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Abstract. We propose a fast and numerically robust algorithm based on

structured numerical linear algebra technology for the computation of the zeros

of an analytic function inside the unit circle in the complex plane. At the
core of our method there are two matrix algorithms: (a) a fast reduction

of a certain linearization of the zerofinding problem to a matrix eigenvalue
computation involving a perturbed CMV–like matrix and (b) a fast variant of

the QR eigenvalue algorithm suited to exploit the structural properties of this

latter matrix. We illustrate the reliability of the proposed method by several
numerical examples

1. Introduction

Processes as population dynamics that evolve in discrete time steps are usually
modeled using discrete dynamical systems. In this case the stability analysis for
an equilibrium state of the system leads to the problem of computing all the zeros
of a certain analytic or meromorphic function f : Ω ⊆ C → C within a bounded
domain in the complex plane. Ideally, increasingly accurate approximations of the
zeros can be found after linearization by means of some efficient eigenvalue solver.

This approach is pursued in [3] where two linearization techniques based on
the evaluation of f(z) at roots of unity are investigated. Given the values fk =

f(e2π(k − 1)/n), 1 ≤ k ≤ n, attained by f(z) at the n-th roots of unity, polynomial
and rational interpolants of f(z) are constructed whose zeros provide approxima-
tions of the zeros of f(z) inside the unit circle. The resulting rootfinding com-
putations can then be recast in a matrix setting as a (generalized) eigenproblem
for companion–type matrices. If the coefficients of the interpolating polynomial
are available then a customary companion matrix or pencil can be formed. Other-
wise, working directly from values a generalized eigenvalue problem with arrowhead
structure is defined [18, 28].

Although these two matrix eigenproblems are equivalent in the sense that they
share the same finite spectrum, for the purpose of numerical computation we favor
the second option based on the following reasons. First of all, the conditioning of the
eigenvalues depends on the representation of the interpolating polynomial. From
our numerical experience, the representation by values generally leads to a better
conditioning for the approximations of the roots around the origin in the complex
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plane. This part of the spectrum is relevant to establish the stability features of the
system. A theoretical analysis supporting this claim is presented in [11]. Secondly,
for large n the balancing of the vector of sampled values can directly be related
with the behavior of the absolute value of the function on the unit circle. A similar
conclusion does not hold for the coefficient vector which can be highly unbalanced
even for small varying functions. Balancing is usually recommended for achieving
efficiency and accuracy in numerical computations.

Whatever linearization technique we apply, it results in a rank–structured (gen-
eralized) eigenproblem. The exploitation of the structural properties of the resulting
matrix eigenvalue problem also leads to a significant improvement of the compu-
tational efficiency. In recent years based on the concept of rank structure many
authors have provided fast adaptations of the QR/QZ iteration applied to small
rank modifications of Hermitian or unitary matrices/pencils [8, 9, 10, 17, 32, 20,
33, 12]. However, despite the common framework, there are several differences
between the Hermitian and the unitary case which makes the latter much more
involved computationally. To circumvent this drawback in [7] a novel approach for
solving the perturbed unitary eigenproblem has been proposed. The approach relies
upon an initial transformation of the matrix by unitary congruence into a modified
CMV–like form [15, 25] with staircase shape. The CMV-like form of a unitary ma-
trix is particularly suited for the application of the QR eigenvalue algorithm [14].
The staircase shape also reveals invariance properties under the same algorithm [2].
Combining these facts together yields a very nice data–sparse parametrization of
the matrix which is maintained under the iterative process.

In this paper we extend the CMV–based stuff to solving the generalized eigen-
problem associated with the point–value representation of the interpolating polyno-
mial of a given analytic function at the roots of unity. More specifically, we design
a fast composite algorithm relying on the following two steps.

(1) The initial arrowhead pencil is converted into a modified CMV–like form.
We propose a novel method for the reduction of a unitary diagonal matrix
into a CMV–like form by unitary congruence having prescribed the first
column of the associated transformation matrix. It turns out that this
method applied to the initial matrix pair (A,B) performs the reduction

into a modified pair (Â, B), where Â is a CMV–like matrix perturbed
by a rank–one correction in its first row. Then we adjust the deflation
procedure described in [27] to the unitary setting by transforming the

generalized eigenproblem Âx = λBx into a classical eigenproblem Ãx =
λx having the same finite spectrum. In addition, the matrix Ã still inherits

the modified CMV–like structure of Â. The complexity of the reduction
process is quadratic in the size of the matrix.

(2) The fast adaptation of the QR scheme proposed in [7] is applied for the

solution of the resulting matrix eigenproblem involving Ã. The modified
CMV–like structure of Ã induces the rank structure of the matrices gen-
erated under the QR process applied to Ã. By using a suitable entrywise
parametrization of these matrices each iteration can be carried out at a
linear time so that the overall complexity remains quadratic.

The composite algorithm is numerically reliable, since each computational step
relies on unitary transformations. The computational efficiency is enhanced by
the use of data–sparse representations of the involved matrices that are easy to
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manipulate and update. The overall complexity is quadratic using a linear memory
storage.

A detailed outline of the paper is as follows. In Section 2 we formulate the
computational problem and develop our algorithm for performing the reductions
carried out at step 1. In Section 3 we briefly restate the fast QR iteration presented
in [7]. In Section 4 we discuss several numerical examples indicating the robustness
and the efficiency of the proposed numerical approach. Finally, the conclusion and
further developments are drawn in Section 5.

