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Abstract—Stroke is the second single highest cause of death
in Europe. The low reliability of animal models in replicating
the human disease is one of the most serious problems in the
field of medical and pharmaceutical research about stroke. The
standard models for the study of ischemic stroke are often poorly
predictive as they simulate only partially the human disease. This
work aims at investigating animal models with diseases typically
associated with the onset of stroke in human patients.
We have designed and realised a knowledge base for collecting,
elaborating, and extracting analytical results of genomic, pro-
teomic, biochemical, morphological investigations from animal
models of cerebral stroke. Data analysis techniques are tailored
to make the data available for processing and correlation, in
order to increase the predictive value of the preclinical data,
to perform biosimulation studies, and to support both academic
and industrial research in the area of cerebral stroke therapy. A
first statistical analysis of the retrieved information leads to the
validation of our animal models and suggests a predictive and
translational value for parameters related to a specific model. In
particular, concerning gene expression data, we have applied a
data analysis pipeline that initially takes into account an initial
set of 64,000 genes and brings down the focus on a few tens of
them.

I. INTRODUCTION

Stroke is the second single highest cause of death in Europe
[1] and more in general in the developed countries, the third
in UK, and the fourth in the US. Up to 80 percent of strokes
could be prevented. The low reliability of animal models in
replicating the human disease is one of the most serious prob-
lems in the field of medical and pharmaceutical research about
stroke. The standard models for the study of ischemic stroke
are often poorly predictive as they simulate only partially the
human disease. This work aims at investigating animal models
with diseases typically associated with the onset of stroke in
human patients. The purpose of this study is the evaluation of
the evolution of different data types (with a special focus on
gene expression data) among several strains of rats subject to
different treatments that stimulate stroke, and some possible
stroke consequences. This study is mainly intended to assess
whether these new animal models are more consistent and
predictive of the human condition. This increased knowledge
could also reduce the number of animals used in these kinds
of experimentations.

We have designed and realised a knowledge base (a data
base) for collecting, elaborating, and extracting analytical
results of genomic, proteomic, biochemical, morphological
investigations from animal models of cerebral stroke. Data
analysis techniques are tailored to make the data available for

processing and correlation, in order to increase the predictive
value of the preclinical data, to perform biosimulation studies,
and to support research in the area of cerebral stroke therapy. A
first statistical analysis of the retrieved information leads to the
validation of our animal models and suggests a predictive and
translational value for parameters related to a specific model. In
particular, concerning gene expression data, we have applied a
data analysis pipeline that initially takes into account an initial
set of 64,000 genes and brings down the focus on a few tens
of them.

This paper is organised as follows. Section II introduces the
data used (strains and treatments), the group models obtained
for the comparative analysis, and the data types acquired for
each group. Section III describes the method applied for the
data collection and information retrieval, and the data analysis
method for the gene expression data type, whose results are
the focus of this paper. Section IV describes the results of such
analysis and, finally, Section V concludes the paper.

II. DATA AND MODELS

The animal models were obtained with techniques of tran-
sient or permanent occlusion of the middle cerebral arteries,
adapted for different types of animal groups.

A. Data

Three different strains of rat have been used for this
preclinical study:

SD Sprague Dawley Rat.
ZL Zucker Lean Rat. (Zucker strain, healthy control).
ZDF Zucker Diabetic Fatty Rat. (Zucker strain, dia-

betic/hypertensive/obese rats).

For all such strains, we have performed three different
treatments:

S Sham operated.
T Transient occlusion.
P Permanent occlusion.

Sham surgery is a faked operation where the control
groups have received the same surgical procedure as the
others, but without the occlusion procedure that induces
ischemia. This allows to distinguish scientific data that reflect
the effects of the experiment itself from that which is a
consequence of the surgery.
The transient occlusion consists in applying an occlusion in
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the middle cerebral arteries within a surgery, and then remove
it after two hours, while the permanent occlusion is never
removed. The distinction of these two treatments is meant
to investigate the effects of reperfusion. Indeed, the blood
supply after lack of oxygen can severely damage tissues ([2])
and can actually cause more damage than the actual ischemic
event.

Finally, the data we aim to collect for our preclinical study
is the following:

• Haematological data

• Blood chemistry data

• Gene expression data (MicroArray Analysis, NGS
miRNA)

• Physiological data (body/organs weight and blood
pressure)

• Enzyme activity data

• Histological data (optical microscopy)

• Receptor Binding data

• Neurological data (through behavioural observation
and scores)

• Protein expression data (matrix expression)

• Mitochondrial damage data (SEM: Scanning Electron
Microscopy)

• Proteomics data (Ms spectrometry, 2D electrophore-
sis)

B. The model

In Section II-A we described the strains and their possible
treatments. This led to the following groups for our preclinical
analysis:

SDS Sham operated SD.
SDP SD with Permanent occlusion.
ZLS Sham operated ZL.
ZLT ZL with Transient occlusion.
ZDFS Sham operated ZDF.
ZDFT ZDF with Transient occlusion.

