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Abstract.

In this paper we present a novel matrix method for polynomial rootfinding. The roots are ap-
proximated by computing the eigenvalues of a permuted version of the companion matrix associated
with the polynomial in block upper Hessenberg form with possibly nonsquare subdiagonal blocks. It
is shown that this form, referred to as a lower staircase form of the companion matrix in reference
to its characteristic appearance, is well suited for the application of the QR eigenvalue algorithm.
In particular, each matrix generated under this iteration is block upper Hessenberg and, moreover,
all its submatrices located in a specified upper triangular portion are of rank two at most with en-
tries represented by means of four given vectors. By exploiting these properties we design a fast
and computationally simple structured QR iteration which computes the eigenvalues of a companion
matrix of size n in lower staircase form using O(n2) flops and O(n) memory storage. This iteration
is theoretically faster than other fast variants of the QR iteration for companion matrices in custom-
ary Hessenberg form. Numerical experiments show the efficiency and the accuracy of the proposed
approach.

AMS classification: 65F15
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1. Introduction. Cleve Moler raised the question about the efficiency of the
MatLab∗ function roots for approximating the roots of an algebraic equation [30,
31]. Univariate polynomial rootfinding is a fundamental and classic mathematical
problem. A wide bibliography, some history, applications and algorithms can be
found in [29, 32]. Roots approximates the zeros of a polynomial by computing the
eigenvalues of the associated companion matrix, which is a unitary plus a rank–one
matrix in upper Hessenberg form constructed from the coefficients of the polynomial.
The analysis and the design of efficient eigensolvers for companion matrices have
substantially influenced the recent development of numerical methods for matrices
with rank structure [39, 21]. Roughly speaking, a matrix A ∈ Cn×n is rank structured
if all its off–diagonal submatrices are of small rank.

This paper stems from two research lines aimed at the effective solution of certain
eigenproblems for companion–like matrices arising in polynomial rootfinding. The
first one begins with the exploitation of the structure of companion-like matrices
under the QR eigenvalue algorithm. In the recent years many authors have argued
that the rank structure of a matrix A in upper Hessenberg form propagates along
the QR iteration whenever A can be expressed as a low rank correction of a unitary
or Hermitian matrix. However, despite the common framework, there are several
significant differences between the Hermitian and the unitary case so that for the
latter suitable techniques are required in order to retain the unitary property of the
unperturbed component. The second line originates from the treatment of the unitary
eigenproblem. It has been observed in the seminal paper [13] that a five–diagonal
banded form of a unitary matrix can be obtained from a suitable rearrangement of
the Schur parametrization of its Hessenberg reduction. Moreover, this band reduction
rather than the Hessenberg form itself leads to a QR–type algorithm which is close
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to the Hermitian tridiagonal QR algorithm as it maintains the band shape of the
initial matrix at all steps. The five–diagonal form exhibits a staircase shape and it
is generally referred to as the CMV form of a unitary matrix since the paper [14]
by Cantero, Moral and Velázquez enlightens the connection between these banded
unitary matrices and certain sequences of Szegö polynomials orthogonal on the unit
circle (compare also with [28]). The present work lies at the intersection of these two
strands and specifically aims at incorporating the CMV technology for the unitary
eigenproblem in the design of fast QR–based eigensolvers for companion matrices.

The first fast structured variant of the QR iteration for companion matrices was
proposed in [6]. The invariance of the rank properties of the matrices generated by
the QR scheme is captured by means of six vectors which specify the strictly upper
triangular part of these matrices. The vectors are partly determined from a structured
representation of the inverse of the iteration matrix which has Hessenberg form. The
representation breaks down for reducible Hessenberg matrices and, hence, the price
paid to keep the algorithm simple is a progressive deterioration in the limit of the
accuracy of computed eigenvalues. Overcoming this drawback is the main subject of
many subsequent papers [5, 7, 8, 16, 36], where more refined parametrizations of the
rank structure are employed. While this leads to numerically stable methods, it also
opens the way to involved algorithms which do not improve the timing performance
for small to moderate size problems and/or are sometime difficult to generalize to the
block matrix/pencil case. Actually the comparison of running times versus polynomial
degrees for Lapack and structured QR implementations shows crossover points for
moderately large problems with degrees located in the range between n = 100 and
n = 200. Further, the work [24] is so far the only generalization to focus on block
companion matrices, but the proposed method is inefficient wrt block size.

The comparison is astonishingly unpleasant if we account for the simplicity and
the effectiveness of some adaptations of the QR scheme for perturbed Hermitian ma-
trices [20, 38]. In order to alleviate this difference, approaches based on LR-type
algorithms have been recently proposed. Zhlobich [40] develops a variant of the dif-
ferential qd algorithm for certain rank structured matrices which shows promising
features when applied to companion matrices. A proposal for improving the efficiency
of structured matrix–based rootfinders is presented in [3] where a LU–type eigenvalue
algorithm for some Fiedler companion matrices is devised. In particular, the numer-
ical results shown in [3] indicate that their nonunitary method is at least four times
faster than the unitary variant presented in [5]. The application of the differential
qd algorithm to the five–diagonal Fiedler companion matrix [31] is also discussed by
Parlett in his abstract at the last Householder Conference [33]. However, although
Fiedler companion matrices are potentially suited for the design of accurate poly-
nomial rootfinders [17], it is clear that LU–type methods can suffer from numerical
instabilities.

Our contribution is to show that a comparable speedup can be achieved in the
framework of QR algorithms by using an alternative entrywise and data–sparse rep-
resentation of companion matrices. Motivated by the treatment of the unitary eigen-
problem the approach pursued here moves away from the standard scheme where a
nonsymmetric matrix is converted in Hessenberg form before computing its eigenval-
ues by means of the QR algorithm. On the contrary, here we focus on an alternative
preliminary reduction of a companion matrix A ∈ Cn×n into a different lower staircase
form, that is, a block upper Hessenberg form with 1-by-1 or 2-by-2 diagonal blocks
and possibly nonsquare subdiagonal blocks with one nonzero column at most. More
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specifically, recall that a companion matrix A ∈ Cn×n can be expressed as a rank–
one correction of a unitary matrix U generating the circulant matrix algebra. The
transformation of U by unitary similarity into its five–diagonal CMV representation
induces a corresponding reduction of the matrix A into the desired lower staircase
form.