2. Problem Statement and Basic Reductions

In this section we first introduce the matrix eigenproblem with arrowhead shape
resulting from the polynomial interpolation at the roots of unity of an analytic func-
tion f(z). Then, we describe the basic reductions of this problem into a modified
CMV–like form.

The unique polynomial of degree less than n interpolating the function f(z) at

the n−th roots of unity zk = e2π(k − 1)/n, 1 ≤ k ≤ n, can be expressed as

p(z) = (zn − 1)

n∑
j=1

wjfj
z − zj

,

where

fj = f(zj), wj =
( ∏

k=1,k 6=j

(zj − zk)
)−1

= zj/n, 1 ≤ j ≤ n.

In [18] it was shown that the roots of p(z) are the finite eigenvalues of the matrix
pencil given by

(2.1) T (z) = A− zB, A,B ∈ C(n+1)×(n+1),

where

(2.2) A =


0 −ξ1f1 . . . −ξnfn

w1/ξ1 z1
...

. . .

wn/ξn zn

 , B =


0

1
. . .

1

 ,
where ξ1, . . . , ξm are nonzero additional parameters introduced for balancing and
symmetry purposes. Observe that since the size of the matrices A,B is n+ 1, then
T (z) in (2.1), (2.2) has at least two spurious infinite eigenvalues. In the sequel
of this section we present a method to transform the generalized eigenproblem for
the matrix pair (2.2) into a classical eigenvalue problem for a perturbed CMV–like
matrix. This reduction also incorporates a reliable numerical technique for deflating
some possibly infinite eigenvalues.

CMV matrices, introduced in [15] and [30] where the term was coined, are
defined as product of Givens transformations arranged in suitable patterns. For a
given pair (γ, k) ∈ D× In, D = {z ∈ C : |z| < 1}, In = {1, 2, . . . , n− 1}, we set

(2.3) Gk(γ) = Ik−1 ⊕
[
γ̄ σ
σ −γ

]
⊕ In−k−1 ∈ Cn×n,
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where σ ∈ R, σ > 0 and |γ|2 + σ2 = 1. Similarly, if γ ∈ S1 = {z ∈ C : |z| = 1} then
denote

Gn(γ) = In−1 ⊕ γ ∈ Cn×n.

The following definition identifies an important class of structured unitary ma-
trices.

Definition 2.1. [15] For a given coefficient sequence (γ1, . . . , γn−1, γn) ∈
Dn−1 × S1 we introduce the unitary block diagonal matrices

L = G1(γ1)·G3(γ3) · · · G2bn+1
2 c−1

(γ2bn+1
2 c−1

), M = G2(γ2)·G4(γ4) · · · G2bn2 c(γ2bn2 c),

and define

(2.4) C = L ·M
as the CMV matrix associated with the prescribed coefficient list.

The decomposition (2.4) of a unitary matrix was first investigated for eigenvalue
computation in [1] and [14]. The shape of CMV matrices is analyzed in [25] where
the next definition is given.

Definition 2.2. [25] A matrix F ∈ Cn×n has CMV shape if the possibly
nonzero entries exhibit the following pattern where + denotes a positive entry:

F =



? ? +
+ ? ?

? ? ? +
+ ? ? ?

? ? ? +
+ ? ? ?

? ? ?
+ ? ?


, (n = 2k),

or

F =



? ? +
+ ? ?

? ? ? +
+ ? ? ?

? ? ? +
+ ? ? ?

? ?


, (n = 2k − 1).

The definition is useful for computational purposes since shapes are easier to
check than comparing the entries of the matrix. Obviously, CMV matrices have a
CMV shape and, conversely, it is shown that a unitary matrix with CMV shape is
CMV [16]. The positiveness of the complementary parameters σk in (2.3) as well
as of the entries marked with + in Definition 2.2 is necessary to establish the con-
nection of CMV matrices with corresponding sequences of orthogonal polynomials
on the unit circle [25]. From the point of view of eigenvalue computation, however,
this condition can be relaxed. In [6] we simplify the above definition by skipping
the positiveness condition on the entries denoted as +. The fairly more general
class of matrices considered in [6] is referred to as CMV–like matrices. There it is
also shown that the block Lanczos method can be used to reduce a unitary matrix
into the direct sum of CMV–like matrices. Here we pursue a different approach
relying upon the fact that the reduction of the arrow matrix pencil (2.1), (2.2) into
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a perturbed CMV–like form follows from computing a unitary matrix Q ∈ Cn×n

such that

(2.5) QHDQ = F, QHw = αe1,

where D = diag [z1, . . . , zn], F is CMV–like and, moreover,

A =


0 −ξ1f1 . . . −ξnfn

w1/ξ1 z1
...

. . .

wn/ξn zn

 =

[
0 −fH

w D

]
.

Observe that the bordered unitary matrix

Q̂ =

[
1 0T

0 Q

]
satisfies

Q̂HAQ̂ =

[
0 f̂

H

αe1 F

]
, Q̂HBQ̂ = B.

In addition from (2.5) there follows that

QHDw = FQHw = αFe1,

which means that the entries of QHDw from 3 to n are zero.
In the next subsection we present an efficient solution of (2.5) based on the

recognition of (2.5) as an inverse eigenvalue problem (IEP) associated with the
reduction to CMV–like form.

