
Compressed Indexes for String Searching
in Labeled Graphs

Paolo Ferragina Francesco Piccinno Rossano Venturini
Dipartimento di Informatica, University of Pisa

{ferragina, piccinno, rossano}@di.unipi.it

ABSTRACT
Storing and searching large labeled graphs is indeed becom-
ing a key issue in the design of space/time efficient online
platforms indexing modern social networks or knowledge
graphs. But, as far as we know, all these results are limited
to design compressed graph indexes which support basic
access operations onto the link structure of the input graph,
such as: given a node u, return the adjacency list of u.

This paper takes inspiration from the Facebook Unicorn’s
platform and proposes some compressed-indexing schemes for
large graphs whose nodes are labeled with strings of variable
length— i.e., node’s attributes such as user’s (nick-)name—
that support sophisticated search operations which involve
both the linked structure of the graph and the string content
of its nodes.

An extensive experimental evaluation over real social net-
works will show the time and space efficiency of the proposed
indexing schemes and their query processing algorithms.

Categories and Subject Descriptors
H.3.2 [Information Storage and Retrieval]: Information
Storage; E.4 [Coding and Information Theory]: Data
Compaction and Compression

Keywords
Compression; Data structures; Social Networks

1. INTRODUCTION
In a recent paper [11], Facebook’s engineers introduced

the Unicorn system as an online, in-memory social graph-
aware indexing platform designed to search huge graphs
distributed over many commodity servers. In that paper the
authors claimed that “Unicorn is based on standard concepts
in information retrieval, but it includes features to promote
results with good social proximity”.

Storing and searching large labeled graphs is indeed be-
coming a key issue in the design of space/time efficient on-

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741140.

line platforms indexing modern social networks or knowl-
edge graphs [35]. However, as far as we know, all these
results are limited to design compressed graph-indexes (see
e.g., [5, 6, 8, 10, 30]) which support only basic access oper-
ations onto the link-structure of the input graph, such as:
given a node u, return the adjacency list of u. Other results
consider more sophisticated access-patterns to the graph
structure, but do not deal with compression issues or labeled
nodes [12,33].

In this paper we take inspiration from the Unicorn’s plat-
form and make one step forward in the design of compressed-
indexing schemes for large graphs whose nodes are labeled
with strings of variable length, i.e., node’s attributes such as
user’s (nick-)name or country or any other information the
user has input for its profile or the system has drawn from
user behavior, and support (i) basic access operations into
the link-structure of the graph (as above), plus (ii) novel
sophisticated search operations which involve both the linked
structure of the graph and the string content of its nodes.

As an example, we aim at designing a compressed graph
index that efficiently supports the Facebook’s typeahead
search (Section 6 of [11]). Typeahead enables Facebook users
to find other users by typing the first few characters of the
person’s name. For example, if a user is typing in the name
of “Jon Jones” the typeahead backend sequentially receives
queries for “J”, “Jo”, “Jon”, “Jon ”, “Jon J”, etc. For each
prefix, the system has to return a list of individuals for whom
the user might be searching for. Some of these individuals
will be within the user’s explicit circle of friends or they will
be Friends-of-Friends (shortly, FoF).

A simple implementation for the typeahead query among
the FoF of a given user could be based on standard infor-
mation retrieval algorithms in which users’ adjacency lists
are treated as posting lists. The idea is to solve the query
into two main steps: (1) the former step identifies a set of
candidate users in the graph having the queried string as
a prefix of their names; (2) the latter step reports those
candidates which are in the FoF’s network of the given user.
Step 1 is implemented by searching the queried-prefix in a
dictionary containing all users’ names; step 2 is implemented
by scanning the adjacency list of the given user u and, for
each friend of u, looking at her friends (FoF of u) by checking
whether they occur also in the candidate set. This solution is
consistent with the proposal in [11], where the authors claim
that “The index server stores adjacency lists and performs
set operations on those lists, the results of which are returned
to the aggregators. In the index server, intersection, union,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80260667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and difference operations proceed as is described in standard
information retrieval texts”.

But unfortunately this simple approach may be compu-
tationally expensive because both the candidate set to be
generated in step 1 and the FoF’s network searched in step 2
could turn out to be very large. A strategy to partially miti-
gate the cost of step 1 consists in precomputing and storing
as posting lists the results of step 1 for short or frequently
searched prefixes. For example, the solution in [11] precom-
putes results for prefixes of few characters. Despite this simple
trick, we are not aware of any other solution which is able to
answer a query without processing the whole FoF network.

In [11] the authors also discuss variants of this FoF query,
by introducing a social relevance score (Section 6.1 in [11])
which allows to rank the FoF users whose names are prefixes
by the queried string. In this case too, the query is answered
by scanning the FoF for prefix-match and then ranking the
results, thus inheriting the limitations above.

The problem of answering FoF queries has been addressed
also in a distributed setting in which a large graph has to be
distributed among several servers, with the goal of reducing
the traffic among them. Authors in [36] proposed a graph
partitioning approach to relocate nodes while respecting
strict shard balancing constraints. Even in this distributed
setting, we are faced with the problem of answering queries
on a single in-memory shard whose inefficient solution may
become the dominant cost and may impact on the traffic
induced by the partial results sent among machines.

Notation and problems definition. In the following we
will refer to a graph G = (V,E) with n = |V | nodes and
m = |E| edges. Without loss of generality we focus on social
graphs made up of users u ∈ V which have associated a
name name(u) which is either the user’s screen name or her
real name. The dictionary of strings D contains the names
associated with all users in the graph. Graphs representing
a (social) network may have types for both nodes — e.g.,
users, pages, photos, posts, etc. – and edges — e.g., friends,
followers, live-in, likers, etc.. Even if, in the rest of the paper,
we will restrict our attention to the case in which nodes are
labeled with users’ names and edges represent their friend-
ships, our solutions can be easily adapted to deal with several
other node or edge types, simultaneously.

In this kind of graphs (either directed or undirected) a link
between two users u and v exists if both users know each
other or are in some sort of relationship (e.g., user u is a
follower of v, u liked the posts of v, u is a friend of v, and so
on). For the sake of clarity we will refer to this situation as
friendship: u is friend of v.

For each user u, we use N1(u) to denote the adjacency list
of node u in G, namely, the list of u’s friends, and use d(u) to
denote the number of nodes in this list or, equivalently, the
degree of u. A friend-of-friend (FoF) of a user u is any user
which is either a direct friend of u or a friend of a friend of u.
In graph terminology, a FoF of u is a node at distance at most
2 from u in G. In the following we will use N2(u) to denote
the list of FoF of u (i.e., N2(u) = N1(u) ∪ (∪v∈N1(u)N1(v))).