This form encompassed in the block upper Hessenberg partition of the matrix
is invariant under the QR eigenvalue algorithm [2]. Moreover, the reduction of the
unitary component in CMV form yields additional properties of the sequence of the
matrices {Ak}, A0 = A, generated by the iterative process. It is shown that each
matrix Ak admits a QR factorization Ak = QkRk where the unitary factor Qk has
a five–diagonal CMV form. From this, mostly because of the banded structure of
Qk, it follows that each Ak inherits a simplified rank structure. All the submatrices
of Ak located in a given upper triangular portion of the matrix are of rank two at
most and the entries can be expressed by using two rank–one matrices. This yields a
data sparse representation of each matrix stored as a banded staircase matrix plus the
upper triangular portion specified by four vectors. The decomposition is well suited
to capture the structural properties of the matrix and yet it is very easy to manipulate
and update for computations.

In this paper we shall develop a fast adaptation of the QR eigenvalue algorithm
for companion matrices that exploits this representation by requiring O(n) arithmetic
operations and O(n) memory storage per step. The novel unitary variant has a cost
of about 80n + O(1) flops per iteration, and hence it is theoretically twice as fast as
the algorithm in [5] (compare with the cost analysis shown in [21] where a cost of
189n + O(1) is reported without counting the time spent for additional operations
such as factorizing small matrices or computing the unitary matrices involved in the
QR step). Here for the sake of comparison with [5] flop stands for an axpy operation
like e = c+ a ∗ b. The main complexity of our algorithm lies in updating the banded
staircase component of each matrix. Since the width of the band is small compared
with the order of the matrix, the amount of computation time spent on the updating of
the banded matrix, in each step, is quite modest. Moreover since the representation
is entrywise the deflation process can be implemented efficiently simply comparing
the entries with the corresponding diagonal entries scaled by a suitable tolerance.
Thus, the speedup measured experimentally is even better than theoretical estimates
and actually our algorithm is about four times faster than the variant in [5], while
achieving a comparable accuracy.

The paper is organized as follows. In Section 2, we first introduce the main prob-
lem and then we briefly set up the preliminaries, basic reductions and notation that
we will use throughout the rest of the paper. The structural properties of of the
matrices generated by the QR iteration applied to the considered permuted form of a
companion matrix are analyzed in Section 3. In Section 4 we present our fast adap-
tation of the shifted QR algorithm for companion matrices and report the results of
numerical experiments. Finally, in Section 5 the conclusion and further developments
are drawn.

2. Problem Statement and Preliminaries. We study the problem of approx-
imating the zeros of a univariate polynomial p(z) of degree n,

p(z) = p0 + p1z + . . .+ pnz
n, (pn 6= 0).

Polynomial rootfinding via eigensolving for an associated companion matrix is an
increasingly popular approach. From the given n−th degree polynomial p(z) we can
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set up the associated companion matrix C ∈ Cn×n in upper Hessenberg form,

C = C(p) =


−pn−1

pn
−pn−2

pn
. . . − p0

pn
1 0 . . . 0

. . . . . .
...

1 0

 .
Since

pn det(zI − C) = p(z),

we obtain approximations of the zeros of p(z) by applying a method for eigenvalue
approximation to the associated companion matrix C. The (single) shifted QR algo-
rithm {

As − ρsIn = QsRs
As+1 = QHs AsQs, s ≥ 0, (2.1)

is the standard algorithm for computing the eigenvalues of a general matrix A = A0 ∈
Cn×n [25] and can be applied to compute the zeros of p(z) setting A0 := C. This is
basically the approach taken by the MatLab function roots, which also incorporates
matrix balancing preprocessing and the use of double shifted variants of (2.1) for real
polynomials.

The QR method is not readily amenable to exploit the structure of the companion
matrix. In the recent years many fast adaptations of the QR iteration (2.1) applied
to an initial companion matrix A0 = C have been proposed that are based on the
decomposition of C as a rank–one correction of a unitary matrix, that is,

C = U − e1p
H =


0 . . . 0 1
1 0 . . . 0

. . . . . .
...

1 0

−


1
0
...
0


[
pn−1

pn
,
pn−2

pn
, . . . ,

p0

pn
+ 1
]
.

In this paper we further elaborate on this decomposition by developing a different
representation. The so–called Schur parametrization of a unitary upper Hessenberg
matrix with positive subdiagonal entries [26] yields a representation of U as product
of Givens rotations. For a given pair (γ, k) ∈ D × In−1, D = {z ∈ C : |z| < 1},
In = {1, 2, . . . , n}, we set

Gk(γ) = Ik−1 ⊕
[
γ̄ σ
σ −γ

]
⊕ In−k−1 ∈ Cn×n, (2.2)

where σ ∈ R, σ > 0 and |γ|2 + σ2 = 1. Similarly, if γ ∈ S1 = {z ∈ C : |z| = 1} then
denote

Gn(γ) = In−1 ⊕ γ ∈ Cn×n.

Observe that Gk(γ), 1 ≤ k ≤ n, is a unitary matrix. Furthermore, it can be easily
seen that

U = G1(0) · G2(0) · · · Gn−1(0) · Gn(1)
4



gives the unique Schur parametrization of U .
A suitable rearrangement of this parametrization is found by considering the

permutation defined by

π : In → In, π(1) = 1; π(j) =

 k + 1, if j = 2k;

n− k + 1, if j = 2k + 1.

Let P ∈ Rn×n, P = (δi,π(j)) be the permutation matrix associated with π, where δ
denotes the Kronecker delta. The following observation provides the starting point of
our approach.

Lemma 2.1. The n× n unitary matrix Û = PT · U · P = (ûi,j) satisfies

ûi,j =
{

1 ⇐⇒ (i, j) ∈ Jn ∪ (2, 1);
0 elsewhere,

where for n even and odd, respectively, we set

Jn = {(2k, 2k − 2), 2 ≤ k ≤ n/2} ∪ {(2k − 1, 2k + 1), 1 ≤ k ≤ n/2− 1} ∪ {(n− 1, n)},

and

Jn = {(2k, 2k−2), 2 ≤ k ≤ (n−1)/2}∪{(2k−1, 2k+1), 1 ≤ k ≤ (n−1)/2}∪{(n, n−1)}.

Moreover, it holds

Û = G1(0) · G3(0) · · · G2bn+1
2 c−1(δ1,mod(n,2)) · G2(0) · G4(0) · · · G2bn

2 c(1− δ1,mod(n,2)).

Proof. The first characterization of Û is a direct calculation from

ûi,j = uπ(i),π(j), 1 ≤ i, j ≤ n.

The factorized decomposition is found by computing the QR factorization of the
matrix Û by using Givens rotations.

The transformation U → Û induces the reduction of the companion matrix C
into a different form Ĉ defined by

Ĉ = PT · C · P = PTUP − PTe1p
HP = Û − e1p̂

H . (2.3)

We shall emphasize the importance of this reduction by showing that the use of the
QR scheme applied to Ĉ instead of C for the approximation of the zeros of p(z) has
several advantages. These are due to some structural properties/shapes of both Û and
Ĉ that propagate and/or play a role along the QR iteration. In the next subsections
we give a look at these features.

