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Abstract

This paper analyzes the transfer orbits within a Sun-[Earth+Moon] system for a spacecraft

whose primary propulsion system is an Electric Solar Wind Sail. The planetary system

is approximated through the Circular Restricted Three Body Problem and the spacecraft

motion is studied in an optimal framework in which the performance index is the flight time.

Minimum time transfers are studied using an indirect approach, and the optimal control

law is found in analytical form as a function of the problem parameters. Optimal transfers

between equilibrium points are discussed and interesting symmetries in the spacecraft

trajectories are pointed out along with an analytical proof of their existence. A mission

scenario consistent with the Geostorm concept is analyzed and the effectiveness of the

propulsion system is emphasized for missions involving a tour through a subset of the

classical Lagrangian points.
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Nomenclature

aP = propulsive acceleration vector

ac = spacecraft characteristic acceleration

C = system’s center-of-mass

G = universal gravitational constant

ı̂, ĵ, k̂ = unit vectors of the synodic frame

J = performance index

l = Sun-[Earth+Moon] distance (with l = 1au)

m = mass

E = auxiliary matrix, see Eq. (9)

r = dimensionless spacecraft position vector (w.r.t. C)

t = time

v = dimensionless velocity (derivative of r w.r.t. ν)

α = cone angle

β = lightness number

λs = vector adjoint to variable s

μ = dimensionless mass

ν = angular variable

ρ = dimensionless celestial body-spacecraft vector (with ρ = ‖ρ‖)

τ = switching parameter

Subscripts

gen.aliasi@gmail.com (Generoso Aliasi), g.mengali@ing.unipi.it (Giovanni

Mengali).
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0 = artificial equilibrium point

f = final

gs = Geostorm mission case

i = initial

Lj = classical Lagrangian point (with j = 1 . . . 5)

max = maximum

⊕ = Earth+Moon

� = Sun

Superscripts

′ = derivative w.r.t. ν

∧ = unit vector

∼ = depending on the controls

1 Introduction

The Electric Solar Wind Sail (E-sail) is an innovative form of spacecraft propul-

sion system that exploits the solar wind plasma momentum by repelling positive

ions using a number of long tethers biased at a high positive voltage [1,2,3].

Similar to other continuous thrust propulsion systems, an E-sail enables a wide

range of new mission concepts [4] such as, for example, the generation of Ar-

tificial Equilibrium Points (AEPs) within an heliocentric mission scenario. An

AEP may be thought of as a special case of a spacecraft motion within a Circu-

lar Restricted Three Body Problem (CRTBP). The dynamics of a massless point
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in the CRTBP is a classical mathematical model [5] that is usually adopted to

approximate the spacecraft motion within the Earth-Moon system or the Sun-

[Earth+Moon] system [6,7,8].

A thorough analysis of mission applications involving AEPs has been addressed

in recent years. In particular, different studies regarding the use of solar sails [9],

E-sails [10,11], and electric thrusters [12] have shown the existence of infinite

equilibrium surfaces in the CRTBP. The shape of those surfaces depends on both

the physical characteristics of the celestial bodies involved in the problem and the

spacecraft propulsive capabilities, in terms of maximum propulsive acceleration

and technological constraints associated to the thrust direction.

In a typical mission scenario involving the use of an AEP, the spacecraft is

required to exploit the propulsion system acceleration to reach and maintain

one point of the equilibrium surfaces over a sufficiently long time period [13].

However, the availability of a continuous thrust also allows the spacecraft to be

moved among different targets within the set of accessible equilibrium points.

This capability makes the mission more flexible, as different mission objectives

can be reached using a single spacecraft in a sufficiently large time interval. In this

context, another interesting possibility is to initially release multiple spacecraft

at the same AEP, and then displace each spacecraft at different pre-selected

AEP locations, similar to what is required by the L1-Diamond mission concept

proposed by Sauer [14] about ten years ago. More recent studies [15,16] exploring

potential and innovative applications of solar sails, have started to investigate

also the transfer between a given set of AEPs by inspecting, for example, the

linear dynamics of the spacecraft around its equilibrium point.