Finally, we will assume that each user u is associated
with a relevance score, denoted score(u), which quantifies the
importance of u in the social network (e.g., the PageRank of
u, the number of likes she got, etc.). This score will be used
to restrict our graph-search operations on the k neighbors of

a given node (e.g., k = 10) that match the prefix-query and
have the highest scores.

Given Table 1 in [11] (see also Table 1 in our paper), the
size of N1(u) can go from hundreds (friends) to thousands
or millions (likers or live-in); and the size of N2(u) may
even blow up to three or more order of magnitudes than
the size of N1(u). This poses challenging efficiency concerns
about the storage and brute-force scanning/intersection of
those lists for the queries above, even in the in-memory
storage of the graph or its parts. Let us then introduce the
problems we attack in our paper.

Prefix-search over friends: Given a node u and a string
P , search for all friends v of u (i.e., v ∈ N1(u)) such
that name(v) is prefixed by P .

Prefix-search over FoF: Given a node u and a string P ,
search for all FoF v of u (i.e., v ∈ N2(u)) such that
name(v) is prefixed by P .

Top-k prefix-search over friends (or FoF): Given a no-
de u, a string P and a positive integer k, return the
top-k scoring nodes which are friends (or FoF) of u and
are prefixed by P .

In our paper we wish to design a compressed-indexing
scheme for labeled graphs which guarantees efficient time
and compressed space for all queries mentioned above. Our
proposal combines, in a principled way, string searching and
graph storage solutions, so that it can be looked at as a
basic block upon which one could design more sophisticated
queries and compressed graph-indexing platforms.

Our Contributions. In this paper we introduce and effi-
ciently solve the problems above both theoretically and in
practice via an extensive experimental analysis over (a large
part) of three real networks of increasing size: namely, Dblp of
about 1.4 mln nodes and 12 mln edges, LiveJournal of about
4.8 mln nodes and 68.5 mln edges, and Twitter of about 41.6
mln nodes and 1.4 billion edges.

Prefix-search over friends. We propose a simple renum-
bering of the nodeIDs which takes into account the
alphabetic ordering of node’s strings and allows to turn
the implementation of this query-type from a series of
list intersections over spread out integers (a là [11]) to
a single (thus fast) range query over an adjacency list.
Our experiments on prefix-search over friends show that
our solution significantly outperforms baselines based
on standard IR approaches. In particular, it improves
the approach based on intersections by at least a factor
62, and the approach based on scanning by a factor up
to 33 depending on the dataset and the queried-pattern
length.

Prefix-search over FoF. Building upon the best approa-
ches for the problem on friends, we turn to range-queries
also the problem on FoF and show an improvement
of a factor up to 38 over the best IR-based approach.
Even if the gain of our solution varies depending on the
pattern length and network size, we provide a careful
analysis which gives a precise and clear explanation of
all our experiments.

Top-k prefix-search over friends and FoF. We propose
to augment the previous solutions with a Range-Ma-
ximum-Query data structure built over the scores of
the friends of every node u in the graph, at the cost
of 2 + o(1) bits per edge [19]. Then, taking inspira-
tion from [28], we turn the top-k prefix search over
friends and FoF of u into a specifically designed inter-
mingled execution of RMQ-queries. We also investigate
an hybrid solution based on a principled combination of
this RMQ-approach with early termination approaches,
which are typically used in IR search engines. This
allows us to devise a pretty clear solution which signifi-
cantly beats a strong baseline hinging on an approach
that scans and scores the query results. Experiments
show that our approach improves the query time by a
factor up to 20.

Before proceeding further a comment is in order. The
string-matching literature is full of results regarding the
prefix-search problem on dictionary of strings and labeled
trees, possibly compressed (see e.g., [15, 16, 18], and refs
therein). About thirty years ago some (theoretical) work
has been done also on the topic pattern-matching on labeled
DAGs (see e.g., [2, 24,29]), in which queries asked to search
for a labeled path in those DAGs.

The problem we propose in our paper is the first one
addressing the string-matching issue with some neighbor con-
straints in labeled and general graphs, with significant prac-
tical applications. Additionally, our extensive experimental
tests on large and real graphs will show that our algorithms
are not only theoretically valid but also efficient in practice.

2. RELATED WORK
Because of space limitations we refer the reader to the

Introduction for other related works on this subject and for
the notation we adopt in this paper.

Here we dig a little bit more on the Unicorn system [11].
Since a Unicorn instance (or vertical) may store an index
that is too large to fit into the memory of a single machine,
the index is broken up into multiple shards such that each
shard can fit in a single index server. Queries to Unicorn are
broadcast to all index servers, each index server retrieves
entities from its shard and returns it to an Aggregator server,
which then combines all these entities and returns them to
the caller. As a result, queries may require multiple round-
trips in order to retrieve objects that are more than one edge
away from source nodes.

In order to reduce the round-trips over thousands of ma-
chines, and thus optimize the performance, the authors of [36]
presented a label-propagation algorithm for finding ‘joints’ in
graphs of particularly massive proportions, with an emphasis
on the Facebook social graph. Specifically the goal was to per-
form graph sharding such that, as often as possible, whenever
v ∈ N1(u) both u and v belong to the same shard. By doing
this well, they reduced the number of other machines that
need to be queried, and also reduced the total amount of data
that need to be transferred over the network, consequently
increasing overall system throughput and latency.

In this paper we introduce a new re-assignment algo-
rithm for node-IDs and proper compressed data structure
and searching algorithms that may be used either on the
FB-graph as a whole, or inside every single FB-shard (as
computed by [36]) with the goal of offering guaranteed per-

formance in query time, reduced hops among machines, and
compressed space occupancy.

3. BACKGROUND
Social networks (e.g., Facebook [21, 37]) have hubs and

a surprisingly large number of FoF per individual. This
neighbor structure has substantial algorithmic implications
for graph traversals. In particular BFS out to distance two
(i.e., touching N2(u)’s neighbors) will potentially query a
large number of individuals who may match a prefix-query
especially if either the degree of u is large or if P is short.
This is the reason why services on social networks show only
few (e.g., five or ten) most promising users that match a
prefix-query (such as the Typeahead tool in Facebook).

It is therefore obvious that compression issues and properly
structured (string-matching) computations come into play if
we wish to solve efficiently (in time and space) the problems
we stated in the introduction. For the sake of space, we recall
here few algorithmic techniques on which our solutions will
hinge upon. For each of them, we will make use of state-
of-the-art algorithms and their implementations which are
available around the Web.