As explained above, the sham-operated groups SDS,
ZLS, and ZDFS are the control groups. All the others are
those on which either transient or permanent ischemia is
investigated. In the preclinical model, the ZDF strain has
been chosen to test the effect of the treatments on animals
that simulate the conditions of patients that are at high risk
for ischemia. Unfortunately, no data could be collected for
permanent occlusion of this group as ZDF rats did not survive
the treatment, and this is why there is no ZDFP group. For
the same reason, we did not perform permanent occlusion
treatment on ZL strain, and hence we do not have a ZLP
group, because the latter would have served as a control
group for the missing ZDFP. In fact, we collected data to
investigate permanent occlusion only for SD strain.

Fig. 1. Groups comparisons of interest

III. METHOD

A. Data Base and Information retrieval

As we have seen in last section, data exhibits strong hetero-
geneity. Moreover, the genomic, proteomic, biochemical and
morphological investigations provide information of different
multiplicity and with different number of attributes. We have
designed and realised a knowledge base that collects all this
data types (and that can also host possible new kind of data)
in an updated, detailed and non-redundant way. The chosen
DBMS software is PostgreSQL, and the script language used
for reading and inserting data is python. SQL allows to extract
data for each performed analysis, or aggregated data for type
of analysis or group or specimen, and combinations. The
database, by means of logical views to integrate information,
can directly export data to the analysis workflow even for the
kind of results with multiple answers per sample (microarrays,
MALDI MS/MS, NGS).

Figure 1 shows, for each animal model and treatment, and
hence for all groups, what are those for which we are interested
in crossing the information by comparing data. We compare:
(i) each Sham operated animal model with its corresponding
treated group (blue arrows), (ii) all Sham operated animal
models among themselves (orange), and (iii) all treated models
(green). Finally, a downstream comparative analysis will have
to consider them all.

B. Data Analysis

In this section we show a data analysis we performed on
the specific data type of gene expression.

For high-throughput data analysis we used methods from
R-Bioconductor project ([3]), namely:

• limma: differential gene expression analysis for mi-
croarray data based on linear models and moderated
T-statistics ([4],[13],[6]).

• EdgeR and DeSeq: differential expression analysis for
count data based on negative binomial distribution
([8],[9],[5]).

For the Microarray analysis of the transcriptome, the fol-
lowing workflow was performed:

• Microarray scansion with Agilent one-color SurePrint
G3 Rat GE 8x60K Microarray Kit.

• The generated raw data (a 64K records matrix per
sample) were collected with Feature Extraction Soft-
ware (Agilent proprietary software).
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ZLT-ZLS SDP-SDS

Fig. 2. The blue (right) circle represents the set of genes differentially
expressed in the two condition (Sham and treatment) for the SD Strain, while
the grey (left) circle is that of the ZL strain in its two conditions. Numbers
(and circles’ size) highlight the number of elements in the intersection and in
the sets differences .

• Array quality was monitored using Agilent Feature
Extraction Software QC Report to evaluate Microarray
Performance for every sample. Samples whose QC
report did not pass the quality control threshold were
excluded.

• Data from all samples was merged into a single gene
expression matrix collecting all samples that survived
previous steps. Each single group now corresponds to
a set of (contiguous) columns of this new matrix.

• Probes filtering: control probes and too low expressed
genes were removed.

• Normalization was performed with quantile normal-
ization between single groups arrays.

• Differential expression analyses were performed using
two different techniques:
◦ Empirical Bayes-moderated F-statistics with

the limma Bioconductor package.
◦ 1 way Anova with SNK post hoc test with the

GeneSpring Agilent software.

• The two statistics gave comparable results. limma has
been choosen to perform further analysis.

• Limma multi-group analysis has been performed
on data. We obtained lists of differently expressed
genes using threshold parameters: P − adjusted <
0.01/0.05 and FoldChange > 2.

• Unsupervised analysis (clustering) with different al-
gorithms was performed on differentially expressed
(DE) genes, to see if genes differently expressed for
one contrast were giving good clustering also for
other classes. Clustering was performed by Amic@
server, with K-means method and Pearson Correlation
Coefficient ([11],[10]).

As a result of such workflow, for each group up-regulated
and low-regulated genes are highlighted and analysed. Sec-
tion IV will show comparisons and clustering results with such
data.
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SDP-SDS
ZDFT-ZDFS

Fig. 3. The right circle represents the set of genes differentially expressed
in the two condition (Sham and treatment) for the ZDF Strain, while the left
circle is that of the SD strain in its two conditions.