This paper analyzes the time-optimal transfer between equilibrium points within
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the Sun-[Earth+Moon] system for an E-sail based spacecraft. Within this con-

text, the new contribution is to develop a mathematical model where, using an

indirect approach, the optimal control law is obtained in an analytical form as a

function of the state variables involved in the problem. The control law is then

applied for simulating minimum time trajectories and investigating the E-sail

performance. In particular, two different mission scenarios are discussed in de-

tail. The first one, which is consistent with the Geostorm mission concept [13],

concerns the optimal transfer between the classical L1 point and a collinear AEP

(that is, a point along the segment between Sun and Earth+Moon). The second

mission example refers to a tour through a subset of the classical Lagrangian

points. The problem considered is to find the minimum transfer time, for all of

the pairs of points within the set, using an E-sail based spacecraft with a given

(canonical) characteristic acceleration.

The results discussed in this paper are part of an European research project [3,17,18]

regarding the study and development of an E-sail thruster, and are intended to

contribute to the definition of the set of possible scenarios [4] within which a

selection is to be made for testing the practical feasibility of the propulsion sys-

tem in a real mission. For this reason no performance comparison is made here

with other propellantless thrusters, such as solar sails, nor with other low-thrust

propulsion systems, as, for example, electric thrusters. As a matter of fact such

a comparison would imply an analysis of the spacecraft mass budget, which is

however well beyond the scope of this work.

The paper is organized as follows. The first section illustrates the mathematical

model used for the study of spacecraft dynamics in the CRTBP and for the

calculation of the optimal trajectory. It also includes a detailed discussion of

the steering law, how it has been obtained with an indirect approach and the
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definition of the Two-Point Boundary Value Problem (TPBVP) associated to

the optimization problem. The methodology used to solve the TPBVP is only

briefly summarized as the numerical techniques employed are well known. Section

three involves the application of the mathematical model to the two mission

scenarios that have been described above. This section also contains an analysis

of the symmetric structure arising from the optimal trajectory. Such a symmetry

finds a practical application in the solution of the TPBVP. Some final remarks

conclude, as usual, the paper.

2 Mathematical Model

The motion of the E-sail-based spacecraft is governed by the gravitational field

of the two massive bodies (i.e., the Sun of mass m� and the Earth+Moon of mass

m⊕) and by the thrust due to the E-sail propulsion system. Assuming a circular

Earth+Moon orbit around the Sun, the spacecraft motion can be conveniently

described within a synodic (rotating) reference frame T (C; x, y, z), having its

origin at the system’s center-of-mass C, with unit vectors ı̂, ĵ and k̂, see Fig. 1.

Let G be the universal gravitational constant, μ � m⊕/(m⊕ +m�) ≈ 3.0404 ×

10−6 the dimensionless mass of Earth+Moon, and l � 1 au the Sun-[Earth+Moon]

distance (a constant value in the CRTBP). Let also ρ�, ρ⊕, and r (with ρ� =∥∥∥ρ�

∥∥∥ and ρ⊕ =
∥∥∥ρ⊕

∥∥∥) be the spacecraft dimensionless position vectors, see Fig. 1.

The dimensionless spacecraft equations of motion in the synodic reference frame
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T are [19]

r′ = v (1)

v′ =
l2

G (m� +m⊕)
aP −

1− μ

ρ3�
ρ� − μ

ρ3⊕
ρ⊕ − k̂ ×

(
k̂ × r

)
− 2 k̂ × v (2)

where the prime symbol denotes a derivative taken with respect to the angular

variable ν ≥ 0 and

ρ� � ρ�ρ̂� = r + μ î , ρ⊕ � ρ⊕ρ̂⊕ = r − (1− μ) î (3)