Prefix-search on a dictionary of strings. This is undoubt-
edly the most well-known problem in data-structural design
for strings. It asks for preprocessing a set D of n strings, hav-
ing total length L, in such a way that, given a query-pattern
P , all strings in D having P as a prefix can be returned
efficiently in time and space. Efficiently means in time pro-
portional to P ’s length, and in space proportional to L or to
the empirical entropy of D’s strings. As far as the output size
(i.e., number and length of returned strings) is concerned, we
notice that returned strings are contiguous (if dictionary is
alphabetically sorted) so they can be represented via a range
〈lP , rP 〉 of their IDs. Just two integers suffice to encode the
occ strings prefixed by P , where occ = rP − lP + 1. If the
explicit strings are required by the underlying application,
then a scan of that interval suffices, taking O(occ) time.

The first solution to the prefix-search problem dates back to
Fredkin (’60s) [20], who introduced the notion of (compacted)
trie to solve it. After this seminal paper, a plethora of different
solutions have been introduced to address different issues,
namely, compression, I/O-efficiency, cache-obliviousness, and
so on (see e.g., [7, 17, 18] and refs therein). We will not
dig into these algorithmic details, we content ourselves, for
the purposes of this paper, to remind the reader that the
prefix-search problem on a dictionary of strings can be solved
optimally in time (I/Os) and in compressed space [18].

Our solutions will be oblivious w.r.t. the particular data
structure used to solve prefix-search queries over D; in the ex-
periments, we adopt the Compressed Permuterm index of [17]
because of its compressed space occupancy (up to h-th order
entropy of D), very efficient prefix-query time complexity
(i.e., O(|P |) time), and appealing practical performance.

Accessing compressed sequences of integers. Represent-
ing strictly monotone sequences of integers in compressed
space is a crucial problem, studied since the ’50s with its
most important application in inverted indexes [25]. Here
the goal is to minimize the space occupancy of the posting
lists with a compression scheme that guarantees the efficient
processing of users’ queries. Of course, the obvious sequen-

tial scan may be slow, so that engineers resort to skipping
strategies. The basic idea is to divide a posting list in small
blocks that are compressed independently, and to store the
maximum integer present in each block. This allows to find
and decode only the block that possibly contains the sought
integer by scanning the sublist of maxima, thus skipping a
potentially large number of useless blocks.

Compression is achieved by delta-encoding the integers
within each block, i.e., representing the differences between
consecutive integers. These differences may be encoded by
any of the known variable-length binary codes: such as unary
codes, Elias Gamma/Delta codes, Golomb/Rice codes [32],
or the faster Variable byte codes (Vbyte) [32, 34], PForDelta
(PFD) [40] or OptPFD [39]. A completely different integer-
encoding approach is taken by Binary Interpolative Cod-
ing [27], but experiments [30] have shown that, although this
produces the most compressed sequence, when the sequence
is highly clustered, it results very slow in decoding and thus
it is less appealing for posting-list storage and in our setting
too.

In the present paper we will concentrate on the Elias-Fano
representation of monotone sequences [13, 14], which has
been applied recently and successfully to the compression
of inverted indexes [30, 38], showing both excellent space
occupancy and query performance thanks to its efficient
random access into a compressed posting list. More precisely,
given a monotonically increasing sequence of n integers drawn
from an universe [m] = {0, 1, . . . ,m− 1}, Elias-Fano can be
used to represent the sequence by using at most ndlog m

n
e+

2n + o(n) bits and to solve efficiently two key operations
Access and NextGEQ by decoding only a small portion of
the indexed sequence (see e.g., [30] and refs therein for more
details). The Access(i) operation returns the ith element of
the sequence. The NextGEQ(d) operation returns the smallest
integer in the sequence that is greater than or equal to a given
value d. Elias-Fano representation supports constant-time
Access and logarithmic-time NextGEQ operations.

These compressed encodings will be at the core of the
storage and access to the adjacency lists N1 of the following
known/new solutions.

Range Maximum Queries over integer sequences. Given
an integer array S[1, n] the Range-Maximum-Query prob-
lem asks to build a data structure that supports efficiently
the following query: Given a range [l, r], return the position
p of the maximum value in S[l, r]. Notice that the value
of the maximum can then be computed by accessing S[p].
There exist data structures that solve the RMQ-problem
in constant-query time and O(n) space in addition to S’s
storage [4]. By distinguishing the maximum value S[p] from
its position p, some authors were able to achieve the opti-
mality in space occupancy without sacrificing the constant
query-time [19]. The net result is a solution that takes 2+o(1)
bits per integer, and still supports RMQ in constant time.

Our solution to the top-k query will deploy this data
structure upon the scores of the nodes in the adjacency
list N1. By combining the Elias-Fano storage scheme for
adjacency lists and a global array of nodes’ scores, we will be
able to plug RMQ-query support over NextGEQ operation,
by paying only 2 additional bits per integer. Details below.

4. PROBLEMS AND ALGORITHMS
We start by presenting a possible solution to prefix search-

ing over friends (or FoF) that uses standard information
retrieval techniques. This approach is consistent with the
solution described in [11], and makes use of the following two
data structures.

1. The dictionary D of users’ names is indexed with any
data structure solving string-prefix searches.

2. The adjacency lists N1(u), of every node u in the graph,
are indexed with compressed representation for integer
sequences, supporting efficient Access and NextGEQ
operations.

Given a pattern P and a target node u, let us start with
solving the prefix-search over friends problem. This requires
just to scan the friends of u in the graph checking whether
their string name(u) is prefixed by P , thus taking O(|P | ×
|N1(u)|) time.

Alternatively, one could resort standard list-intersection
operations as follows.

1. Prefix search for P in D in order to obtain the set
VP ⊆ V of all the nodes v in the graph whose name is
prefixed by P .

2. Nodes in VP are sorted by their identifiers, and the
resulting list is intersected with N1(u).

Step 1 takesO(|P |) time and step 2 requiresO(|VP | log |VP |)
time to sort VP and min(|VP |, |N1(u)|) calls to the NextGEQ-
operations to intersect nodes. The sorting of VP is required
to speed up the series of NextGEQ-operations over N1(u),
which are faster when querying non-decreasing values. Ob-
viously, the larger is the candidate set VP , the worse is this
solution which, nevertheless, may be appealing because of
its simplicity.