2.1. Efficient Recursive Solution of the Associated IEP. The solvability
of (2.5) is addressed in [6] by using a constructive approach relying upon the block–
Lanczos method. We just recall the main result here. For the sake of simplicity we
consider the case where n is even.

Theorem 2.3. Let D+ = D+DH

2 and D− = D−DH

2 be such that D = D+ +
D−. Then the block–Lanczos procedure applied to D+ with initial vectors [w|Dw]
produces a unitary matrix Q ∈ Cn×n satisfying:

(1) [w|Dw] = Q( : , 1 : 2) ·R for an upper triangular R;
(2) QHD+Q, QHD−Q and, a fortiori, QHDQ are block tridiagonal matrices

with 2× 2 diagonal and off-diagonal blocks.
(3) By denoting with Bi, Ci, 1 ≤ i ≤ n/2− 1, the subdiagonal and superdiag-

onal blocks, respectively, in the block tridiagonal reduction of D it is found
that rank (Bi) ≤ 1 and rank (Ci) ≤ 1 and, moreover,

Bi =

[
0 ?
0 ?

]
, Ci =

[
? 0
? 0

]
,

where ? denotes a possibly nonzero entry.

The construction advocated in the previous theorem can suffer from numerical
instabilities and premature breakdowns demanding for restarting techniques. An
Householder–style implementation of the Lanczos reduction is described in [25]. An
alternative approach based on the Householder (block) tridiagonalization algorithm
applied to D+ is also presented in [6] in order to circumvent these difficulties.
Hereafter we further elaborate on this modification by devising a novel reduction
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scheme using unitary transformations which has the advantage of working directly
on the matrix D rather than D+. Our approach relies upon the recognition of (2.5)
as an inverse eigenvalue problem (IEP). Recursive solution methods are customary
in this field (see [13], [31] and the references given therein) and can be extended
to deal with the present case.

The construction of Q can be carried out by a recursive algorithm which acts
on the enlarged matrix

C(n+2)×(n+2) 3 Â =

 0 0 0T

0 0 −fH

w Dw D


by annihilating entries of the first two columns and then by returning the trail-
ing submatrix to CMV–like form. For the sake of simplicity we restrict our-
selves to the case where n is even. The procedure is recursive. Suppose that
Qn−k ∈ C(n−k)×(n−k) solves (2.5) for the input data Dn−k = D(k+ 1: n, k+ 1: n)
and w(n−k) = w(k + 1: n), that is,

QH
n−kDn−kQn−k = Fn−k, QH

n−kw
(n−k) = αn−ke1.

It is found that the unitary matrix Q̂n−k = Ik+2 ⊕ Qn−k satisfies Q̂H
n−kÂQ̂n−k =

Ân−k, where

Ân−k(k − 1: n, 1: n+ 2) =

 Wn−k
zk−1

zk
Rn−k Fn−k

 ,
where Wn−k, Rn−k ∈ C2×2 and Rn−k is upper triangular. Then we can determine
a unitary matrix Gn−k such that

GHn−k
[
Wn−k
Rn−k

]
= R̂n−k−2 =

 Rn−k+2

0 0
0 0

 .
Let

(Ik ⊕ Gn−k ⊕ In−k−2)HÂn−k(Ik ⊕ Gn−k ⊕ In−k−2) = Ãn−k

be partitioned as follows

Ãn−k(k − 1: n, 1: n+ 2) =

[
Rn−k+2 On−k+2,k−2 F̃n−k+2

]
,

where

F̃n−k+2 = (Gn−k ⊕ In−k−2)H

 zk−1
zk

Fn−k

 (Gn−k ⊕ In−k−2).

By denoting

Q̂n−k+2 = (I2 ⊕Qn−k) · (Gn−k ⊕ In−k−2),

this implies that

(2.6) Q̂H
n−k+2Dn−k+2Qn−k+2 = F̃n−k+2,

and, moreover,

(2.7) Q̂H
n−k+2w

(n−k+2) = (Rn−k+2)1,1e1,
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(2.8) Q̂H
n−k+2Dn−k+2w

(n−k+2) = (Rn−k+2)1,2e1 + (Rn−k+2)2,2e2.

Now, the following properties can easily be deduced.

(1) As F̃n−k+2, Q̂n−k+2 fulfill (2.6), (2.7) and (2.8) for a partial set of input

data we obtain that the first column of F̃n−k+2 is of the form ρe1 + ξe2
for suitable ρ, ξ.

(2) Since F̃n−k+2 is unitary, from the nullity theorem [22] this also implies

that F̃n−k+2(1 : 2, 3: n− k + 2) is a matrix of rank one at most.

(3) As F̃n−k+2(1 : 2, 4: 5) is annihilated by a unitary transformation on the
right then due to the nullity theorem a staircase pattern is identified in
the lower triangular portion of the modified F̃n−k+2 and, therefore, the
rank properties are transmitted to the trailing submatrices.

By combining these three facts together we find that there exists a matrix Q̃n−k+2

such that Q̃H
n−k+2F̃n−k+2Q̃n−k+2 = Fn−k+2 is a CMV–like matrix and, moreover,

Q̃n−k+2 only acts on the columns of F̃n−k+2 in position 3 through n− k + 2. And
thus, finally, by setting

Qn−k+2 = Q̂n−k+2 · Q̃n−k+2,

we may conclude that this latter matrix solves (2.5) for the extended set of input
data Dn−k+2 and w(n−k+2).