Taking into account the recent plasmadynamic simulations [3] about the E-sail

behaviour in the interplanetary space, the spacecraft propulsive acceleration in

the CRTBP can be written as [11]

aP = β
Gm�

l2 ρ�
τ âP (4)

with âP � aP/ ‖aP‖. The propulsive acceleration modulus is known to be in-

versely proportional to the Sun-spacecraft distance [20], that is, ‖aP‖ varies

proportional to 1/ρ�. Also, τ ∈ {0, 1} is a switching parameter that models

the E-sail on/off condition and is introduced to account for coasting arcs in the

spacecraft trajectory. Finally, β is the sail lightness number, defined as the ra-

tio of the maximum propulsive acceleration modulus to the Sun’s gravitational

acceleration (Gm�/l
2) at the reference distance l. The sail lightness number β

is a fundamental design parameter that quantifies the spacecraft’s propulsive

performance. It is closely related to the spacecraft characteristic acceleration ac

through the expression ac � β Gm�/l
2 � 5.93 β, where ac is given in millime-

ter per second squared. Recall that ac is the maximum value of the propulsive

acceleration modulus when the Sun-spacecraft distance is one astronomical unit.

As a consequence of the assumption that the celestial bodies cover circular orbits
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about their center of mass C, the time t turns out to be a linear function of ν,

i.e. dν/dt = ω, where the constant ω = 360/365.25 deg/day coincides with the

Earth’s orbital angular velocity. In addition to the switching parameter, the

second control variable is the thrust direction âP. The angle between the Sun-

sailcraft line and the thrust vector, referred to as sail cone angle α, cannot exceed

a maximum value αmax, which is here set equal to αmax � 30 deg. From Fig. 1

the mathematical constraint, when the thrust is switched on, is therefore

arccos
(
âP · ρ̂�

)
≤ αmax (5)

Note that the propulsive acceleration modulus is only dependent on the Sun-

spacecraft distance. In other terms, the thrust of the sail is assumed to be inde-

pendent of its direction within the allowable cone.

The problem addressed in this paper is to find the minimum-time spacecraft

trajectory that transfers the spacecraft from a given initial state {ri, vi} to a

given final state {rf , vf}. The time histories of the two control variables τ and

âP are hence obtained by solving an optimal control problem.

Assume, without loss of generality, that the initial angular position be νi �

ν(ti) = 0. Since the time varies linearly with ν, the minimum-time problem

consists of minimizing the angular position νf � ν(tf ), where tf is the time at

the end of the transfer. This amounts to finding the trajectory that maximizes

the performance index J � −νf . The optimal trajectory is sought using the

dimensionless equations of motion (1)-(2), in which ν is the independent vari-

able. Using an indirect approach, the minimum-time problem can be solved by

maximizing the Hamiltonian

H = λr · r′ + λv · v′ (6)
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where λr and λv are the vectors adjoint to r and v, respectively. The time-

derivatives of λr and λv are given by the Euler-Lagrange equations that, taking

into account Eqs. (3) and (6), assume the compact form

λ′
r � −∂H

∂r
=

[
(1− μ)

ρ3�

(
I− 3 ρ̂� ρ̂�

)
+

μ

ρ3⊕

(
I− 3 ρ̂⊕ ρ̂⊕

)
+ β τ

(1− μ)

ρ2�
ρ̂�âP + E

2

]
·λv

(7)

λ′
v � −∂H

∂v
= −λr − 2E · λv (8)

where I is the 3× 3 identity matrix and

E �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 −1 0

1 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

From Pontryagin’s maximum principle, the optimal control law maximizes, for

any value of ν, a reduced Hamiltonian H̃, corresponding to the portion of H

that explicitly depends on the controls τ and âP. Taking into account Eq. (4),

the reduced Hamiltonian is

H̃ = τ âP · λ̂v (10)

Let θ ∈ [0, π] rad be the primer vector orientation angle, i.e. the angle between

the direction of the primer vector λv and the direction of the Sun-spacecraft

position vector ρ�, viz.