More costly is to scale this solution to the prefix-search over
FoF problem because N1(u) is substituted by N2(u) with a
consequent significant increase in the total number of nodes
to be intersected in step 2. In particular, we observe that
checking whether a node of VP occurs in N2(u) needs either
to materialize N2(u) and execute min(VP , |N2(u)|) calls to
the NextGEQ-operation over it, or it needs to perform d(u)
calls to NextGEQ, one call per adjacency list of a friend of u
(without thus materializing N2(u)). The former approach is
faster, but it incurs in a huge space occupancy (see comments
above on FB FoF’s network, and our Table 1); the latter
approach saves space but it incurs in a total of O(|VP |×d(u))
executions of NextGEQ.

As far as the top-k variant of the two problems above is
concerned, it could be solved by keeping only the k nodes
with the highest scores during the list intersections. An alter-
native approach could mimic the early termination strategies
in inverted indexes (e.g., WAND [9]) and thus compute these
top-k nodes without generating the score of all of them. In-
deed, the idea could be to store for each node v the maximum
score M(v) among the nodes in its adjacency list. At query
time, instead of processing all the neighbors of u at once, we
can start from the most promising ones (i.e., the ones with
the largest values of M), and then immediately exclude the
adjacency list of a node v as soon as we recognize that the
kth largest score discovered so far is larger than M(v) and,
thus, none of v’s neighbors may enter in the top-k ones.

Overall these solutions have some serious efficiency draw-
backs. The first solution has to decode and scan N1(u) (and
possibly N2(u)) regardless of the size of the final output
and pattern length. This may be a problem because of u’s
degree and the typical size of FoF. The second solution incurs
into two other drawbacks. One concerns with the need of
materializing (and, possibly, sorting) the set VP of candidate
nodes. This list may be huge, especially if the pattern P is
short.1 This has been recognized as a problem also in [11]
and, indeed, they precompute and store the sets VP for all
the patterns P of length at most few characters (e.g., two).
Of course, this strategy trades space occupancy for time
efficiency but it does not scale with the pattern’s length.
The other drawback is the need to check, for each element
in the (sorted) set VP , its presence within the friend- or
the FoF-list of u. This task is computational demanding
whenever the set VP or the degree of u are, even moderately,
large. In fact, although we discussed the similarity with tra-
ditional query-processing approaches in posting lists, their
adaptation on our problems is slower for two main reasons:
(i) a SE-query is usually solved by processing the posting
lists of the few terms which compose the query, while in our
case we have to process the possibly many adjacency lists
of the neighbors of nodes in N1(u) (in case of query over
N2(u)); (ii) our query can be re-phrased in terms of AND
or OR operators in SE-query processing terminology— i.e.,
VP AND (N1(u) OR N1(v1) OR . . . OR N1(vd(u))), where
vi ∈ N1(u)— but unfortunately the OR operator is more
than 20 times slower than AND [30].

In Section 5 we will investigate the time and space effi-
ciency of all these proposals that will constitute the baselines
against which we will compare our novel algorithmic solutions
(described below) to the four problems in this paper.

4.1 Prefix-search over friends (or FoF)
Our novel compressed scheme hinges on a simple yet crucial

step, that is the renumbering of the nodesIDs: Each node
u ∈ V has assigned a new identifier rank(u), which is the
rank of name(u) within the alphabetic ordering of all nodes’
names in D. This renumbering bridges nodeIDs with their
names so that a node u is prefixed by a pattern P if and
only if rank(u) is within the range 〈lP , rP 〉 (see Section 3).

We store any data structure that solves prefix-search
queries over the dictionary D of users’ names; and we adopt
the new nodeIDs for storing the adjacency list N1(u) of every
node u in the graph. This way, we guarantee the following
two key properties.

• For any pattern P , all the nodes prefixed by P in N1(u)
will form a consecutive range, if any: i.e., 〈lP , rP 〉. This
range can be identified by searching for P in the prefix-
search data structure built on the D’s strings, taking
O(|P |) time.

• The range can be identified in N1(u) with only two
NextGEQ-operations: it starts at position l = NextGEQ(lP)
and ends at position r = NextGEQ(rP + 1) − 1. The
range is empty whenever r < l.

1Table 1 shows that the average size of N2(u) is from 269
(Dblp) to about 153,445 (Twitter). This means that patterns
of few characters will likely occur more often than these
numbers.

This simple solution can be generalized to solve FoF queries
in either 2d(u) NextGEQ-operations, by querying the adja-
cency list N1(v) of each friend v of u, or only 2 NextGEQ-
operations by materializing and indexing the whole N2(u).

As a final remark, we notice that, once we renamed the
nodes, the query we are solving becomes a well-known range
reporting query. The problem of designing efficient data
structures to answer these types of queries has been studied
in the literature where the best (theoretical) data structure [1]
is able to retrieve all the, say occ, elements within any range
in optimal O(occ) time and linear space. Our use of Elias-
Fano representation solves that query in slightly suboptimal
time (i.e., O(log |N1(u)|+ occ) worst-case time) but has the
great advantage of being very efficient in practice and offer
compressed space, as we will show in the experiments.

4.2 Top-k prefix-search over friends (or FoF)
We start by considering the top-k prefix-search queries

over friends, and assume that the scores of the nodes are
stored in a global table indexed by the new nodeIDs.

For each user u, we define the array S1(u) that stores the
scores of u’s friends according to their order in N1(u) (i.e., for
any 1 ≤ i ≤ d(u), S1(u)[i] = score(N1(u)[i])). On top of S1(u)
we build a RMQ data structure that takes 2 + o(1) bits per
edge, hence almost 2 bits per node in N1(u) (see Section 3).
The crucial observation here is that S1(u) does not need
to be stored because, if the RMQ-query returns position
p in N1(u), we can retrieve the corresponding nodeID by
accessing N1(u) and then using it to get its score from the
global table above.

Given these data structures, answering a top-k prefix-
search P over the friends of u proceeds as follows.

• We search for P in the data structure built over D, and
thus identify the range 〈lP , rP 〉 of nodes in the graph
that are prefixed by P .

• We map this range onto N1(u) by computing the posi-
tions l = NextGEQ(lP) and r = NextGEQ(rP + 1)− 1.