The complete reduction scheme is stated below in algorithmic form. For the
sake of notational convenience we assume to do nothing whenever index exceeds
matrix dimensions.

Procedure CMV Reduce
Input: n = 2k, n2 = n+ 2, w,f ∈ Cn;
Output: Q,F ∈ Cn×n as in (2.5);

for k = n2:−2: 6

E = Â(k − 3 : k, 1:2); [Q,R] = qr(E);

Â(k − 3 : k, :) = QHÂ(k − 3 : k, :); Â(:, k − 3 : k) = Â(:, k − 3 : k)Q;
for j = k: 2:n2

E = Â(j − 3 : j − 2, j:j + 1); E = EH ; [Q,R] = qr(E);

Â(:, j : j + 1) = Â(:, j : j + 1)Q; Â(j : j + 1, :) = QHÂ(j : j + 1, :);

E = Â(j + 1 : j + 2, j − 2); [Q,R] = qr(E); j̃ = j + 1

Â(:, j̃ : j̃ + 1) = Â(:, j̃ : j̃ + 1)Q; Â(j̃ : j̃ + 1, :) = QHÂ(j̃ : j̃ + 1, :);

E = Â(j − 3 : j − 2, j − 1:j); E = EH ; [Q,R] = qr(E);

Â(:, j − 1 : j) = Â(:, j − 1 : j)Q; Â(j − 1 : j, :) = QHÂ(j − 1 : j, :);

E = Â(j : j + 1, j − 2); [Q,R] = qr(E);

Â(:, j : j + 1) = Â(:, j : j + 1)Q; Â(j : j + 1, :) = QHÂ(j : j + 1, :);
end

end

Since each computation involves unitary matrices of size m ≤ 4 and the sparse

form of Â is restored at each step it is easy to show that CMV Reduce has a
cost of O(n2) flops. For the sake of illustration in Figure 1 we visualize the sparsity

pattern of the matrix Â generated by the CMV Reduce procedure at different
times.
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0 5 10 15

0

5

10

15

nz = 53
0 5 10 15

0

5

10

15

nz = 55

(a) k = 12 (b) k = 10

0 5 10 15

0

5

10

15

nz = 57
0 5 10 15

0

5

10

15

nz = 59

(c) k = 8 (d) k = 6

Figure 1. Sparsity pattern of Â of size n2 = 14 at the end of the
for cycle with k = n2− 2, n2− 4, n2− 6 and n2− 8.

We conclude this section with two remarks concerning the reduction of (2.2)
into a CMV–like pencil.

Remark 2.4. It should be worth noticing that if ξ1 = z1, . . . , ξn = zn and

w = (1/n) [1, . . . , 1]
T

then an alternative reduction scheme of (2.2) into a CMV–like
pencil follows from the properties of the Fourier matrix Ω = (1/

√
n)(ω(i−1)(j−1))
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with ω = z2. In fact it is well known that

ΩHDΩ =


0 1
1 0 0

. . .
. . .

...
1 0

 , ΩHw = αe1.

Then by making use of the permutation matrix P defined in [7] it can easily be seen
that Q = ΩP solves (2.5) and, hence, Q = 1 ⊕ ΩP converts the input arrowhead
pencil (2.1), (2.2), into the permuted companion form considered in [7].

Remark 2.5. The Lanczos methods proposed in [6] and [25] for the reduction
of a unitary matrix to CMV–like form can break down for suitable choices of the
vector w or when the starting matrix has multiple eigenvalues. It is clear that
the possibly coalescence of nodes produces degeneracies also in previous algorithm
CMV Reduce.

2.2. Deflation Technique. Once the modified matrix pair (A1, B1), A1 =

Q̂HAQ̂, B1 = B, has been constructed then a procedure like that one proposed
in [27] can be carried out in order to deflate the two spurious infinite eigenvalues.
Specifically we proceed in the following steps.

(1) At first, we swap the first two rows of A1 and B1 by using a permutation

matrix P1 on the left. Since Â1 = P1A1 is block upper triangular and

B̂1 = P1B1 is upper triangular we can delete the first row and column

of Â1 and B̂1 by obtaining the novel matrix pair (A2, B2) with A2 =

Â1(2 : n+ 1; 2: n+ 1) and B2 = B̂1(2 : n+ 1; 2: n+ 1). Observe that A2

can be expressed as a CMV–like unitary matrix perturbed by a rank–one
correction located in its first row.

(2) Then we determine a 2× 2 Givens rotation matrix which acts on the first
two rows of A2 by annihilating the first subdiagonal entry. By applying

the same transformation to B2 we find that the modified matrices Â2 and
B̂2 are in block upper triangular and upper triangular form, respectively.
Thus we can again perform a deflation step by removing the second spu-
rious infinite eigenvalue and reducing the size of A2 and B2 by one. The
final matrix pair is (A3, B3), where A3, B3 ∈ C(n−1)×(n−1) and

B3 =


σ

1
. . .