IV. RESULTS

Since our purpose is to investigate how the different strains
reacted to the treatments, we first took into account the three
pairs for comparison that are the three Sham operated groups
against their treated ones: SDP-SDS, ZLT-ZLS, ZDFT-ZDFS
(that is, the blu arrows of Fig. 1). The set of differentially
expressed (DE) genes was filtered out for each such pair of
groups. This resulted already in a quite strong reduction of the
research space, because for all pairs the outcome was around
few hundreds of genes out of the over 60,000 initial ones (see
Figures 2,3,4).

Then, differentially expressed genes resulting from such
comparisons were compared between themselves showing a
relevant intersection for the set of evolved genes in different
strains.

Figure 2 shows the Venn Diagram summarizing results for
the pairs ZLT-ZLS against SDP-SDS. There are 476 differ-
entially expressed genes for ZL in the two conditions (Sham
and treated), and 464 for SD. As we can see, the intersection
between these two sets is very significant. Similarly, Figure 3
shows the set of DE genes in the two conditions for the strains
SD and ZDF, and again the intersection is relevant. Finally,
Figure 4 shows the sizes and intersection for the DE genes
of the strains ZL and ZDF, with the same result of large
intersection.

We recall that in all cases the set of differentially expressed
genes was extracted using two different techniques (Empirical
Bayes-moderated F-statistics with the limma Bioconductor
package, and 1 way Anova SNK post hoc test with the
GeneSpring Agilent software), and that the results were in both
cases this high amount of intersections. We believe that this
is a good validation of our model, and an interesting practical
result as it allows to bring down the focus from 64,000 genes
to a few hundred that, on their turn, can be grouped into very
few functional clusters.

To see whether these differences are due to the combi-
nation strain/treatments or only to strains we performed also
the comparisons: SDS-ZLS, SDS-ZDFS, and ZLS-ZDFS that
cross differentially expressed genes data for different strains.
Results are shown in Figures 5, 6, and 7. Also in this case,
results show a significant intersection, and the combination
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ZLT-ZLS
ZDFT-ZDFS

Fig. 4. The right circle represents the set of genes differentially expressed
in the two condition (Sham and treatment) for the ZDF Strain, while the left
circle is that of the ZL strain in its two conditions.
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SDP-ZDFT

SDS-ZDFS

Fig. 5. The left circle represents the set of genes differentially expressed in
the treated groups of the strains SD and ZDF, while the right circle is that of
the same strains in the Sham operated case.
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SDP-ZLT
SDS-ZLS

Fig. 6. The left circle represents the set of genes differentially expressed in
the treated groups of the strains SD and ZL, while the right circle is that of
the same strains in the Sham operated case.

of these and the previous return can drive a more accurate
downstream analysis that will follow this work with a focus on
the actual set of genes whose differential expression possibly
results a significant preclinical result.

Indeed, as a final step, we performed a Gene Ontology
analysis, a Functional Clustering analysis, and Pathway anal-
ysis on gene lists using, again, different tools and algorithms.
We mainly used results from DAVID tools ([12],[17]), and in
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ZLT-ZDFT
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Fig. 7. The left circle represents the set of genes differentially expressed in
the treated groups of the strains ZL and ZDF, while the right circle is that of
the Sham operated groups of the same strains.

Fig. 8.

particular from Functional Annotation Clustering tool that are
shown in Figure 8.

For example, the Functional Annotation Clustering on ZLT-
ZLS and on ZDFT-ZDFS differentially expressed genes show
the major Enrichment Score for three biological processes: re-
sponse to wounding, inflammatory response, defense response
(Figure 8). These results are not surprising and match the liter-
ature concerning the transcriptome gene expression observed
in stroke injury. We consider this a validation of our model
and of our workflow and results concerning the microarray
data analysis. Nevertheless, both the gene expression data
itself, and the whole model involving the types of data other
than microarray that we collectedt, will be object of future
investigations.

V. CONCLUSIONS

A first statistical analysis of the data showed different
results for the various models, which appear to respond differ-
ently to similar treatments. In particular, the analysis of gene
expression data showed how the model chosen for conditions
that in human being are associated with higher risk for stroke,
actually respond differently from other models when subjected
to similar treatments.
The use of new kinds of animal models can lead to new
results in studies related to cerebral ischemia. Further and
more detailed analysis of the database will indicate whether
this approach allows a better match between the animal model
and human pathological condition.
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campo dell’ischemia cerebrale of the Regione Toscana, within
the call POR CReO FESR 2007-2013 Linea d’intervento 1.5.-
1.6, Bando Unico R&S anno 2008.
This work was partially funded by the Project entitled
Metodologie computazionali per la medicina personalizzata of
the University of Pisa, within the call PRA 2015.