• We finally identify the k nodes with the largest score in
N1(u)[l, r] by adopting two different approaches. The
former is trivial: it scans and scores all the nodes in that
range taking time proportional to its size (i.e., O(r −
l + 1) time). The latter approach is more sophisticated
and computes the k results in O(k log k) time, hence
independent of the range size, by adapting an algorithm
originally introduced by Muthukrishnan [28] to solve a
different problem, and then extended by various authors
to solve top-k strings in a dictionary (see e.g., [22] and
refs therein). Here we adapt these approaches to our
node-scoring setting as follows:

(1) The algorithm is recursive and uses an auxiliary
max-heap of at most 2k elements, each being a triple of
integers. The heap is initialized by computing in O(1)
time the value m = RMQ(l, r), which is the position
(hence node) in N1(u) storing the largest score within
the range N1(u)[l, r]. Then the triple 〈l,m, r〉 is inserted
in the heap, with priority equal to the score of node
N1(u)[m].

(2) The algorithm proceeds by repeating three main
steps for k times: (i) It picks from the heap the triple
with maximum priority (score), say 〈l,m, r〉; (ii) it

then splits the range (l, r) in two parts: (l,m− 1) and
(m + 1, r) and, recursively, computes the maximum
scoring node into each of them: m′ = RMQ(l,m − 1)
and m′′ = RMQ(m+1, r); (iii) finally, it inserts the two
triples 〈l,m′,m− 1〉 and 〈m+ 1,m′′, r〉 in the heap
with priorities given by the scores of nodes N1(u)[m′]
and N1(u)[m′′], respectively. Hence, each step extracts
one triple and inserts two triples in the heap, overall
taking O(k log k) time.

It is clear that the latter method is better than the former
one whenever the range becomes slightly larger than k.

A top-k prefix-search query over the FoF of a user u can be
obviously computed by running the above algorithm over all
the d(u) friends of u and inserting the (at most) top-k results
from each friend of u in the max-heap mentioned above. This
algorithm has to manage at most k × d(u) candidates and,
thus, it requires O(k × d(u) log(k × d(u))) time in the worst
case. This worst-case analysis is quite precise: it suffices that
a fraction of u’s friends reports Θ(k) results to match this
time complexity.

However a smarter approach is possible that offers the
same worst-case time complexity but with a possibly better
performance in real scenarios. The idea is to initialize the
Max-Heap with the top-1 result from each friend of u (not
the top-k), and then repeat the three steps above until k
distinct nodes have been extracted from the max-heap. We
notice that these nodes may come from different adjacency
lists and in multiple copies from them. So from the one hand
this approach guarantees that an adjacency list is examined
only if it may potentially include one of the top-k final results;
but, from the other hand, this algorithm may subtly induce
more than k steps because of the presence of duplicates in the
adjacency lists of the friends of u. These duplicates are clearly
at most k×d(u) but they may be significantly less depending
on the graph’s structure. This is the algorithmic approach to
top-k over FoF we will experiment in the following sections.

5. EXPERIMENTAL RESULTS
All the algorithms were implemented in C++11 and com-

piled with GCC 4.9.1 with the highest optimization settings.
The tests were performed on a machine with 24 Intel Xeon
E5-2697 Ivy Bridge cores (48 threads) clocked at 2.70Ghz,
with 64GiB RAM, running Linux 3.12.7.

The data structures were saved to disk after construction,
and memory-mapped to perform the queries. The timings
for each query are derived by averaging the last three mea-
surements out of four total measurements. In the following
all reported query times are in microseconds (µs) and spaces
are in megabytes (MBytes).

The source code is available at http://github.com/nopper/
compressed-indexes-string/tree/www15 for the reader in-
terested in replicating the experiments.

Datasets. We used the following three networks.

• Dblp. The co-authorship network built from a DBLP
data downloaded from http://dblp.uni-trier.de/

xml in October 2014. The graph is available at http:

//zola.di.unipi.it/rossano/dblp.tgz.

• LiveJournal is a snapshot of the friendship network of
LiveJournal blogging community crawled in 2006 [3].

In this graph, there exists a directed edge from u to v
when u is a friend of v.

• Twitter is a snapshot crawled starting on June 6th and
lasting until June 31st, 2009 [23]. In this graph, there
exists a directed edge from node u to node v when u
follows v in Twitter.

We preferred these datasets among other freely available
ones because they were the most complete. In particular, we
excluded a Facebook snapshot [21] because about 51 million
nodes, out of its about 59 million nodes, have degree 1, which
is very far from being a realistic characteristic of this social
network.

Table 1 reports some basic statistics on our datasets. The
column |D| indicates the size in characters of the dictionary
of string names of graph nodes. We notice that the size of N2

makes unfeasible any approach which attempts its indexing
directly. Indeed, the number of elements in N2’s lists w.r.t.
N1’s ones grows by a factor ≈ 32 on Dblp, a factor ≈ 49 on
LiveJournal, and a factor ≈ 4380 on Twitter, which in turn
induce similar increases in the index space.

Implementation of the key step. It is the one that searches
the pattern P in the adjacency list of a given node u. We
used this step to solve prefix-search for P over Friends of u,
and to solve FoF-query by iterating it over all the adjacency
lists of the friends of u (for details see Section 4).

According to what we discussed in the previous sections,
we provide the following three implementations.

• Intersect answers the query via standard information
retrieval approaches by weakly intersecting VP and the
adjacency list of u.

• Scan answers the query by decompressing and scanning
the adjacency list of u and by checking whether the
queried prefix P prefixes the name of each processed
node. Instead of comparing the pattern and each name
character-by-character, we store in a global array the
rank of each name in the alphabetic ordering. Thus,
it suffices to report any node whose rank belongs to
the interval 〈lP , rP 〉. This is a necessary and sufficient
condition for a name to be prefixed by P (see beginning
of Subsection 4.1).

• Range answers the query by executing two NextGEQ
operations (one for lP and one for rP + 1) over the
adjacency list of u to identify the contiguous range of
nodes which are prefixed by P . Reporting those nodes
requires the scan of this range.

In all solutions we represent the adjacency lists with any of
the compression schemes for integer sequences described in
Section 3. In our experiments we tried four of them (namely,
Elias-Fano, Interpolative, OptPFD, and Varint-G8IU) since they
offer various space/time trade-offs2.

We remark that there exist compression schemes specif-
ically designed to achieve higher compression on graphs,
especially Web graphs [6,8]. But these representations sup-
port basic operations onto the link-structure of the input
graph, such as the retrieval of the whole adjacency list of a

2Code is available at http://github.com/ot/partitioned_
elias_fano. See [30] for more details.