1

 ,
for a possibly nonzero scalar σ. Also it should be noticed that A3 can be
further written as a rank-one modification of a CMV–like unitary matrix
so that at the very end of this process whenever σ 6= 0 we obtain that the
spectrum of the structured matrix B−13 A3 gives suitable approximations
of the zeros of p(z).

Summing up, if the deflation procedure succeeds then the generalized eigen-
problem A1x = λB1x is reduced to the classical eigenvalue problem Ax = λx,
where A : = B−13 A3 is a CMV–like unitary matrix perturbed by a rank–one cor-
rection located in its first row. The structure of this latter matrix will be exploited
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in the next section for the design of an efficient eigensolver. It is worth pointing
out that theoretically, if σ = 0 then the deflation procedure may be continued by
preserving the structural properties of the pencil. However, in practice, from a nu-
merical point of view the critical issue to be addressed is the occurrence of a quite
small but nonzero value of σ. We will go back on this later in Section 4.

3. A Fast Structured QR Algorithm

In this section we are going to develop a fast variant of the customary QR
eigenvalue algorithm for an input matrix A = F − e1w

H which can be represented
as a CMV–like unitary matrix plus a rank–one correction located in the first row.
The derivation follows largely that in [7], where the interested reader is directed
for more details. Our approach is able to exploit both the staircase form of A and
its perturbed CMV–like representation.

Staircase matrix patterns can be exploited for eigenvalue computation [2]. The
shifted QR algorithm

(3.1)

{
As − ρsIn = QsRs

As+1 = QH
s AsQs, s ≥ 0,

is the standard algorithm for computing the Schur form of a general matrix A =
A0 ∈ Cn×n [23]. The matrix A is said to be staircase if mj(A) ≥ mj−1(A),
2 ≤ j ≤ n, where

mj(A) = max{j,max
i>j
{i : ai,j 6= 0}}.

The staircase form is preserved under the QR iteration (3.1) in the sense that [2]

mj(As+1) ≤ mj(As), 1 ≤ j ≤ n.
For Hermitian and unitary matrices the staircase form also implies a zero pattern
or a rank structure in the upper triangular part. The invariance of this pattern by
the QR algorithm is proved in [2] for Hermitian matrices and in [14] for unitary
CMV–shaped matrices. An alternative proof for the unitary case that is suitable
for generalizations is given in [6] by relying upon the classical nullity theorem [22].

It has already been noticed above that the staircase form of A0 =: A is pre-
served under the shifted QR iteration (3.1). This means that each unitary matrix
Qs is also in staircase form. From

A0 = F − e1 w
H = F0 − z0w

H
0

it follows that

(3.2) As+1 = QH
s AsQs = QH

s (Fs − zsw
H
s )Qs = Fs+1 − zs+1w

H
s+1, s ≥ 0,

where

(3.3) Fs+1 : = QH
s FsQs, zs+1 : = QH

s zs, ws+1 : = QH
s ws.

These relations enable the entries of each As to be represented in terms of a linear
number of parameters. Hereafter we recall the main result in [7].

Theorem 3.1. For any s ≥ 0 the unitary matrix Fs satisfies

rank (Fs(1 : 2j, 2(j + 1) + 1 : n)) ≤ 1, 1 ≤ j ≤ bn+ 1

2
c − 2, s ≥ 0.

Moreover, if A0 is invertible then

Fs(1 : 2j, 2(j+1)+1 : n) = Bs(1 : 2j, 2(j+1)+1 : n), 1 ≤ j ≤ bn+ 1

2
c−2, s ≥ 0,
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where

(3.4) Bs =
Fswsz

H
s Fs

zH
s Fsws − 1

= QH
s Bs−1Qs, s ≥ 1,

is a rank one matrix.

From the previous theorem we derive a structural representation of each matrix
As, s ≥ 0, generated under the QR process (3.1) applied to A0. Let us start by
observing that each matrix As, s ≥ 0, generated by (3.1) can be represented by
means of the following sparse data set of size O(n):

(1) the nonzero entries of the banded matrix Âs ∈ Cn×n obtained from As

according to

Âs = (â
(s)
i,j ), â

(s)
i,j =

{
0, if j ≥ 2b i+1

2 c+ 3, 1 ≤ i ≤ 2bn+1
2 c − 4;

a
(s)
i,j , elsewhere;

(2) the vectors zs = (z
(s)
i ),ws = (w

(s)
i ) ∈ Cn and fs : = Fsws,fs = (f

(s)
i ),

and gs : = FH
s zs, gs = (g

(s)
i ).

The nonzero pattern of the matrix Âs looks as below:

Âs =



? ? ? ?
? ? ? ?

? ? ? ? ?
? ? ? ? ?

? ? ? ? ?
? ? ? ? ?

? ? ?
? ? ?


, (n = 2k),

or

Âs =



? ? ? ?
? ? ? ?

? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ?

? ?


, (n = 2k − 1).

From (3.2) and (3.4) we find that the entries of the matrix As = (a
(s)
i,j ) can be

expressed in terms of elements of this data set as follows:
(3.5)

a
(s)
i,j =

{
−σ−1f (s)i ḡj

(s) − z(s)i w̄j
(s), if j ≥ 2b i+1

2 c+ 3, 1 ≤ i ≤ 2bn+1
2 c − 4;

â
(s)
i,j , elsewhere;

where σ = 1− zH
s Fsws = 1− zH

0 F0w0.
A fast adaptation of the QR iteration (3.1) applied to a starting invertible

matrix A0 = F − e1w
H ∈ Cn×n by using the structural properties described above

is devised in [7]. At each step this method works on a condensed entrywise data–
sparse representation of the matrix using O(n) flops and O(n) memory storage.
An efficient MatLab1 implementation of the fast iteration called Fast QR is also

1Matlab is a registered trademark of The MathWorks, Inc..
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provided in [7]. This implementation is one main building block of our composite
algorithm for the approximation of the zeros of an analytic function presented in
the next section.