2.1. Unitary Matrices in CMV Form. The following definition identifies an
important class of structured unitary matrices.

Definition 2.2. [14] For a given coefficient sequence (γ1, . . . , γn−1, γn) ∈ Dn−1×
S1 we introduce the unitary block diagonal matrices

L = G1(γ1) · G3(γ3) · · · G2bn+1
2 c−1(γ2bn+1

2 c−1), M = G2(γ2) · G4(γ4) · · · G2bn
2 c(γ2bn

2 c),
5



and define

C = L ·M (2.4)

as the CMV matrix associated with the prescribed coefficient list.
The decomposition (2.4) of a unitary matrix was first investigated for eigenvalue

computation in [13]. The shape of CMV matrices is analyzed in [28] where the next
definition is given.

Definition 2.3. [28] A matrix A ∈ Cn×n has CMV shape if the possibly nonzero
entries exhibit the following pattern where + denotes a positive entry:

A =



? ? +
+ ? ?

? ? ? +
+ ? ? ?

? ? ? +
+ ? ? ?

? ? ?
+ ? ?


, (n = 2k),

or

A =



? ? +
+ ? ?

? ? ? +
+ ? ? ?

? ? ? +
+ ? ? ?

? ?


, (n = 2k − 1).

The definition is useful for computational purposes since shapes are easier to
check than comparing the entries of the matrix. Obviously, CMV matrices have a
CMV shape and, conversely, it is shown that a unitary matrix with CMV shape is
CMV [15]. From Lemma 2.1 it follows that Û is a CMV matrix and, therefore, it
has a CMV shape. For instance in the case n = 8 the nonzero pattern of Û looks as
follows:

Û =



1
1

1
1

1
1

1
1


.

The positiveness of the complementary parameters σk in (2.2) as well as of the
entries marked with + in Definition 2.3 is necessary to establish the connection of
CMV matrices with corresponding sequences of orthogonal polynomials on the unit
circle [28]. From the point of view of eigenvalue computation, however, this condition
can be relaxed. In [4] we simplify the above definition by skipping the positiveness
condition on the entries denoted as +. The fairly more general class of matrices
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considered in [4] is referred to as CMV–like shaped matrices. It is shown that the
block Lanczos method can be used to reduce a unitary matrix into the direct sum of
CMV–like shaped matrices. Furthermore, some rank properties of unitary CMV–like
shaped matrices can be put in evidence by invoking the following classical nullity
theorem [22].

Theorem 2.4. Suppose A ∈ Cn×n is a nonsingular matrix and let α and β be
nonempty proper subsets of In : = {1, . . . , n}. Then

rank(A−1(α,β)) = rank(A(In \ β; In \α)) + |α|+ |β| − n,

where, as usual, |J | denotes the cardinality of the set J , and A−1(α, β) denotes the
minor of A−1 obtained taking the rows and columns in α and β respectively.

The next property of unitary CMV–like shaped follows as a direct consequence.
Corollary 2.5. Let A ∈ Cn×n be a unitary CMV–like shaped matrix. Then we

have

rank(A(2j + 1 : 2(j + 1), 2j : 2j + 1)) = 1, 1 ≤ j ≤ bn
2
c − 1.

Proof. From Theorem 2.4 we obtain that

0 = rank(A(1 : 2j, 2(j + 1) : n)) = rank(AH(2(j + 1) : n, 1 : 2j)) =
rank(A(2j + 1 : n, 1 : 2j + 1) + (n− 1)− n = rank(A(2j + 1 : n, 1 : 2j + 1)− 1.

In passing, it is worth noting that this property is also useful to show that CMV–
like shaped matrices admit an analogous factorization (2.4) in terms of generalized
Givens rotations of the form

Rk(γ, σ) = Ik−1 ⊕
[
γ̄ σ
σ̄ −γ

]
⊕ In−k−1 ∈ Cn×n, 1 ≤ k ≤ n− 1, (2.5)

where γ, σ ∈ D ∪ S1 and |γ|2 + |σ|2 = 1. When σ is a real and positive number,
Rk(γ, σ) = Gk(γ).

2.2. Staircase Matrices. CMV–like shaped matrices can be partitioned in a
block upper Hessenberg form with 1–by–1 or 2–by–2 diagonal blocks. The additional
zero structure of the subdiagonal blocks yields the given staircase shape.

Definition 2.6. [2] The matrix A = (ai,j) ∈ Cn×n is said to be staircase if
mj(A) ≥ mj−1(A), 2 ≤ j ≤ n, where

mj(A) = max{j,max
i>j
{i : ai,j 6= 0}}.

The matrix A is said to be full staircase if there are no zero elements within the stair.
Staircase linear systems are ubiquitous in applications [23]. Staircase matrix

patterns can also be exploited for eigenvalue computation [2]. In order to account for
the possible zeroing in the strictly lower triangular part of the matrix modified under
the QR iteration we introduce the following definition.

Definition 2.7. The lower staircase envelope of a matrix A = (ai,j) ∈ Cn×n is
the sequence (m̃1(A), . . . , m̃n(A)), where m̃1(A) = m1(A) and

m̃j(A) = max{j, m̃j−1(A),max
i>j
{i : ai,j 6= 0}}, 2 ≤ j ≤ n.
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From Definition 2.3 it is found that for a CMV matrix A we have

τ1 : = m̃1(A) = 2 (2.6)

and, moreover, for 1 ≤ k ≤ bn+1
2 c − 1,

τ2k : = m̃2k(A) = min{2(k + 1), n}, τ2k+1 : = m̃2k+1(A) = min{2(k + 1), n}. (2.7)

The same relations hold for the perturbed companion matrix Ĉ given in (2.3). Simi-
larly, a CMV–like shaped matrix A satisfies

m̃j(A) ≤ τj , 1 ≤ j ≤ n.

The lower staircase envelope of a matrix A = A0 form is preserved under the QR
iteration (2.1) in the sense that [2]

m̃j(As+1) ≤ m̃j(As), 1 ≤ j ≤ n, s ≥ 0. (2.8)

In particular, if A0 = Ĉ we deduce that

m̃j(As) ≤ τj , 1 ≤ j ≤ n, s ≥ 0. (2.9)

Remark 2.8. A simple proof of (2.8) follows by assuming that the matrix As −
σsIn in (2.1) and, hence, a fortiori Rs is invertible. Clearly, this might not always be
the case but, however, it is well known that the one–parameter matrix function As−λIn
is analytic in λ and an analytic QR decomposition As − λIn = Qs(λ)Rs(λ) of this
analytic matrix function exists [19]. For any given fixed initial pair (Qs(σs), Rs(σs))
we can find a branch of the analytic QR decomposition of As−λIn that passes through
(Qs(σs), Rs(σs)). Following this path makes it possible to extend the proof of the
properties that are closed in the limit. This is for instance the case for the rank
properties and zero patterns of submatrices located in the lower triangular corner.