Dataset |V | |E| Avg. Degree |N2| |N2|/|V | |D| in chars

Dblp 1,420,763 12,005,120 8.5 383,444,104 269.9 20,054,749
LiveJournal 4,846,608 68,475,391 14.1 3,370,481,580 695.4 56,269,582
Twitter 41,652,229 1,468,365,182 35.3 6,391,337,859,405 153,445.3 406,349,035

Table 1: Basic statistics on our three datasets.

Pattern length |P |
Dataset Space 1 2 3 4 5

Dblp 14.43 0.41 0.50 0.51 0.54 0.56
LiveJournal 42.74 0.42 0.52 0.54 0.57 0.60
Twitter 316.63 0.50 0.58 0.59 0.63 0.64

Table 2: Space occupancy (in MBytes) and average query
time (in µs) of CPI.

given node. Therefore the only way to solve our queries over
these representations would be to scan the whole list and
check for possible results. Experiments in [8] on LiveJournal
show that the fastest representations scan an adjacency list
by taking 2 µs per node; this is much higher than what we
aim for in our setting where baselines achieve timings in the
order of tens of nanoseconds per node on the same dataset.
For this reason we do not experiment with them.

Prefix Search in D. The first step of any solution is to
perform a prefix-search for a given pattern P in the dictionary
D. As we mentioned in Section 3 this is a very well-studied
problem and several solutions exist. Comparing the plethora
of solutions known for this problem is out of the scope of
this paper. We only report the time/space efficiency of the
compressed permuterm index (CPI) described in [17]3. This is
a compressed solution that is competitive in query time w.r.t.
uncompressed ones (e.g., tries) [17]. Anyway, we remark that
any other prefix-search data structure could be plugged in
without jeopardizing the conclusions of this paper.

Table 2 reports CPI’s space occupancy and its average query
time by varying the pattern length from 1 to 5 characters.
Experiments were performed by searching 1000 patterns
for each length which were randomly selected from D (i.e.,
succesful searches). In the subsequent experiments we do not
account for the prefix-search time and space occupancy.

Space occupancy. In Table 3 we report the space occu-
pancy to represent the adjacency lists of each graph with
different compression schemes. Note that both Intersect and
Scan work on lists encoding the original nodeIDs; conversely,
Range renames nodeIDs accordingly to the alphabetic rank
of the corresponding names.

Interpolative is always the most performant encoder, with a
gain between 11%− 21% on original nodeIDs, and 4%− 28%
on alphabetic nodeIDs.

We point out that all integer encoders require more space
when alphabetic nodeIDs are used, except for Elias-Fano
which is independent on the renumbering of nodeIDs because
of its properties. This is a very important outcome of this
experiment because we have shown theoretically (and we will

3An implementation of CPI is available at http://code.
google.com/p/cpi00

Dblp LiveJournal Twitter
Encoding Space bpe Space bpe Space bpe

Varint-G8IU 33.86 22.87 163.49 19.57 3836.72 21.70
Interpolative 29.77 20.04 139.40 16.63 3067.45 17.32
OptPFD 33.70 22.76 160.26 19.17 3440.63 19.44
Elias-Fano 33.94 22.93 177.35 21.26 3513.07 19.86

Varint-G8IU 38.43 26.04 208.02 25.00 4271.63 24.18
Interpolative 32.06 21.63 170.50 20.42 3441.41 19.45
OptPFD 38.23 25.90 204.57 24.58 3856.98 21.82
Elias-Fano 33.94 22.93 177.35 21.26 3513.07 19.86

Table 3: Index space occupancies in MBs and bits per edge
(bpe) for each dataset by varying the compression scheme.
The top part refers to the compression of original nodeIDs,
the bottom part refers to the compression of alphabetic
nodeIDs, according to our renumbering scheme at the begin-
ning of Section 4.1.

prove experimentally) that alphabetic nodeIDs are crucial to
achieve efficient time performance on our prefix-queries on
friends and FoF. Consequently Elias-Fano will be the winning
encoding choice in terms of time efficiency in our solutions,
and this will come at the cost of loosing a small percentage
(i.e., 2%− 6%) in space occupancy wrt Interpolative which
however may be significantly slower (i.e., 2.2÷ 4.0 times).

Prefix-search over friends. Our first experiment reports
the query time of each solution in solving prefix-search over
friends (space has been given in Table 3). In order to run our
experiment we need a pattern P and a node u. We selected
1000 patterns of length from 1 to 5 at random from D, and
we selected 10,000 nodes u as follows.

For each graph, we identified the 11-quantiles in its degree
distribution. For each pair of consecutive 11-quantiles, we
selected uniformly at random a group of 1000 nodes having
degree between two consecutive quantiles. This way, we have
10 groups of 1000 nodes each, hence 10,000 nodes in total.
This selection is very close to a uniform selection of 10,000
nodes from V , and the subdivision in groups will be useful in
the subsequent experiments where our goal will be to study
the impact of node degree on query time.

We report in Table 4 the average query time in microsec-
onds of the three solutions mentioned at the beginning of
this section, and study how this time depends onto the pat-
tern length and the compression scheme in use. Due to space
limitations, we only report results for LiveJournal and Twitter.
We observed similar results on Dblp.

These results lead us to three main conclusions which are
inspired by the three main horizontal bands in which the
Table 4 can be divided according to the proposed approaches.

The first conclusion concerns with Intersect. Since this solu-
tion has to process each element in VP , its poor performance
is not surprising when answering queries for short patterns
because they induce a large VP . Interestingly, even if its

LiveJournal Twitter
Encoding |P | = 1 |P | = 2 |P | = 3 |P | = 4 |P | = 5 |P | = 1 |P | = 2 |P | = 3 |P | = 4 |P | = 5

In
te
rs
ec
t Varint-G8IU 26,350.37 2166.34 425.54 101.27 41.54 219,029.26 20,280.51 3436.84 776.84 295.10

Interpolative 26,314.67 2164.79 426.07 102.26 42.61 220,805.02 20,366.81 3472.17 799.64 313.35
OptPFD 26,318.48 2164.56 425.81 101.97 42.30 220,816.15 20,356.54 3460.55 788.96 304.41
Elias-Fano 26,307.03 2161.47 424.05 100.58 40.94 220,466.91 20,333.70 3452.83 782.82 298.50

S
ca
n

Varint-G8IU 1.77 1.54 1.52 1.52 1.51 29.27 27.59 27.59 27.41 27.48
Interpolative 2.75 2.51 2.49 2.49 2.49 39.25 37.93 37.80 37.76 37.86
OptPFD 2.68 2.44 2.41 2.40 2.40 28.60 27.21 26.93 26.74 26.77
Elias-Fano 1.75 1.51 1.48 1.48 1.48 43.95 42.21 42.20 42.09 42.19