4. Numerical Results

Based on the results stated in the previous sections we propose the following
composite algorithm for the computation of the zeros of an analytic function f : C→
C inside the unit circle in the complex plane.

(1) For a given n ∈ N form the arrowhead pair (A,B) defined in (2.1), (2.2),
where for balancing issues the additional parameters ξj are set to ξj =

1/
√
|f(zj)| for f(zj) 6= 0.

(2) Apply the procedure CMV Reduce by transforming the input arrow-
head pair (A,B) into (A1, B) where A1 is a CMV–like matrix modified
by a rank–one correction in its first row.

(3) Apply the deflation procedure in order to reduce the generalized eigen-
value problem for (A1, B) to a classical eigenvalue problem for a matrix
A which is still a CMV–like matrix modified by a rank–one correction in
its first row.

(4) Perform the Fast QR procedure applied to the input matrix A for the
computation of the desired approximations of the zeros of f(z).

The complexity of the algorithm is O(n2) flops using O(n) memory storage. A
Matlab implementation of our composite algorithm has been realized for testing
and experimental purposes. The following examples indicate the efficiency and the
robustness of the algorithm. In each experiment we compute the finite spectrum of
the arrowhead pencil using the Matlab function eig, we match these entries with
the approximations returned as output by the Fast QR procedure and compute
the maximum absolute error.

Example 4.1. The first numerical example is preparatory. Let us consider the
nonlinear equation

f(z) = z3 sin(5 (z/2)3) = 0.

In table 1 we show the approximations of the multiple zero at the origin obtained
by computing the eigenvalues of the arrowhead pencil defined in (2.1), (2.2) with
n = 64 and by the command roots applied to the coefficients of the interpolat-
ing polynomial at the same roots of unity. The results confirm some experimental
observations in [11] about the better accuracy of the arrowhead linearization com-
pared with the classical companion form for zeros clustered around the origin in
the complex plane.

The second preliminary test concerns the robustness of our approach and specif-
ically the accuracy of the CMV Reduce procedure. In particular, recall that
Remark 2.5 indicates that numerical difficulties can arise for large n when the
separation of the nodes approaches zero. We consider the polynomial function

f1(z) =

n−1∑
j=0

(j + 1)zj .

From the Eneström-Kakeya theorem [24] it follows that the roots of f1(z) live in the
interior of the unit disc. In table 2 we show the errors between the finite spectrum
of (A,B) and (A1, B), where A1 is generated by means of CMV Reduce applied
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pencil eig poly roots

4.7e-08+3.4e-08i -1.2e-03 -1.8e-03i

4.7e-08+3.4e-08i 1.2e-03 +1.8e-03i

4.7e-08+3.4e-08i -2.2e-03 +1.6e-04i

4.7e-08+3.4e-08i 2.2e-03-1.6e-04i

-1.1e-08 -1.8e-07i 9.7e-04-2.0e-03i

-1.8e-07+4.8e-08i -9.7e-04+2.0e-03i

Table 1. Approximations of the multiple zero at the origin re-
turned by eig applied to the arrowhead pencil and roots applied
to the interpolating polynomial.

n 256 512 1024

err(z) 6.7e-14 1.11e-11 2.9e-06

err(ẑ) 1.4e-14 7.8e-14 9.4e-12

Table 2. Error in matching the finite spectra of the pencil in
arrow form and the modified pencil under different orderings.

n 128 256 512 1024

err 1.2e-14 4.9e-14 1.3e-13 6.7e-11

Table 3. Error in matching the spectra of the pencil in arrow
form and the perturbed CMV–like matrix.

with the same starting vector w respectively to D = diag(z), zk = e2π(k − 1)/n,
1 ≤ k ≤ n, and to D = diag(ẑ), where ẑ is the vector produced by the following
reordering of the nodes aimed to distance contiguous points:

z2j−1 = e2π(j − 1)/n, z2j = −z2j−1, 1 ≤ j ≤ n/2.

Finally, the next table 3 shows the overall errors generated for different values
of n starting with the permuted vector of nodes. The condition numbers of the
eigenvalues of the perturbed CMV–like matrix of order n = 1024 are of order
1.0e+ 2 and, therefore, the absolute errors are within the theoretical estimates.

Example 4.2. In [19] the problem of computing the zeros of the following
function is considered

f2(z) = z50 + z12 − 5 sin(20z) cos(5z)− 1.

In Figure 2 we plot the the spectra of the pencil in arrow form and the perturbed
CMV–like matrix for different values of n.