Remark 2.9. It is worth pointing out that according to the definition stated in
[2] Ĉ is not full staircase as there are many zero entries within the stair. In this case
there is a fill-in at the first steps of the QR algorithm and, after a number of iterations
the QR iterates will be full staircase matrices, the staircase being the lower staircase
envelope of Ĉ.

For Hermitian and unitary matrices the lower staircase envelope also determines
a zero pattern or a rank structure in the upper triangular part. Relation (2.8) implies
the invariance of this pattern/structure by the QR algorithm. A formal proof is given
in [2] for Hermitian matrices and in [13] for unitary CMV–like shaped matrices. In the
next section we generalize these properties to the permuted companion matrix (2.3).
This allows the efficient implementation of the QR iteration (2.1) for the computation
of the zeros of p(z).

3. Structural Properties under the QR Iteration. In this section we per-
form a thorough analysis of the structural properties of the matrices As, s ≥ 0, gen-
erated by the QR iteration (2.1) applied to the permuted companion matrix A0 = Ĉ

defined in (2.3). It is shown that putting together the staircase shape of Ĉ with the
CMV form of the unitary component Û imposes strong requirements about the struc-
ture of the matrices As which enable a representation of the matrix entries using a
linear number of parameters.
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Since from (2.3) we have

A0 = Ĉ = Û − e1 p̂
H := U0 − z0w

H
0 , (3.1)

then by applying the QR algorithm (2.1) we find that

As+1 = QHs AsQs = QHs (Us − zswH
s )Qs = Us+1 − zs+1w

H
s+1, s ≥ 0, (3.2)

where

Us+1 : = QHs UsQs, zs+1 : = QHs zs, ws+1 : = QHs ws. (3.3)

The shifting technique is aimed at speeding up the reduction of the matrix A0

into a block upper triangular form. A matrix A ∈ Cn×n is reduced if there exists an
integer k, 1 ≤ k ≤ n− 1, such that

A =
[
E F
0 G

]
, E ∈ Ck×k, G ∈ C(n−k)×(n−k).

Otherwise, we say that A is unreduced. We shall adopt the notation

As = QR(A0, ρ0, . . . , ρs−1), s ≥ 0,

to denote that As is obtained by means (2.1) applied to A0 after s steps with shifts
ρ0, . . . , ρs−1. The QR decomposition is not generally unique so that As is not uni-
vocally determined from the initial data and the selected shifts. However, essen-
tial uniqueness can be achieved by using an effectively eliminating QR factorization
algorithm as defined in [18]. In this way the matrix QR(A0, ρ0, . . . , ρs−1) becomes
(essentially) unique up to similarity by a unitary diagonal matrix.

Theorem 3.3 below describes the structure of the unitary matrix Us, s ≥ 0. This
characterization mostly relies upon the banded form of the unitary factor computed
by means of a QR factorization of As, s ≥ 0, as stated in the next result.

Lemma 3.1. For any fixed s ≥ 0 there exists a unitary CMV–like shaped matrix
Q ∈ Cn×n such that QHAs : = R is upper triangular, i.e., As = QR gives a QR
factorization of As. In particular, it satisfies

Q(1 : 2j, 2(j + 1) : n) = 0, 1 ≤ j ≤ bn
2
c − 1, (3.4)

and

Q(2i+ 1 : n, 1 : 2(i− 1) + 1) = 0, 1 ≤ i ≤ bn+ 1
2
c − 1. (3.5)

Proof. Let us first recall that the matrix A0 satisfies

rank(A0(2j + 1 : 2(j + 1), 2j : 2j + 1)) = 1, 1 ≤ j ≤ bn
2
c − 1.

The property follows by direct inspection for the case A0 = Ĉ or by using Corollary
2.5. From the argument stated in Remark 2.8 we find that the rank constraint is
propagated along the QR algorithm and, specifically, for any s ≥ 0, we have

rank(As(2j + 1 : 2(j + 1), 2j : 2j + 1)) ≤ 1, 1 ≤ j ≤ bn
2
c − 1, (3.6)
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where the equality holds if As is unreduced. A QR decomposition of the matrix As
can be obtained in two steps. Assume that n is even for the sake of illustration. At
the first step we determine Givens rotations

R1(γ1, σ1),R3(γ3, σ3) . . .R2bn
2 c−1(γ2bn

2 c−1, σ2bn
2 c−1),

given as in (2.5) to annihilate, respectively, the entries of As in positions

(2, 1), (4, 2), . . . , (2bn
2
c, 2bn

2
c − 2).

Let

L = R1(γ1, σ1)H · R3(γ3, σ3)H · · ·R2bn+1
2 c−1(γ2bn

2 c−1, σ2bn
2 c−1)H

be the unitary block diagonal matrix formed by these rotations. Due to the rank
constraint (3.6) the zeroing process also introduces zero entries in positions

(4, 3), . . . , (2bn
2
c, 2bn

2
c − 1).

Then in the second step a sequence of Givens rotations

R2(γ2, σ2),R4(γ4, σ4) . . .R2bn
2 c−2(γ2bn

2 c−2, σ2bn
2 c−2)

is employed to make zero, respectively, the entries of LHAs in positions

(3, 2), . . . , (2bn
2
c − 1, 2bn

2
c − 2).

This completes the reduction of As in upper triangular form. If we set

M = R2(γ2, σ2)H · R4(γ4, σ4)H · · ·R2bn
2 c−2(γ2bn

2 c−2, σ2bn
2 c−2)H ,

then M is unitary block diagonal and

Q : = L ·M

is a unitary CMV–like shaped matrix. In particular, the pattern of its zero entries
satisfies (3.4), (3.5) in accordance with Definition 2.3. The case of n odd is treated
similarly.

Remark 3.2. As noticed at the end of Subsection 2.1 the factorization of the
unitary factor Q of a CMV–like shaped matrix as product of unitary block diagonal
matrices is analogous with the decomposition (2.4) of unitary CMV matrices once we
have replaced (2.2) with (2.5).

Lemma 3.1 can be used to exploit the rank properties of the unitary matrices Us,
s ≥ 0, obtained by updating the matrix U0 = Û under the QR process (2.1), (3.2),
(3.3). We first analyze the case where A0 = Ĉ is invertible.