R
an
ge

Varint-G8IU 1.14 0.99 0.97 0.97 0.98 2.20 1.42 1.31 1.27 1.27
Interpolative 1.95 1.79 1.77 1.77 1.77 5.72 3.57 3.36 3.30 3.30
OptPFD 1.82 1.67 1.65 1.64 1.64 3.77 2.47 2.31 2.26 2.25
Elias-Fano 0.87 0.70 0.68 0.67 0.67 2.04 1.02 0.88 0.84 0.83

Avg. |VP | 431,055 41,869 8896 2326 975 3,135,085 330,600 60,828 14,810 5769
Avg. # results 9.68 1.76 1.15 1.04 1.02 131.09 14.38 4.43 2.12 1.59

Table 4: Average query time (in µs) to answer a prefix-search over the friends of a node u in either dataset LiveJournal or
Twitter, by varying the length of the pattern P .

performance improves rapidly, Intersect is noncompetitive
for longer patterns as well: when |P | = 5, Intersect is always
slower than Range by at least 62 times on LiveJournal, and
360 times slower on Twitter. One may consider to precom-
pute sets VP and augment them to support fast NextGEQ
operations. This would certainly speed up intersections and,
thus, the overall query processing of this solution. However,
due to the space overhead introduced by augmentation, this
approach can be applied only on short patterns, thus inher-
iting the slow performance on long patterns. This leads us
to exclude Intersect from the next experiments because such
limitations cannot be reverted on the next, more difficult,
types of queries involving FoF and top-k.

The second conclusion is about Scan, for which Varint-
G8IU, except for few exceptions, is the fastest encoding. This
leads us to choose Varint-G8IU as integer compressor for the
approach Scan in the next experiments.

The third and last conclusion is about Range. Elias-Fano
exhibits the best performance on any dataset. This leads
us to use Elias-Fano as integer compressor for the approach
Range in the next experiments.

In conclusion we can observe that Range (with Elias-Fano)
is faster than Scan (with Varint-G8IU) by a factor ranging
from 2 to 2.25 on LiveJournal, and from 14.3 to 33.1 on
Twitter. Observe that this gap increases as the pattern length
increases too. This is a virtue of Range which requires just
two NextGEQ operations to identify the range in N1 that
contains all the query results, then it needs to decode only
values within this range. This implies that its query time
decreases as the number of query results decreases too (which
occurs when P ’s length increases). This favorably compares
with Scan that always needs to decode and scan the whole
list N1, regardless the number of query results.

As far as space occupancy is concerned, Range with Elias-
Fano (8th row in Table 3) is ≈ 10% better than Scan with
Varint-G8IU (1st row) on Twitter, but it is ≈ 8% worse than
Scan (with Varint-G8IU) on LiveJournal.

Prefix-search over FoF. In the next experiments we com-
pare Range and Scan in answering prefix-search over FoF,

given their best performance above. Recall that in this type
of query, given a prefix P and a node u, we use one of these
two solutions to process the adjacency lists of each friend
of u to identify those nodes which are prefixed by P . By
the considerations above, we expect that the performance
gap between Range and Scan will be amplified because each
solution is run over the adjacency lists of the, potentially
many, friends of u. We report in Table 5 the query time to
answer prefix-search query on FoF over our datasets, and
we also specify the average number of results returned for
each query. We run this experiment by using the same pat-
terns (1000) and nodes (10,000) of the previous paragraph,
now prefix-querying over their FoF. The results adhere to
our expectations: Range is significantly faster than Scan on
any dataset for any pattern-length. The space occupancy
remains the one discussed in the previous paragraph. The
smallest gain is on Dblp where Range is faster than Scan by
a factor from 1.9 to 2.2, the largest gain is on Twitter where
the improvement is by a factor from 4 to 38 depending on
the pattern length. Again, the gain factor increases with the
pattern length and on the network size.

In Figure 1 we plot the average query time of Range and
Scan on Twitter for patterns of length 1 and 5. Nodes are
divided into 10 groups accordingly to the 11-quantiles as
described at the beginning of the previous paragraph. The
largest gain is on the second group (a factor 5.4 for |P | = 1
and a factor 201 for |P | = 5) while the smallest gain is on
the last group (a factor 3.8 for |P | = 1 and a factor 35 for
|P | = 5).

A more careful analysis of the query time of the two so-
lutions provides a precise and clear explanation of all our
experiments. Given a pattern P and a queried-node u, the
query time TRange(u, P) of Range is approximately equal to
the sum of three cost terms. The first one is the cost of identi-
fying the range on nodes prefixed by P in each u’s friend lists,
which is equal to 2 TEFNextGEQ × d(u) time, where TEFNextGEQ

is the time of a NextGEQ with Elias-Fano. Second, the cost
of decoding nodes within each of these ranges, which equals
TEFAccess × |Ru(P)|, where TEFAccess is the cost of an Access
operation with Elias-Fano and |Ru(P)| is total length of these

Dblp

Pattern length |P |
Solution 1 2 3 4 5

Scan (Varint-G8IU) 48 43 42 41 40
Range (Elias-Fano) 25 21 20 19 18

Avg. # results 98.80 45.37 25.06 14.65 3.38

LiveJournal

Pattern length |P |
Solution 1 2 3 4 5

Scan (Varint-G8IU) 206 147 146 145 145
Range (Elias-Fano) 123 68 66 65 66

Avg. # results 551.81 21.13 4.41 2.14 1.70

Twitter

Pattern length |P |
Solution 1 2 3 4 5

Scan (Varint-G8IU) 133,006 103,560 99,895 99,666 99,540
Range (Elias-Fano) 33,019 5924 2998 2783 2635

Avg. # results 90,017 12,573 1925 896 385

Table 5: Average query time (in µs) to answer a prefix-search
over the FoF of a node u in all datasets, by varying the length
of the pattern P .

ranges (i.e., the number nodes in u’s friends lists which are
prefixed by P). Third, the time TReport(u, P) to manage and
report query-results (i.e., sort them and remove duplicates),
which is independent on the particular solution in use, and
depends only on size of the candidate-list of results.

The query time of Scan is approximately TScan(u, P) =

TVIAccess×N̂2(u)+TReport(u, P), where TVIAccess is the time of a

Access operation with Varint-G8IU and N̂2(u) is the number

nodes in u’s friends lists. The number N̂2(u) is always at
least the size of the FoF network of u (i.e., N2(u)), and it
may be larger because it accounts also for duplicates.

