acid trend in dynamic conditions.

doi:10.1371/journal.pone.0111946.g007
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our hypothesis that cell proliferation was absent. There was only a reproduction of

the general trend of the behaviour described in [23] (Fig. 7(C) and 7(D)). Fatty

acid synthesis, uptake and consumption were indeed implemented, but we had to

define the intensity of these processes under precautionary assumptions in

consequence of the uncertainty of the available literature data [51]. Besides this,

the zero initial condition for intracellular fatty acid integrator did not allow the

cell to release a metabolite without having it right inside before. Glycerol

concentration profiles were neglected because in study [23] they were not

considered significant for the energy metabolism of endothelial cell, but only for

the cell permeability status.

Fig. 8. Measured [23] and simulated glucose and fatty acid trends in the culture medium for adipose monocultures. Upper figures refer to static
conditions, the other ones describe dynamic conditions. Solid lines represent the simulated data, while circles (for the static case) and squares (for the
dynamic case) represent the corresponding experimental data. Measured values are expressed as means ¡ standard deviation for experiments run at least
in triplicate: numerical values are reported in [23] and error bars represent the standard deviation. (A) Glucose trend in static conditions. (B) Fatty acid trend
in static conditions. (C) Glucose trend in dynamic conditions. (D) Fatty acid trend in dynamic conditions.

doi:10.1371/journal.pone.0111946.g008
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1.3. Adipocyte Monoculture

For adipocytes, the simulation results had a fair agreement with experimental

data, principally in dynamic conditions. In the adipocyte culture, glucose

concentration was stable in static conditions whereas there was a net glucose

uptake in the dynamic ones, probably due to the effect of the culture medium flow

[23]. In silico, we indeed regulated glucose metabolism parameters. Fatty acid

release was present in both static and dynamic experimental conditions [23] and

our model was able to reproduce it, through a distributed regulation of key-

enzymes for glucose and lipid metabolism (Fig. 8(A), 8(B), 8(C) and 8(D)).

Glycerol was also released in the culture medium both in static and dynamic

conditions, as a probable consequence of constitutive lipolysis phenomena [23].

Our simulator was able to mimic the general trend, but not the intensity of the

metabolite release (S3(A) and S3(B) Figures). Once again, the implementation of

aquaglyceroporin-mediated glycerol transport improved the results. It was not

possible to enhance glycerol release further due to the general consistency of the

model. As already seen for endothelial cells, zero initial condition for intracellular

glycerol integrator was a drawback for the model itself.

2. Validation for the 3-Way Connected System: Not just a Sum

The in silico model was subsequently validated involving the examined three cell

phenotypes at the same time. We referred to experimental data reported in [21]

and [24] for a 3-way connected in vitro culture system aiming to reproduce the

metabolic homeostasis of the visceral region. This system involved hepatocytes,

endothelial cells and adipocytes: 250?103 hepatocytes and 50?103 adipocytes were

inserted in modular bioreactor chambers (MCmB 2.0) with extremely low shear

stress for cell cultures, whereas 25?103 endothelial cells were transferred to a

laminar flow chamber for dynamic tests. The chambers were connected together

through the culture medium flow.

At first, in the three-cell in silico model, we set the values of enzymatic

parameters at the same values used for monoculture simulations in dynamic

conditions, even if a small reduction of fatty acid metabolism for adipocytes was

necessary in order to maintain the consistency of the model.

Experimental data showed the presence of a homeostatic regulation mechan-

ism: changes in glucose concentration were negligible, with hepatic tissue

preserving normal glucose levels [24]. Probably, hepatic gluconeogenic produc-

tion of the metabolite compensated for endothelial and adipose glucose uptake:

intercellular cross-talking was fundamental for this kind of metabolic control to

realize. A similar experimental homeostatic balance was observed for medium

fatty acid concentration with negligible changes over time [24]: the presence of the

hepatic cell line prevented it from rising, probably through the removing action

seen in monoculture test. Experimental glycerol concentration did not show

significant variations, consistently with fatty acid trend. The presence of

hepatocytes maintained glycerol balance and the authors [24] assumed a mutual

metabolite inter-change among cell types as the possible explanation.
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Corresponding simulation results differed from experimental observations,

showing only a cumulative glucose uptake with respect to dynamic monocultures,

a complete removal of free fatty acids in the medium in contrast to a small release

from endothelial and adipose cultures, and a net glycerol decrease in the medium

as it is typical of the hepatic population. It was evident that the hepatic population

played a leading role in the shaping of the overall metabolic profile. Moreover, the

zero-initial conditions for intracellular integrators had a large effect on it

(Fig. 9(A), 9(B) and (C)).