Theorem 3.3. The matrices Us, s ≥ 0, generated as in (3.3) by the QR iteration
(2.1) applied to an invertible A0 = Ĉ satisfy

rank(Us(1 : 2j, 2(j + 1) : n)) ≤ 1, 1 ≤ j ≤ bn
2
c − 1, s ≥ 0,

and, specifically,

Us(1 : 2j, 2(j + 1) : n) = Bs(1 : 2j, 2(j + 1) : n), 1 ≤ j ≤ bn
2
c − 1, s ≥ 0,

10



where

Bs :=
Uswsz

H
s Us

zHs Usws − 1
=
(
p̄n
p̄0

)
Uswsz

H
s Us = QHs Bs−1Qs, s ≥ 1, (3.7)

is a rank one matrix.
Proof. The invertibility of A0 implies the invertibility of As for any s ≥ 0. Let

As = QR be a QR factorization of the matrix As, where Q is a unitary CMV–like
shaped matrix determined as in Lemma 3.1. From

QHAs = QH(Us − zswH
s ) = QHUs −QHzswH

s = R (3.8)

we obtain that

(QHAs)−H = QH(Us − zswH
s )−H = R−H .

Using the Sherman–Morrison formula [25] yields

QH(Us +
Uswsz

H
s Us

1− zHs Usws
) = R−H ,

which gives

Us = QR+ zswH
s = QR−H − Uswsz

H
s Us

1− zHs Usws
= QR−H +Bs

From det(As) = det(A0) = (−1)np0/pn and det(Us) = det(U0) = (−1)n+1 it follows
that

−det(A−H0 ) = (−1)n+1p̄n/p̄0 =
(−1)n+1

zH0 U0w0 − 1
=

(−1)n+1

zHs Usws − 1
, s ≥ 0.

showing that p̄n/p̄0 = −1/(1− zHs Usws).
Since R−1 is upper triangular we have that R−1QH = (QR−H)H has the same

lower staircase envelope as QH and, therefore, from Lemma 3.1 we conclude that

rank(Us(1 : 2j, 2(j + 1) : n)) ≤ 1, 1 ≤ j ≤ bn
2
c − 1, s ≥ 0, (3.9)

and, specifically,

Us(1 : 2j, 2(j + 1) : n) = Bs(1 : 2j, 2(j + 1) : n), 1 ≤ j ≤ bn
2
c − 1, s ≥ 0,

The previous theorem opens the way for a condensed representation of each matrix
As, s ≥ 0, generated by (2.1) applied to an invertible initial matrix A0 = Ĉ in terms of
a linear number of parameters including the entries of the vectors fs = (p̄n/p̄0)Usws

and gs = UHs zs. This representation will be exploited into more details in the next
section. Here we conclude with two remarks on points of detail concerning the singular
case and the computation of the vector fs.

Remark 3.4. From (3.8) it follows that the relation

QHUs = (RH +wsz
H
s Q)−1, s ≥ 0,
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still holds in the degenerate case where A0 and, a fortiori, As, s ≥ 0, are singular. By
using standard results about the inversion of rank–structured matrices [21] it is found
that the inverse of a nonsingular lower triangular plus a rank–one matrix has a rank
structure of order one in its strictly upper triangular part. Since Q is a unitary CMV–
like shaped matrix, this property implies that (3.9) is always satisfied independently of
the invertibility of the starting matrix A0 = Ĉ.

Remark 3.5. The accuracy of computed eigenvalues generally depends on the
magnitude of the generators employed to represent the matrix. In the almost singular
case it is expected that the size of the entries of fs can be very large and this can in
principle deteriorate the quality of the approximations. However, it is worth noticing
that all the entries of these vectors except the last two can be dynamically determined
in a numerically robust way by considering the effects of zero–shifting at the early
steps of the QR iteration (2.1) applied to a nonsingular A0 = Ĉ. More specifically,
let As = QR(A0, 0, . . . , 0), 1 ≤ s ≤ bn2 c − 1, be the matrix generated by (2.1) applied
to a nonsingular A0 = Ĉ after s iterations with zero shift. Then it is shown that

fs(1 : 2s) = Us(1 : 2s, 2s+ 1), 1 ≤ s ≤ bn
2
c − 1.

For the sake of brevity we omit the proof of this property but we provide a pictorial
illustration by showing in Figure 3.1 the plot of the nonzero pattern of U0, U1, Ubn

2 c−2

and Ubn
2 c−1.

4. Fast Algorithms and Numerical Results. In this section we devise a fast
adaptation of the QR iteration (2.1) applied to a starting invertible matrix A0 = Ĉ ∈
Cn×n given as in (2.3) by using the structural properties described above. First we
describe the entrywise data–sparse representation of the matrices involved in the QR
iteration and sketch the structured variant. Then we present the implementation of
the resulting algorithm together with the results of extensive numerical experiments.

Our proposal is an explicit QR method applied to a permuted version of a com-
panion matrix which, at each step, works on a condensed entrywise data–sparse rep-
resentation of the matrix using O(n) flops and O(n) memory storage. Standard
implementations of the QR eigenvalue algorithm for Hessenberg matrices are based
on implicit schemes relying upon the implicit Q theorem [25]. A derivation of the
implicit Q theorem for staircase matrices in block upper Hessenberg form requires
some cautions [37] and will be addressed elsewhere.

4.1. Data–Sparse representation and Structured QR. Let us start by ob-
serving that each matrix As, s ≥ 0, generated by (2.1) can be represented by means
of a banded matrix Âs which contains the entries of As within the staircase pattern
and of four vectors to represent the rank two structure in the upper triangular portion
of As above the staircase profile. Using the following sparse data representation we
need to store just O(n) entries:

1. the nonzero entries of the banded matrix Âs = (â(s)
i,j ) ∈ Cn×n obtained from

As according to

â
(s)
i,j =

{
a
(s)
i,j , if max{1, 2b i+1

2 c − 2} ≤ j ≤ min{2b i+1
2 c+ 2, n}, i = 1 . . . , n;

0, elsewhere;

2. the vectors zs = (z(s)
i ),ws = (w(s)

i ) ∈ Cn and fs : = (p̄n/p̄0)Usws,fs =
(f (s)
i ), and gs : = UHs zs, gs = (g(s)

i ).
12
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Figure 3.1: Sparsity pattern of Uj with j = 1, 2, bn2 c − 2, bn2 c − 1.

The nonzero pattern of the matrix Âs looks as below:

Âs =



? ? ? ?
? ? ? ?

? ? ? ? ?
? ? ? ? ?

? ? ? ? ?
? ? ? ? ?

? ? ?
? ? ?


, (n = 2k),
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or

Âs =



? ? ? ?
? ? ? ?

? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ?

? ?


, (n = 2k − 1).