REFERENCES

[1] Nichols M1 and Townsend N2 and Scarborough P3 and Rayner M4,
European Cardiovascular Disease Statistics,
2012 edition.
British Heart Foundation Health Promotion Research Group, Department
of Public Health, University of Oxford, and Jose Leal and Ramon
Luengo-Fernandez, Health Economics Research Centre, Department of
Public Health, University of Oxford.

[2] Carden DL1, Granger DN. Pathophysiology of ischaemia-reperfusion
injury J Pathol. 2000 Feb;190(3):255-66.

[3] Huber W and Carey VJ and Gentleman R and Anders S and Carlson M
and Carvalho BS and Bravo HC and Davis S and Gatto L and Girke T and
Gottardo R and Hahne F and Hansen KD and Irizarry RA and Lawrence
M and Love MI and MacDonald J and Obenchain V and Ole? AK and
Pags H and Reyes A and Shannon P and Smyth GK and Tenenbaum D
and Waldron L and Morgan M., Orchestrating high-throughput genomic
analysis with Bioconductor., 3rd ed. Nat Methods. 2015 Feb;12(2):115-
21.

[4] Ritchie ME and Phipson B and Wu D and Hu Y and Law CW and Shi
W and Smyth GK, limma powers differential expression analyses for
RNA-sequencing and microarray studies., 3rd ed. Nucleic Acids Res.
2015 Apr 20. Epub 2015 Jan 20.

[5] Anders S and McCarthy DJ and Chen Y and Okoniewski M and Smyth
GK and Huber W and Robinson MD, Count-based differential expression
analysis of RNA sequencing data using R and Bioconductor., 3rd ed. Nat
Protoc. 2013 Sep;8(9):1765-86.

[6] McCarthy DJ and Chen Y and Smyth GK, Differential expression
analysis of multifactor RNA-Seq experiments with respect to biological
variation., 3rd ed. Nucleic Acids Res. 2012 May;40(10):4288-97.

[7] Bryant PA and Smyth GK and Robins-Browne R and Curtis N., Tech-
nical variability is greater than biological variability in a microarray
experiment but both are outweighed by changes induced by stimulation.,
3rd ed. PLoS One. 2011;6(5):e19556.

[8] Robinson MD and McCarthy DJ and Smyth GK, edgeR: a Bioconductor
package for differential expression analysis of digital gene expression
data., 3rd ed. Bioinformatics. 2010 Jan 1;26(1):139-40.

[9] Anders S and Huber W, Differential expression analysis for sequence
count data, 3rd ed. Genome Biol. 2010;11(10):R106.

[10] Geraci F and Leoncini M and Montangero M and Pellegrini M and
Renda ME., K-Boost: a scalable algorithm for high-quality clustering
of microarray gene expression data., 3rd ed. J Comput Biol. 2009
Jun;16(6):859-73.

[11] Geraci F1 and Pellegrini M and Renda ME, AMIC@: All MIcroarray
Clusterings @ once., 3rd ed. Nucleic Acids Res. 2008 Jul 1.

[12] Olson NE, The microarray data analysis process: from raw data to
biological significance., 3rd ed. NeuroRx. 2006 Jul;3(3):373-83.

[13] Smyth GK, Linear models and empirical bayes methods for assessing
differential expression in microarray experiments., 3rd ed. Stat Appl
Genet Mol Biol. 2004;3:Article3.

[14] Kogure T and Kogure K, Department of Neurosurgery, Tokyo Jikei
University School of Medicine, Japan.Molecular and biochemical events
within the brain subjected to cerebral ischemia (targets for therapeutical
intervention)., 3rd ed. Clinical Neuroscience (New York, N.Y.) 1997,
4(4):179-183

[15] Markus HS,Clinical Neuroscience, St George’s Hospital Medical
School, London, UK. Cerebral perfusion and stroke., 3rd ed. Journal
of Neurology, Neurosurgery, and Psychiatry 2004, 75(3):353-361

[16] Koistinaho J and Hkfelt T, A.I. Virtanen Institute, University of Kuopio,
Finland. Altered gene expression in brain ischemia., 3rd ed. Neuroreport
1997, 8(2):i-viii

[17] Da Wei Huang and Brad T Sherman and Qina Tan and Jack R Collins
and W Gregory Alvord and Jean Roayaei and Robert Stephens and
Michael W Baseler and H Clifford Lane and Richard A Lempicki,
The DAVID Gene Functional Classification Tool: a novel biological
module-centric algorithm to functionally analyze large gene lists, 3rd ed.
Genome Biology 2007, 8:R183