Ultimately, the in silico model for the 3-way connected system was not able to

reproduce the metabolic behaviour and homeostatic regulation observed in vitro,

neither for the trends nor for the degree of variations in metabolite temporal

profiles. This was explained looking at enzymatic parameters. In vitro, there was

an evident adaptation of the metabolic balance to fluid dynamic conditions and

nutrient availability, through a differentiated activation of specific metabolic

Fig. 9. Measured [24] and simulated metabolite trends in the culture medium for the 3-way connected system (dynamic conditions). Solid lines
represent the simulated data, while squares represent the corresponding experimental data. Measured values are expressed as means ¡ standard
deviation: numerical values were extracted from plots reported in [24] and error bars represent the standard deviation. From three to six replicates were run
for each experiment. (A) Glucose trend in culture medium. (B) Fatty acid trend in culture medium. (C) Glycerol trend in culture medium.

doi:10.1371/journal.pone.0111946.g009
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Table 6. Parameter values employed in the two different models of the simulated 3-way connected culture system described in the text.

Description of the parameter
Simulated 3-way connected system deriving from
monoculture models

Modified simulated 3-way connected
system

Hepatic glucose uptake rate 4.784?1028 h21 cell-1 4.784?10210 h21 cell21

Vmax for hepatic fatty acid transporter CD36 8.755 mM h21 cell21 1.751 mM h21 cell21

Hepatic membrane permeability to glycerol 3.960?1024 m h21 cell21 3.960?1027 m h21 cell21

Vmax for adipose fatty acid transporter CD36 2.5?1023 mM h21 cell21 2.5?1024 mM h21 cell21

doi:10.1371/journal.pone.0111946.t006

Fig. 10. Measured [24] and simulated metabolite trends in the culture medium for the in-silico modified 3-way connected system. Parameter
modifications described in the text were applied to the initial 3-way connected system model. Solid lines represent the simulated data for the modified model,
dotted lines refer to the simulated data for the original in silico model (see Figure 9 for details), while squares represent the corresponding experimental
data. Measured values are expressed as means ¡ standard deviation: numerical values were extracted from plots reported in [24] and error bars represent
the standard deviation. From three to six replicates were run for each experiment. (A) Glucose trend in culture medium. (B) Fatty acid trend in culture
medium. (C) Glycerol trend in culture medium.

doi:10.1371/journal.pone.0111946.g010
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pathways. The same mechanisms could not take place in silico: the values of the

kinetic parameters were fixed at the beginning of simulations and metabolite

concentrations alone were not sufficient to direct homeostatic regulation.

Running different simulations has highlighted the key-role of gluconeogenesis and

glyceroneogenesis enzymatic parameters with regard to fatty acid biosynthesis.

This is in agreement with the physiological ‘‘de novo’’ lipogenesis, which is the

synthesis of fatty acid molecules from non-lipid substrates, mainly carbohydrates.

3. Modifications for the Simulated 3-way Connected System

The simulation results described above would seem to indicate and reaffirm that

the experimental 3-way connected system is not just a sum of the three distinct

monocultures involved, but it is a complex system with ‘‘emergent properties’’

whose origin has to be identified. Equations (12), (13) and (14) seemed not to be

sufficient for the intended modelling if the same enzymatic parameters, used for

the single-cell simulators, were employed. Thus, we tried to modify some key-

parameter seeking for a more effective validation of the in silico model. An

attempt was made, basing on the biochemical and model knowledges acquired.

We thought that hepatic predominance was too strong in the 3-way connected in

silico model and we tried to reduce its contribution, modifying only few

parameters. We lowered hepatic glucose, fatty acid and glycerol uptake rates to

enhance nutrient availability for the other cell types. Referring to [47] we assumed

that, in normoglycemic conditions, hepatic tissue could lower its glucose uptake

rate to pander to cell populations that preferred glucose as energy substrate. A

comparison of the parameters values employed in the two different models of the

simulated 3-way connected system is reported in Table 6. The implementation of

the modified model produced better results, as shown in Fig. 10(A), 10(B) and

10(C). Simulated data agreed well with experimental ones, especially for glucose

and fatty acid concentrations. Glycerol profile was affected by the scarce release

from endothelial and adipose cells.