From (3.2) and (3.7) we find that the entries of the matrix As = (a(s)
i,j ) can be expressed

in terms of elements of this data set as follows:

a
(s)
i,j =

{
f

(s)
i ḡj

(s) − z(s)
i w̄j

(s), if j ≥ 2b i+1
2 c+ 3, 1 ≤ i ≤ 2bn+1

2 c − 4;
â
(s)
i,j , elsewhere.

(4.1)

The next procedure performs a structured variant of the QR iteration (2.1) applied
to an initial matrix A0 = Ĉ ∈ Cn×n given as in (2.3).

Procedure Fast QR
Input: Âs, zs, ws, fs, gs;
Output: Âs+1, ρs, zs+1, ws+1, fs+1, gs+1;

1. Compute the shift ρs.
2. Find the factored form of the matrix Qs such that

QHs (As − ρsI) = Rs, Rs upper triangular,
where As is represented via (4.1).

3. Determine Âs+1 from the entries of As+1 = QHs AsQs.
4. Evaluate zs+1 = QHs zs, ws+1 = QHs ws, fs+1 = QHs fs, gs+1 = QHs gs.

The factored form of Qs makes it possible to execute the steps 2, 3 and 4 simulta-
neously by improving the efficiency of computation. The matrix As is represented by
means of four vectors and a diagonally structured matrix Âs encompassing the band
profile of As. This matrix could be stored in a rectangular array but for the sake of
simplicity in our implementation we adopt the MatLab sparse matrix format. Due
to the occurrences of deflations the QR process is applied to a principal submatrix of
As starting at position pst+ 1 and ending at position n− qst, where pst = qst = 0 at
beginning.

At the core of Fast QR (steps 2–4) there is the following scheme, where for
notational simplicity we set pst = qst = 0, n even, denote Ts = fsg

H
s − zswH

s , and
we omit the subscript s from Âs. In the case of negative or above n indices we mean
1 or n respectively.

14



for j = 1:n/2− 1

1. compute the QR factorization of Â(2j:2j + 2, 2j:2j + 2)− ρsI3 = QR;

2. update the matrix Â and the vectors zs, ws, fs, gs by computing:

Â(2j:2(j + 1), 2(j − 1):2(j + 1)) = QH
[
Â(2j:2(j + 1), 2(j − 1):2(j + 1))

]
,

Â(2j:2(j + 1), 2j + 3:2(j + 2)) = QH
[

Ts(2j, 2j + 1:2j + 2)
Â(2j + 1:2(j + 1), 2j + 3:2(j + 2))

]
,

Â(2j − 2:2(j + 2), 2j:2(j + 1)) = Â(2j − 2:2(j + 2), 2j:2(j + 1))Q,

Â(2j − 3, 2j:2(j + 1)) =
[
Â(2j − 3, 2j)|Ts(2j − 3, 2j + 1, 2(j + 1))

]
Q,

fs+1(2j:2j + 2) = QHfs(2j:2j + 2), zs+1(2j:2j + 2) = QHzs(2j:2j + 2),

gs+1(2j:2j + 2) = QHgs(2j:2j + 2), ws+1(2j:2j + 2) = QHws(2j:2j + 2).

end

From a computational viewpoint this scheme basically amounts to perform two
moltiplications of a matrix of size 8 × 3 by a 3 × 3 matrix at the cost of 2 · 72 flops,
where flop stands for an axpy operation like e = c + a ∗ b. Also observe that the
matrix Âs is slightly enlarged during the iterative process by reaching a maximal size
of n× 8.

4.2. Implementation Issues and Numerical Results. Shifting and deflation
techniques are important concepts in the practical implementation of the QR method.
The computation of the shift ρs at the first step of Fast QR can be carried out
by several strategies [25]. In our implementation we employ the Wilkinson idea by
choosing as a shift one of the eigenvalues of the trailing 2-by-2 submatrix of As(pst+1 :
n− qst, pst+ 1 : n− qs) (the one closest to the tailing entry).

For staircase matrices deflation can occur along the vertical or horizontal edges
of the co–diagonal blocks. In our implementation we apply the classical criterion
for deflation by comparing the entries located on these edges with the neighborhood
diagonal entries of the matrix, that is we have a deflation if either

‖Âs(2j + 1 : 2(j + 1), 2j)‖ ≤ ε (|Âs(2j, 2j)|+ |Âs(2j + 1, 2j + 1)|,

or

‖Âs(2(j + 1), 2j : 2j + 1)‖ ≤ ε (|Âs(2j + 1, 2j + 1)|+ |Âs(2(j + 1), 2(j + 1))|.

If the test is fulfilled then the problem splits in two subproblems that are treated
individually. Incorporating the Wilkinson shifting and the deflation checks within the
explicit shifted QR method Fast QR and implementing a step of the QR iteration
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according to the scheme above, yields our proposed fast CMV–based eigensolver for
companion matrices. The algorithm has been implemented in MatLab and tested
on several examples. This implementation can be obtained from the authors upon
request.

For an input companion matrix expressed as a rank–one correction of a unitary
CMV–like shaped matrix the Wilkinson strategy ensures zero shifting at the early
iterations. This has the advantage of allowing a check on the construction of the vector
fs as described in Remark 3.5. Additionally, it has been observed experimentally that
this shift strategy is important for the correct fill–in within the band profile of As as
it causes a progressive fill–in of the generators and of the band profile by ensuring
that the fundamental condition (3.6) is numerically satisfied.

In order to check the accuracy of the output we compare the computed approxi-
mations with the ones returned by the internal function eig applied to the initial
companion matrix C = C(p) ∈ Cn×n with the balance option on. Specifically,
we match the two lists of approximations and then find the average absolute er-
ror errFastQR =

∑n
j=1 errj/n. For a backward stable algorithm in the light of the

classical perturbation results for eigenvalue computation [25] we know that this er-
ror would be of the order of ‖∆C‖∞K∞(V ) ε, where ‖∆C‖∞ is the backward error,
K∞(V ) = ‖V ‖∞ · ‖V −1‖∞ is the condition number of V , the eigenvector matrix of C
and ε denotes the machine precision.

A backward stability analysis of the customary QR eigenvalue algorithm is per-
formed in [34] by showing that ‖∆C‖F ≤ cn3‖C‖F for a small integer constant c.
A partial extension of this result to certain fast adaptations of the QR algorithm for
rank–structured matrices is provided in [20] by replacing ‖C‖F with a measure of
the magnitude of the generators. The numerical experience reported in [10] further
supports this extension. In the present case, considering the infinity norm, we find
that

‖C‖∞ = ‖A0‖∞ ≤ ‖Â0‖∞ + ‖f0‖∞‖g0‖∞ + ‖w0‖∞‖z0‖∞
= ‖Â0‖∞ + ‖f0‖∞ + ‖w0‖∞.