θ = arccos
(
ρ̂� · λ̂v

)
(11)

Equation (10) states that the optimal propulsive thrust direction is such to maxi-

mize the admissible projection of aP along λv. As a result, recalling the constraint

(5), if θ ≤ αmax the thrust must be switched on (τ = 1) and the propulsive accel-

eration is aligned along λv, that is, âP = λ̂v. If, instead, θ > (αmax + π/2),

the thrust must be off (τ = 0) otherwise H̃ would be negative. Finally, if
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θ ∈ (αmax, αmax+π/2], the thrust is on (τ = 1), the cone angle is at its maximum

(α = αmax), the three unit vectors âP, λ̂v and ρ̂� are coplanar, and the thrust

direction is between the directions of λ̂v and ρ̂�. To summarize, the optimal

control law is

τ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if θ > αmax + π/2

1 if θ ≤ αmax + π/2

(12)

âP =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λ̂v if θ ≤ αmax

sin(θ − αmax)

sin θ
ρ̂� +

sinαmax

sin θ
λ̂v if θ ∈ (αmax, αmax + π/2]

(13)

The differential system is constituted by the equations of motion (1)-(2), and by

the Euler-Lagrange equations (7)-(8), whose control laws are given by Eqs. (12)

and (13). The differential system is completed by twelve scalar boundary con-

ditions, corresponding to the six components of the initial state vector {ri, vi}

and the six components of the final state vector {rf , vf}. The trasversality con-

dition [21], H(νf ) = 1, is used to find the minimum value of νf .

The transfer analysis is much simplified for a two-dimensional problem, corre-

sponding, for example, to a situation in which the transfer trajectories are in

the ecliptic plane, or in the plane (x, y) of the synodic reference frame. This

is the simplified mission scenario adopted in the succeeding analysis. Its prac-

tical importance will be discussed in the next section. Note that the resulting

trajectories, albeit two-dimensional, have been validated using the full (three-

dimensional) model of the spacecraft dynamics.
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3 Mission Applications

The previous minimum-time problem has been adopted to investigate two dif-

ferent mission applications involving the transfer trajectory of an E-sail space-

craft between two equilibrium points. In all of the numerical simulations the

differential equations have been integrated in double precision using a variable

order Adams-Bashforth-Moulton solver scheme [22,23] with absolute and rela-

tive errors of 10−12. The TPBVP associated to the optimization process has

been solved, with an absolute error less than 10−8, through a hybrid numerical

technique that combines genetic algorithms to obtain a first estimate of the four

adjoint variables unknown, with gradient-based and direct methods to refine the

solution.

It is worth noting that solving the TPBVP can only guarantee that the first order

necessary conditions for the optimization are satisfied. For that reason a suitable

procedure has been adopted to reduce the possibility of the solution converging to

a local maximum. In particular, for each mission scenario the TPBVP has been

solved starting from different initial guess solutions. The “candidate” optimal

value is chosen to correspond to the maximum value of the performance index

J within the set of the results obtained. The solution thus obtained is then

perturbed by slightly varying the unknown variables. The TPBVP is solved

again to check whether the new solution still converges to the same performance

index. Although the above procedure does not guarantee the global optimality

of the solution, it has been successfully employed by the authors in a number of

different mission scenarios. The following results can therefore be considered as

minimum time solutions at least in the spirit of a preliminary mission analysis.
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3.1 Geostorm Mission Scenario

The first case discussed is inspired by the Geostorm Warning Mission [13,24],

now the Heliostorm mission [25], whose aim is to provide an early warning of

possible geomagnetic storms. The fundamental mission requirement is to trans-

fer a spacecraft at a collinear (closer to the Sun) AEP of the Sun-Earth system,

whose distance from the planet is twice as much as the distance of the natu-

ral Lagrangian point L1. Such an AEP location, referred to as Pgs, must then

be maintained for a prolonged mission time by means of a suitable propulsion

system. For example, the operating time requirement for the Geostorm mission

was between three and five years [13]. The only way to guarantee such a time

requirement is to use a propellantless thruster. The original mission was indeed

conceived for a solar sail spacecraft [26], but the same mission scenario has been

recently revisited [27] to quantify the performance of an E-sail, with particular

attention to the generation of halo orbits around the AEP.