We believe that these results show that, with few variations, the implemented

model is able to reproduce the metabolic homeostasis characterizing the human

visceral compartment. In general, results were better in the case of glucose and

lipid metabolism than in that of glycerol one. Future developments of the model

may be able to investigate the significance of these modifications with more

accuracy.

Conclusions

Many key organs exploit complex molecular signalling pathways and interact each

other to maintain the systemic energy balance of a living organism. This balance is

usually deranged in obese and diabetic patients or in the metabolic syndrome

disease. Clearly, the availability of tools to better understand the metabolic cross-

talking phenomena is essential for finding the most appropriate interventions to
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treat or prevent meatabolic diseases. We have presented a new computational

modular model, which is able to reproduce the metabolic behaviour observed for

connected culture systems in dynamic conditions. We have studied integrated

metabolism and tried to explain possible regulation mechanisms and emergent

properties coming from the combination of distinct cell types. We concentrated

on the human visceral region, homeostatic nutrient balance and cross-talking

phenomena involving hepatocytes, endothelial cells and adipocytes. We validated

our model against experimental data concerning glucose, fatty acid and glycerol

trends. To the best of our knowledge, the in silico model presented here is the first

one to consider the effect of the flow on the co-existence of multiple cell types.

The metabolic network implemented may be extended, comprising other organs

with a key role for energy metabolism, such as pancreas, or adding new aspects,

such as lactate metabolism or hormonal regulation. A regulation model for

genetic expression should be introduced to make the system more adaptable to

exogenous and endogenous stimuli, therefore overcoming the fixity of kinetic

parameter values during simulations. Hybrid approaches may be attempted,

integrating optimization algorithms for parameter estimation and energy

constraints for cells.

Supporting Information

S1 Figure. The graphical interface allowing the user to introduce or not the

presence of the culture medium flow in the simulated model. The mask of

subsystem ‘‘Input Data’’ through which the user can set the binary value (0 or 1)

of the pop-up variable created to distinguish the static (A) from the dynamic (B)

culture conditions for cell monocultures. It is followed by a screenshot (C) of a

Matlab file (.m) showing the association of the pop-up variable value to a set of

initialization values for enzymatic parameters.

doi:10.1371/journal.pone.0111946.s001 (TIF)

S2 Figure. Measured [23] and simulated glycerol trends in the culture medium

for hepatic monocultures. Upper figure refers to static conditions, the other one

describes dynamic conditions. Solid line represents the simulated data, while

circles (for the static case) and squares (for the dynamic case) represent the

corresponding experimental data. Measured values are expressed as means ¡

standard deviation for experiments run at least in triplicate: numerical values are

reported in [23] and error bars represent the standard deviation. (A) Glycerol

trend in static conditions. (B) Glycerol trend in dynamic conditions.

doi:10.1371/journal.pone.0111946.s002 (TIF)

S3 Figure. Measured [23] and simulated glycerol trends in the culture medium

for adipose monocultures. Upper figure refers to static conditions, the other one

describes dynamic conditions. Solid line represents the simulated data, while

circles (for the static case) and squares (for the dynamic case) represent the

corresponding experimental data. Measured values are expressed as means ¡

standard deviation for experiments run at least in triplicate: numerical values are
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reported in [23] and error bars represent the standard deviation. (A) Glycerol

trend in static conditions. (B) Glycerol trend in dynamic conditions.

doi:10.1371/journal.pone.0111946.s003 (TIF)

S1 Table. The full list of all enzymes and consumption terms used in the

modelling with their corresponding equations. In reaction kinetics (both in

equilibrium and non-equlibrium conditions), oxidated-form cofactors (NAD+,

FAD, ADP, NADP+) are considered in saturation, then they not play an active

role on the regulation of catalysis rates. It is a good approximation, in fact they are

in large quantity in cells. Enzymatic parameters: Km for direct Kmdð Þ and indirect

Kmið Þ reactions, Ki for inhibitors, Vmax for direct Vmaxd and indirect Vmaxi

reactions.

doi:10.1371/journal.pone.0111946.s004 (DOCX)

S2 Table. The full list of state equations used in the modelling.

doi:10.1371/journal.pone.0111946.s005 (DOCX)

S3 Table. The full list of stoichiometric equations used in the modelling for

aminoacid degradation.

doi:10.1371/journal.pone.0111946.s006 (DOCX)
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