The parameter σ = p̄n/p̄0 in the starting representation via generators is incor-
porated into the vector f0, leading to a vector whose entries depend on the ratios
±pj/p0. Viceversa, the entries of vector w0, depend on the ratios ±pj/pn. Backward
stability with respect to the input data Â0, f0, g0, w0 and z0 would imply that the
maximum expected absolute error depends on

mee =
(
‖Â0‖∞ + ‖σU0w0‖∞ + ‖w0‖∞

)
K∞(V ) ε.

This quantity can be really larger than ‖C‖∞K∞(V ) ε especially when the coefficients
of the polynomial p(z) are highly unbalanced. A favorable case is when the starting
polynomial is (anti)palindromic (σ = ±1) and it can be used for accuracy comparisons
with standard O(n3) matrix methods. In order to reduce the effects of the magnitude
of the generators on the accuracy of computed results we implement a scaling strategy
as the one described in [16]. Specifically, for any input polynomial p(z) =

∑n
i=0 piz

i

we define

ps(z) = p(z · αs) = p
(s)
0 + p

(s)
1 z + . . .+ p(s)

n zn, p
(s)
j = αjspj , 0 ≤ j ≤ n,
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and then we determine the value of the scaling parameter s ∈ Z so that

χ(p, s) =
max |p(s)

j |

min |p(s)
j |

is as small as possible. In practice we restrict s over a small segment around the origin,
say −6 ≤ s ≤ 6, and we take α = 2 in accordance with the extensive experimentation
carried on in [36]. The scaling strategy is applied whenever the presence of a high σ
will alter the original conditioning of the problem, that is when |p̄n| > |p̄0|.

Our implementation reports as output the value of wer = err/mee, with
the aim of estimating relation between ‖∆C‖∞ and ‖C‖∞. In accordance with
our claim this quantity should be bounded by a small multiple of n3, in practical
situation this quantity is never larger than 1. As a measure of efficiency of the
algorithm we also determine itav, the average number of QR steps per eigenvalue
which shows that the cost of this fast adaptation of QR iterates has indeed a quadratic
cost for approximating all the eigenvalues, since itav is always between 2 and 5.

We have performed many numerical experiments with real polynomials of both
small and large degree. Moreover, to support our expectation about the very good
behavior of the method when the polynomial has balanced coefficients we consider
several cases where the input polynomial is (anti)palindromic in such a way that
‖f0‖ = ‖σU0w0‖∞ = ‖w0‖∞. Our test suite consists of the following polynomials
already used as tests suite by other authors:

• (P1) p(z) = 1+( n
n+1+n+1

n )zn+z2n [9]. The zeros can be explicitly determined
and lie on two circles centered at the origin that are poorly separated.

• (P2) p(z) = 1
n

(∑n−1
j=0 (n+ j)zj + (n+ 1)zn +

∑n−1
j=0 (n+ j)z2n−j

)
[12]. This

is another test problem for spectral factorization algorithms.
• (P3) p(z) = (1 − λ)zn+1 − (λ + 1)zn + (λ + 1)z − (1 − λ) [1]. This family

of antipalindromic polynomials arises in the context of a boundary–value
problem whose eigenvalues coincide with the zeros of an entire function related
with p(z).

• (P4) A collection of small–degree polynomials [35]:

1. the Bernoulli polynomial p(z) =
∑n
j=0

(
n
j

)
bn−jz

j , where bj are the

Bernoulli numbers;
2. the Chebyshev polynomial of first kind;
3. the partial sum of the exponential p(z) =

∑n
j=0(2z)j/j!.

• (P5) Polynomial p(z) =
∑n
j=0 pjz

j where the coefficients pj are drawn from
the uniform distribution in [0, 1].

• (P6) Polynomials p(z) =
∑n
j=0 pjz

j with coefficients of the form pj = aj ×
10ej , where aj and ej are drawn from the uniform distribution in [−1, 1]
and [−3, 3], respectively. These polynomials were proposed in [27] for testing
purposes.

• (P7) The symmetrized version of the previous polynomials, that is, p(z) =
s(z)s(z−1)zn where s(z) =

∑n
j=0 sjz

j with coefficients of the form sj =
aj × 10ej and aj ∈ [−1, 1] and ej ∈ [−3, 3].

For the sake of illustration in Figure 4.1 and 4.2 we also display the distribution of
the zeros computed by our routine and by the MatLab function eig applied to polyno-
mials in the class P2 and P3, respectively. We see that the ticks are undistinguishable
since our algorithms is very accurate.
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Figure 4.1: Distribution of the zeros computed by our routine (plus) and eig (circles)
for the polynomial in the class P2 of degree n = 128.
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Figure 4.2: Distribution of the zeros computed by our routine (plus) and eig (circles)
for the polynomials in the class P3 of degree n = 128 with λ = 0.9 (a) and λ = 0.999
(b).

Table 4.1 shows the numerical results for the first three sets of palyndromic poly-
nomials. Together with the two values mee/ε and wer we report the average absolute
error of the FastQR algorithm and for comparison also the average absolute error of
the algorithm, denoted in our tests as B2EG2, as initially proposed in [5] and then
improved in [11] by exploiting the technique of compression of the generators. We
choose to compare our solver with the fast algorithm proposed in [5, 11] because in [3]
it has been pointed out as “one of the best of the structured codes that have been
proposed so far”. To compare the two methods also in terms of execution time, for
polynomials of large degree we also report the parameter Tratio given by the ratio
between the time required by the B2EG2 method and our method. We see that our
algorithm on these examples is always very accurate, also on cases such as polynomial
of large degree of type P1 where a certain degeneration of the accuracy can be ob-
served in the performance of method B2EG2. Observing the values of Tratio it turns
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Test Set n mee/ε errFastQR errB2EG2 wer itav Tratio

P1

64 4.14e+04 4.13e-14 7.29e-13 4.50e-03 4.53 4.20
128 1.65e+05 9.23e-14 5.57e-12 2.52e-03 4.52 4.85
256 6.57e+05 3.00e-13 2.92e-11 2.06e-03 4.52 4.78
512 2.62e+06 1.01e-12 1.65e-10 1.73e-03 4.51 4.63
1024 1.05e+07 2.47e-12 1.18e-09 1.06e-03 4.51 4.63

P2

64 9.59e+03 5.80e-15 9.75e-15 2.72e-03 3.34 4.51
128 2.73e+04 8.55e-15 2.59e-14 1.41e-03 3.22 4.36
256 7.76e+04 1.38e-14 7.08e-14 7.98e-04 3.10 4.82
512 2.20e+05 3.17e-14 3.75e-13 6.48e-04 3.03 3.81
1024 6.23e+05 3.72e-14 1.43e-12 2.69e-04 2.96 3.31

P3
(λ = 0.9)