In this case, the problem is to investigate the minimum-time trajectories be-

tween L1 and Pgs for an E-sail based spacecraft. This situation is consistent, for

example, with that discussed in Ref. [16], in which a spacecraft equipped with a

propellantless propulsion system is initially parked at L1, and is then transferred

to another AEP to accomplish the mission. The positions of the two points in the

synodic frame are [rL1 ]T = [xL1/l, 0, 0]
T, and [rgs]T = [(2 xL1/l + μ− 1), 0, 0]T,

where xL1/l = 0.99.

The lightness number used in the simulations is β � 0.0526, corresponding to a

characteristic acceleration of about ac � 0.3122mm/s2. The latter is the value

required to maintain a spacecraft at Pgs, as it can be verified through the results
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taken from Ref. [11]. Using the boundary conditions ri = rL1 , rf = rgs, and

vi = vf = 0, the solution of the TPBVP provides the optimal trajectory drawn

in Fig. 2. This trajectory all belongs to the ecliptic plane.

The optimal angle swept by the Earth+Moon during the spacecraft displacement

is νf = 250.6 deg, which corresponds to a minimum flight-time of about 254 days.

The dimensionless components of the spacecraft position and velocity vectors are

shown in Fig. 3 as a function of the angular position. A significant portion of the

optimal trajectory, longer than one half of the total transfer time, is flown with

the thruster switched off (τ = 0). In particular, Fig. 3 emphasizes the presence

of two coasting arcs. The second arc is engaged shortly before the conclusion of

the mission, which, indeed, ends with a coasting phase. Note, however, that the

E-sail must be switched on again as soon as the spacecraft reaches the target

AEP, where the spacecraft thrust must be aligned along the Sun-[Earth+Moon]

direction to meet the equilibrium conditions and maintain the AEP location [11].

3.2 Motion Between Lagrangian Points

The second mission scenario involves the transfer between a subset of the classical

Lagrangian points [15]. The coordinates of the points involved in the problem,

L1, L3, L4, and L5, are summarized in Table 1. The fifth classical Lagrangian

point, L2, has not been considered in this study because the effectiveness of the

propulsion system around that point could be much affected by the solar wind

interaction with Earth’s magnetosphere.

The minimum-time transfer trajectory between each pair of AEPs in Table 1 has

been calculated assuming a spacecraft characteristic acceleration ac = 1mm/s2,
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corresponding to a sail lightness number β � 0.1686. In all of the simulations,

the initial and final (relative) velocities in the synodic frame were set equal to

zero, i.e. vi ≡ vf = 0. Such a choice models a situation in which the spacecraft

maintains the AEP position for a suitable time interval, whose length is, however,

not included in the optimization process, but it is related to others mission

constraints. The minimum flight times for the twelve optimal transfer trajectories

have been summarized in Table 2.

It is worth noting the symmetry in the transfer times highlighted in some entries

of Tab. 2. For example, the transfer time from L4 to L1 is the same as the

time from L1 to L5. Likewise, the transfer time between L5 and L3 equals that

from L4 and L5. These symmetries arise from the fact that Eqs. (1)–(4) are

invariant under the transformation (r, r′, τ , âP, t) → (Tr, −Tr′, τ , TâP, −t),

where T � diag (1, −1, 1). Such a transformation extends a similar result that

applies to trajectories in the CRTBP [28] in the ballistic case (i.e., when β =

0, or the propulsion system is always switched-off). Note that the existence

of these symmetries reduces the possibility that the solution of the TPBVP

associated to the optimum problem may converge to a local maximum of the

performance index J . In fact, the symmetry condition represents a further means

to compare different solutions and exclude possible sub-optimal trajectories. Such

an expedient has been successfully used to avoid the convergence toward local

maxima, a problem that has been experienced especially in the transfers between

L4 and L3.