The test is very hard. The infinity norm of the vector f(z) = (f(zj)) is of
order 9.8e + 13, the maximum condition number of the eigenvalues of A−1B is



14 LUCA GEMIGNANI

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) n = 48 (b) n = 96

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(c) n = 128 (d) n = 256

Figure 2. Plot of the spectra of the arrowhead pencil (diamond
symbol) and the perturbed CMV–like matrix (plus symbol).

of order 1.0e + 8 and the value of σ is of order 1.0e − 08. It can be observed
that for n = 256 there is a large absolute error in one computed eigenvalue. The
condition numbers of the eigenvalues of the perturbed CMV–like matrix range from
1.0e+ 8 to 1.0e+ 15 due to the quite small (but nonzero) value of the σ parameter
occurring in the deflation procedure. Notwithstanding that, the relevant part of the
spectrum, that is, the approximations approaching the zeros of f2(z) are computed
quite accurately. By evaluating the residuals we find that there are 21 “good”
approximations. In the next figure 3 we illustrate the semi–log scale plot of the
residual for the approximations generated by the arrowhead pencil (continuous line)
and the perturbed CMV–like matrix (dotted line).
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Figure 3. Comparison of the residuals generated by the arrow-
head pencil (continuous line) and the perturbed CMV–like matrix
(dotted line).

Example 4.3. To further investigate the approximation of the spectrum of
nonlinear eigenproblems around the origin in the complex plane we consider the
scaled Hadeler problem in the NLEVP library [5], that is,

det(T (z)/γ(z)) = 0, T (z) = (ez − 1)B1 + z2B2 −B0,

where Bi ∈ R8×8 are defined as

B0 = 100I8, (B1)i,j = (9−max(i, j))ij, (B2)i,j = 1/(i+ j) + 8δi,j ,

with δi,j the Kronecker delta symbol and, moreover,

γ(z) = (det(B1))1/8(ez/2 − 1) + (det(B2))1/8(z/2)2 + (det(B0))1/8.

It is known that there is a real zero λ ' 0.21 close to the origin [29]. We compute
the eigenvalues of the arrowhead pencil and the perturbed CMV–like matrix for any
even n ranging from 64 to 128. From these spectra we determine the best approx-
imations of λ. The condition numbers of the eigenvalues of the CMV–like matrix
range from 1.0e+07 to 1.0e+15. The parameter σ occurring in the deflation proce-
dure is generally small in magnitude (less than 1.0e−07). For instance, for n = 86 we
find that the infinity norm of f(z) is of order 1.1e+4 and polyeig applied to (A,B)
returns an eigenvalue λ = 2.095592506490536e−01+2.317181655677081e−13i with
estimated condition number of order 1.0e+5. The deflation procedure finds a value
of σ of order 1.0e−12. Notwithstanding that, the fast QR algorithm applied to the
deflated matrix computes λ = 2.095592506545526e−01+8.022746309423756e−13i.
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Figure 4. Approximations of λ generated from the spectra of the
arrowhead pencil (diamond symbol) and the perturbed CMV–like
matrix (plus symbol).

n = 64 3.7e-15 3.7e-15 5.6e-15 1.6e-12 6.4e-13

n = 128 7.8e-15 5.0e-15 5.4e-15 1.3e-09 1.8e-09

Table 4. Errors for the approximations of the five zeros gener-
ated starting from the initial pencil in arrow form and the per-
turbed CMV–like matrix

In the next figure 4 we plot the real and the imaginary parts of the approxi-
mations of λ computed from the spectra for different values of n = 64 + 2(j − 1),
1 ≤ j ≤ 33.

We see that the computed approximations of λ persist to be accurate indepen-
dently of the conditioning upper bounds.

Example 4.4. The location of the zeros of the holomorphic function

f3(z) = a+ bz + z2 − hz2e−τz,

determines the stability of a steady state solution of a neutral functional differen-
tial equation [21]. Similar models are also used to study the stability of a flow
inside an annular combustion chamber [19]. The case where a = 1, b = 0.5, h =
−0.82465048736655, τ = 6.74469732735569 is analyzed in [26] corresponding to a
Hopf bifurcation point. In figure 5 we compare the approximations of the zeros
of f3(z) generated from the spectra of the arrowhead pencil and the perturbed
CMV–like matrix.

For n = 128 we find that the infinity norm of f(z) is 7.0e+ 02, the magnitude
of the parameter σ arising in the deflation procedure of order 1.0e− 13 and among
the considered approximations three eigenvalues of (A,B) have condition numbers
of order 1.0e + 03 while the remaining two eigenvalues have condition numbers of
order 1.0e+ 08. In table 4 for n = 64, 128 we report the absolute errors of the five
approximations displayed in the figure generated starting from the initial pencil in
arrow form and the perturbed CMV–like matrix.
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Figure 5. Approximations of the zeros of f3(z) generated from
the spectra of the arrowhead pencil (diamond symbol) and the
perturbed CMV–like matrix (plus symbol).

Example 4.5. In [4] a mathematical model of cancer growth is proposed which
consists of three linear delay differential equations. The stability of the model
reduces to investigate the root distribution around the origin in the complex plane
of the function

f4(z) = det(zI3 −A0 −A1e
−rz),

with

A0 =

 −µ1 0 0
2b1 −(µ0 + µQ) bQ
0 µQ −(bQ + µG0)

 ,
A1 = e−(µ0 + µQ)r

 2b1 0 bQ
−2b1 0 −bQ

0 0 0

 ,
and

r = 5, b1 = 0.25, bQ = 0.2, µ1 = 0.28, µ0 = 0.11, µQ = 0.02, µG0 = 0.0001.