64 1.10e+04 4.70e-15 6.68e-15 1.93e-03 2.94 6.17
128 2.20e+04 6.72e-15 1.23e-14 1.38e-03 2.67 7.67
256 4.41e+04 1.24e-14 2.97e-14 1.27e-03 2.57 5.87
512 8.83e+04 2.59e-14 7.02e-14 1.32e-03 2.53 5.99
1024 1.77e+05 3.85e-14 1.87e-13 9.82e-04 2.51 4.93

P3
(λ = 0.999)

64 1.08e+06 5.46e-15 1.01e-14 2.28e-05 3.03 6.66
128 2.16e+06 6.03e-15 1.68e-14 1.26e-05 2.71 6.65
256 4.34e+06 8.25e-15 3.52e-14 8.57e-06 2.58 6.04
512 8.68e+06 9.95e-15 7.37e-14 5.16e-06 2.54 5.78
1024 1.74e+07 1.57e-14 1.88e-13 4.06e-06 2.52 4.59

Table 4.1: Numerical results for the sets P1, P2 and P3 of (anti)palindromic poly-
nomials. The degree of the polynomials considered for these tests is 2n.

out that our method is at least 3.31 times faster, and in most cases, 4 times faster
than the one in [11].

Table 4.2 shows the numerical results for the small degree polynomials P4. For
the sake of illustration in Figure 4.3 and 4.4 we also display the distribution of the
zeros computed by our routine and the MatLab function eig applied to polynomials
in the class P4(1− 2) and P4(3), respectively.

In the Chebyshev case the use of the scaling technique has the effect of reducing
the magnitude of the generators and allows to improve the accuracy of computed
results that would be worse if this technique was not applied.

Table 4.3 gives the numerical results for the polynomials with random coefficients
of type P5, P6 and P7. Here we report for mee/ε the min/max range and for the
other columns the maximum value of the data output variables over fifty experiments.
We note that among the fifty random tests we have either mildly or seriously ill
conditioned instances and this is a very hard test for our method since scaling is not
usually effective on these instances. In general the algorithm B2EG2 has a better
accuracy requiring however much more time. The accuracy obtained by our method
is however still largely within the conjectured bounds, in particular wer is far away
from the theoretical bound of n3.

Finally in figure 4.5 we compare our method (asterisks) and the B2EG2 method
(circles) on the basis of execution time for computing the roots of the polynomial
2n zn+1 for values of n ranging from 16 to 512. This plot confirms the fact that both
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Test Set n mee/ε errFastQR errB2EG2 wer itav

P4(1)
10 5.01e+05 3.38e-14 7.75e-15 3.04e-04 3.50
20 1.34e+13 4.60e-13 6.54e-11 1.54e-10 3.50
30 5.94e+25 3.92e-11 2.76e-04 2.97e-21 3.77

P4(2)
10 1.83e+05 6.22e-15 6.29e-15 1.54e-04 3.20
20 1.06e+12 1.79e-11 1.36e-10 7.64e-08 3.30
30 8.61e+18 8.10e-08 7.10e-09 4.24e-11 3.37

P4(3)
10 2.93e+08 5.26e-15 3.37e-12 8.07e-08 3.20
20 9.83e+25 6.94e-12 2.74e-01 3.18e-22 3.35
30 8.49e+47 3.75e-08 6.83e+00 1.99e-40 3.30

Table 4.2: Numerical results for the sets P4(1− 3). For these tests we do not report
the time comparison, in fact for small examples it is not significant (however the
execution times were lower for the FastQR method).

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.3: Distribution of the zeros of Bernoulli and Chebyshev polynomial of degree
20 computed by our routine (plus) and eig (circles).
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Figure 4.4: Distribution of the zeros of truncated Taylor series of e2z of degree 20
and 30 computed by our routine (plus) and eig (circles).
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Test Set n mee/ε errFastQR errB2EG2 wer itav Tratio

P5

64 2.09e+03- 1.89e+05 5.73e-15 5.51e-15 1.75e-03 3.47 4.73
128 6.02e+03- 3.24e+06 2.94e-14 1.03e-14 6.54e-04 3.34 4.51
256 2.04e+04- 4.47e+06 7.75e-14 1.97e-14 3.66e-04 3.18 4.36
512 1.33e+05- 3.33e+08 6.20e-13 4.46e-14 1.00e-04 3.05 4.11

P6

16 7.47e+01- 5.40e+11 3.58e-09 5.19e-11 2.60e-05 3.47 5.00
32 5.22e+02- 9.79e+12 5.72e-10 2.38e-09 2.64e-03 3.64 4.80
64 7.46e+03- 3.37e+13 3.82e-08 2.89e-11 5.03e-09 3.55 4.78
128 1.28e+05- 3.11e+13 6.18e-09 7.18e-11 1.01e-03 3.38 4.51

P7

16 3.90e+02- 1.89e+20 1.37e-03 6.95e-04 1.40e-04 3.55 5.13
32 7.44e+04- 3.64e+17 3.29e-04 1.00e-04 1.20e-02 3.59 4.69
64 6.87e+07- 5.02e+21 1.91e+00 1.08e-03 5.75e-04 3.41 4.65
128 9.69e+06- 4.02e+27 4.99e+00 2.19e-03 2.95e-01 3.29 4.32

Table 4.3: Numerical results for the sets P5, P6 and P7. For simplicity we denoted
here by errFastQR, errB2EG2 the average error obtained over all the fifty random tests.
Also itav, wer and Tratio are the values obtained averaging the correspondent values
over the corresponding fifty random values. Note that the polynomials of type P7 are
palindromic and hence their degree is 2n.

methods exhibit a quadratic time complexity and that the FastQR is faster than the
method proposed in [5, 11].

5. Conclusion and Future Work. In this paper we have presented a novel fast
QR–based eigensolver for companion matrices exploiting the structured technology for
CMV–like representations. To our knowledge this is the first numerically reliable fast
adaptation of the QR algorithm for perturbed unitary matrices which makes use of
only four vectors to express the rank structure of the matrices generated under the
iterative process. As a result, we obtain a data sparse parametrization of these matri-
ces which at the same time is able to capture the structural properties of the matrices
and yet to be sufficiently easy to manipulate and update for computations. The nu-
merical experience is promising and confirms that the proposed approach performs
faster while achieving a comparable accuracy at least under some restrictions on the
magnitude of the starting generators. An approach that is amenable to circunvent
these restrictions is presented in Remark 3.5 where an alternative construction of the
vector f0 is shown. While it is clearly speculative at this point in development, this
idea surely presents some interesting possibilities for future work. Another important
issue concerns with the extension of this method to deal with matrix polynomials and
generalized linearizations using block companion forms or diagonal plus small rank
matrices.
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