The same symmetry existing in the transfer times is also apparent in the space-

craft optimal trajectories between Lagrangian points drawn in Fig. 4. For the

sake of clearness the figure is divided in two parts according to whether the

generic trajectory involves the point L3 (see Fig. 4(a)) or not (see Fig. 4(b)).
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The coasting phases are illustrated with dashed lines and the arrows point out

the direction of motion. Unlike the case discussed in the previous section, in this

example the mission starts and ends with a propelled arc. However, when the

generic Lagrangian point is reached, the spacecraft thrust must be switched-off

to maintain the relative equilibrium position.

From the data of Tab. 2, and using the sequence L1 → L5 → L3 → L4 → L1, an

E-sail based spacecraft with a characteristic acceleration of one millimeter per

square seconds may complete a tour of the four Lagrangian points within a total

flight time of 1354 days (about 3.71 years). The corresponding optimal trajectory

tracked by the spacecraft is illustrated in Fig. 5, which also shows the length of

the various coasting phases. The sum of all coasting times amounts to about 16%,

thus confirming the crucial contribution of the propulsion system for obtaining

the minimum time trajectory. The flight parameters thus obtained represent a

fundamental starting point for a succeeding mission analysis, including the effects

of the solar wind variation on the capability of maintaining a given AEP, and

for a further refinement of the transfer performance evaluation.

4 Conclusions

Minimum time trajectories for an electric solar wind sail have been studied

within the circular restricted three body problem constituted by the Sun and

the Earth+Moon. The problem has been addressed using a variational approach

and has been applied to two different mission scenarios. An Electric Solar Wind

Sail of modest performance is sufficient for reaching and maintaining a collinear

artificial equilibrium point located at a distance from the Earth twice as much

as the distance of the classical point L1. The minimum transfer time necessary
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to reach the artificial collinear equilibrium point is about 250 days.

As a second example, a complete tour of a subset of the classical Lagrangian

points has been shown to be feasible in less than four years, using a spacecraft

with a characteristic acceleration of 1mm/s2. The transfer trajectories confirm

interesting symmetries that arise from the structure of the equation of motion.

The presence of those symmetries in the transfer trajectories, which has been

demonstrated in an analytic form, represents an original contribution of the

paper. This results extends a similar well-known property of ballistic transfers

within the Circular Restricted Three Body Problem. The simulation data can

be used as a starting point for a more accurate mission analysis that should take

into account the actual eccentricities of the planetary orbits and the significant

thrust reduction associated to a spacecraft entry into the Earth’s magnetosphere.

A natural extension of this work could take into account the effects of a change in

the sail performance parameter, for example a time variation in the sail voltage,

which induces a change in the characteristic acceleration during the transfer.

Indeed, more flexibility in the trajectory design can be obtained by considering

the characteristic acceleration as an additional control means.
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position

x/l y/l z/l

L
a
g
ra
n
.
p
o
in
t

L1 0.99 0 0

L3 -1 0 0

L4 0.5 0.866 0

L5 0.5 -0.866 0

Table 1
Position, in the (x, y) plane, of the classical Lagrangian points.
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final point

L1 L3 L4 L5

st
a
rt
in
g
p
o
in
t

L1 - 475 445 287

L3 475 - 390 553

L4 287 553 - 390

L5 445 390 553 -

Table 2
Optimal flight times, in days, between pairs of Lagrangian points (ac = 1 mm/s2).
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Figure 1. Schematic of the Sun-[Earth+Moon] CRTBP with E-sail based spacecraft.
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Figure 2. Optimal transfer trajectory in the Geostorm scenario (solid line: τ = 1,
dashed line: τ = 0).
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Figure 3. Optimal transfer in the Geostorm scenario: components of r and v as a
function of ν.
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Figure 4. Optimal transfer trajectories between Lagrangian points when ac = 1 mm/s2

(solid line: τ = 1, dashed line: τ = 0).
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Figure 5. Optimal tour of the Lagrangian points when ac = 1 mm/s2 (solid line: τ = 1,
dashed line: τ = 0).
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