In figure 6 we plot the approximations of the zeros computed by solving the matrix
eigenvalue problems.

The approximations returned for the rightmost zero are λ� = 6.73e− 04 +
i 9.0e− 15 and λ+ = 6.73e− 04 + i 2.6e− 13 which means that the system is
unstable. A different selection of the system parameters where we decrease the
value of b1 corresponding to the duplication rate of tumor cells from b1 = 0.25 to
b1 = 0.13 modifies the stability of the system. In the next figure 7 we show the
approximated zeros for the novel set of parameters.
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Figure 6. Approximations of the zeros of f4(z) with b1 = 0.25
generated from the spectra of the arrowhead pencil (diamond sym-
bol) and the perturbed CMV–like matrix (plus symbol).
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Figure 7. Approximations of the zeros of f4(z) with b1 = 0.13
generated from the spectra of the arrowhead pencil (diamond sym-
bol) and the perturbed CMV–like matrix (plus symbol).
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n = 64 6.5e-14 1.4e-13 8.0e-14 2.0e-15 1.6e-15

n = 128 1.6e-13 3.0e-13 1.5e-13 2.0e-14 1.0e-14

Table 5. Errors for the approximations of the five zeros gener-
ated starting from the initial pencil in arrow form and the per-
turbed CMV–like matrix

The rightmost approximation is λ� = −6.49e− 02 + i 2.3e− 14 and λ+ =
−6.49e− 02 − i 1.1e− 09 and the system is stable. The conditioning of the five
eigenvalues range from 1.4e+01 and 3.1e+04. In the next table 5 for n = 64, 128 we
show the absolute errors of the five approximations displayed in the figure generated
starting from the initial pencil in arrow form and the perturbed CMV–like matrix.

5. Conclusion and Future Work

In this paper we have presented a matrix algorithm for the computation of the
zeros of an analytic function inside the unit circle in the complex plane. At the
heart of the proposed approach there is a fast reduction of the initial generalized
eigenproblem in arrow form into a perturbed CMV–like form combined with a fast
adaptation of the QR eigenvalue algorithm which exploits the structural properties
of this latter formulation. The overall complexity is O(n2) using O(n) memory
storage, where n is the number of interpolation nodes on the unit circle used to dis-
cretize the original zerofinding computation. The numerical experience is promising
and confirms that the proposed approach performs rather accurately in general. In
principle numerical difficulties can be encountered if the nodes are quite close or
the deflation procedure provides a small but nonzero cutting parameter. In the first
case we think that the problem can be alleviated by a careful analysis of the unitary
transformation matrices used in the reduction procedure in order to guarantee the
invariance of the rank properties of the transformed matrix. Future work is also
concerned with the design of more robust deflation procedures taking into account
for the occurrence of tiny but nonzero parameters.
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of nonlinear eigenvalue problems, ACM Trans. Math. Software 39 (2013), no. 2, Art. 7, 28.

[6] R. Bevilacqua, G. M. Del Corso, and L. Gemignani, Compression of unitary rank–structured
matrices to CMV-like shape with an application to polynomial rootfinding, ArXiv e-prints

(2013).
[7] , A CMV–based eigensolver for companion matrices, ArXiv e-prints (2014), Submitted

to SIAM J.Matrix Anal. Appl.



20 LUCA GEMIGNANI

[8] D. A. Bini, P. Boito, Y. Eidelman, L. Gemignani, and I. Gohberg, A fast implicit QR eigen-

value algorithm for companion matrices, Linear Algebra Appl. 432 (2010), no. 8, 2006–2031.

[9] D. A. Bini, Y. Eidelman, L. Gemignani, and I. Gohberg, Fast QR eigenvalue algorithms for
Hessenberg matrices which are rank-one perturbations of unitary matrices, SIAM J. Matrix

Anal. Appl. 29 (2007), no. 2, 566–585.

[10] , The unitary completion and QR iterations for a class of structured matrices, Math.
Comp. 77 (2008), no. 261, 353–378.

[11] D. A. Bini and L. Robol, Solving secular and polynomial equations: a multiprecision algo-

rithm, J. Comput. Appl. Math. 272 (2014), 276–292.
[12] P. Boito, Y. Eidelman, and L. Gemignani, Implicit QR for companion-like pencils, Tech.

report, arXiv:1401.5606, 2014. To appear in Math. Comp..

[13] A. Bultheel and M. Van Barel, Vector orthogonal polynomials and least squares approxima-
tion, SIAM J. Matrix Anal. Appl. 16 (1995), no. 3, 863–885.

[14] A. Bunse-Gerstner and L. Elsner, Schur parameter pencils for the solution of the unitary
eigenproblem, Linear Algebra Appl. 154/156 (1991), 741–778.

[15] M. J. Cantero, L. Moral, and L. Velázquez, Five-diagonal matrices and zeros of orthogonal

polynomials on the unit circle, Linear Algebra Appl. 362 (2003), 29–56.
[16] , Minimal representations of unitary operators and orthogonal polynomials on the

unit circle, Linear Algebra Appl. 408 (2005), 40–65.

[17] S. Chandrasekaran, M. Gu, J. Xia, and J. Zhu, A fast QR algorithm for companion ma-
trices, Recent advances in matrix and operator theory, Oper. Theory Adv. Appl., vol. 179,
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