Even if TVIAccess is smaller than TEFAccess, which, in turn,
is smaller than TEFNextGEQ [30], the large difference in size

between Ru(P) and N̂2(u) significantly favours Range query
time, especially in larger graphs.

By increasing the pattern length, TRange(u, P) decreases be-
cause both Ru(P) and TReport(u, P) decrease too. Instead, the
first term in TScan(u, P) remains fixed and only TReport(u, P)
decreases. Thus, TRange decreases more rapidly than TScan by
increasing the pattern length and, in fact, its gain improves
as shown in Table 5.

Finally, we observed a significant drop in the gain of
TRange(u, P) versus TScan(u, P) when the pattern length is
fixed but u’s degree grows. At a first glance, one would be
temped to think that this is due to the first term 2 TEFNextGEQ×
d(u) in TRange(u, P) that, obviously, increases with u’s degree.
However this is not the case, just look at the query times of
Range for the last bins in Figure 1: in average Range requires
215,436 µs for |P | = 1 and 17,122 µs for |P | = 5. Thus,
since Range executes exactly the same number of NextGEQ
operations in solving queries with different pattern lengths
on the same node u, the time cost of all these operations can-
not be larger than 17,122 µs. Surprisingly, experiments show
that more than half of the query time is spent in managing
and reporting query-results (i.e., the term TReport(u, P)). For
example, TReport(u, P) is roughly 110,000 µs in the last bin of
Figure 1 for |P | = 1, where queries have 3,227,675 results on
average. These considerations explain the drop in the gain

[1-
20

]

[20
-34

]

[34
-89

]

[89
-21

5]

[21
5-4

16
]

[41
6-7

75
]

[77
5-1

27
4]

[12
74

-19
62

]

[19
62

-40
55

]

[40
55

-77
01

55
]

Degree

102

103

104

105

106

Ti
m

e
(i

n
µ

s)

277

976
1324

2619

5376
8175

14136

26010

55861

215436

1509

5257

10986

18953

33821
45513

70910
102931

222038

818140

Range
Scan

(a) |P | = 1

[1-
20

]

[20
-34

]

[34
-89

]

[89
-21

5]

[21
5-4

16
]

[41
6-7

75
]

[77
5-1

27
4]

[12
74

-19
62

]

[19
62

-40
55

]

[40
55

-77
01

55
]

Degree

100

101

102

103

104

105

106

Ti
m

e
(i

n
µ

s)

6

21

63

181

389

809
1381

2330
4058

17112

1225

4238

9516
16315

28505 37048
56645

77837

165752

598534

Range
Scan

(b) |P | = 5

Figure 1: Average query time (in µs) to answer a prefix-search
over FoF on Twitter for |P | = 1 and |P | = 5. The queried
nodes are divided into 10 groups based on their degrees. The
y-axis is in log-scale.

achieved by Range over Scan when querying higher degree
nodes, because of an increase in the number of candidate
results to process and report; and, furthermore, they moti-
vate the interest for efficient solutions to the top-k variant
of the problem because the reporting step is absent there
since the reporting is confined to just k nodes (and thus it is
independent of the range size).

Top-k prefix-search over FoF. The previous experiments
established that Range is the clear winner. In this paragraph
we make a step forward by experimenting over the algorithms
proposed in Subsection 4.2 for retrieving top-k results. Due to
space limitations, we focus on answering top-k prefix-search
over FoF. We experiment the following solutions.

• Range+Score implements the simple strategy which
retrieves and scores all the results identified by applying
Range over the friends of the queried node u. A Max-
Heap is used to keep only the k largest scores. This

[1-
20

]

[20
-34

]

[34
-89

]

[89
-21

5]

[21
5-4

16
]

[41
6-7

75
]

[77
5-1

27
4]

[12
74

-19
62

]

[19
62

-40
55

]

[40
55

-77
01

55
]

Degree

101

102

103

104

105

106
Ti

m
e

(i
n

µ
s)

308

1088
1493

2735

5067
7321

12199

21303

44350

155789

301

1068
1402

2416

4234
5532

8315
13549

25425

53639

16

54

134

356

758

1553
2623

4529

8051

36445

17

50

123

312

648

1316
2223

3817

6876

31042

Score
WAND
RMQ
RMQ-WAND

Figure 2: Average query time (in µs) to answer a Top-k
(k = 10) prefix-search over the FoF on Twitter for the nodes
divided into 10 groups based on their degrees and patterns
of length 1. The y-axis is in log-scale. All solutions are based
on Range which is then dropped from the legend.

solution serves as a baseline to show the improvement
induced by strategies targeted to the top-k problem.

• Range+WAND implements a solution inspired by early
termination strategies in Search Engines. The solution
keeps a global array M , entry M [v] stores the maximum
score of a node in N1(v). This way, we process the
friends of u by starting from the most promising ones
(i.e., the nodes v with largest values of M [v]). This
gives the chance of early stopping the processing of u’s
friends.

• Range+RMQ implements the solution described in Sub-
section 4.2, which uses an intermingled execution of
RMQ-queries to speed up the detection of top-k nodes.

• Range+RMQ+WAND is an hybrid approach that has
been inspired by experimental results, which show the
complementary characteristics of the previous two ap-
proaches. First, the solution runs Range+RMQ on nodes
with a degree larger than a threshold D, thus comput-
ing and inserting their top-k in the Max-Heap; then,
it processes the remaining low-degree nodes with the
WAND strategy. In our experiments the threshold D
has been fixed to 1000.

In our experiments we use the degree of a node as its
score. We remark that our solutions are indenpendent of the
scoring functions. Indeed, we obtained the same results with
a random scoring generation. We run our experiments by
using the same set of patterns and nodes as in the previous
paragraphs. In Figure 2 we plot the query time on Twitter
by varying the node degree and by fixing k = 10 and the
pattern length to 1. Due to space limitations, we do not
show pictures for other experiments which are, nevertheless,
commented below.

We notice that, albeit Range+Score is the same solution
as in Figure 1, the performance here are improved on nodes
with larger degrees. This is because in solving top-k there
is no need to sort and deduplicate all the matching results

(as observed at the end of the previous paragraph). However,
all these matching results need to be scored, which is a non-
negligible task. This explains the limited improvement on
high-degree nodes and the slightly worse performance on
low-degree ones.

In any case our algorithm based on RMQ gives a significant
improvement over Range+Score. The gain is a factor ranging
from 2.9 to 20.2. The gain decreases with the increasing of
the queried-node degree.

A comment is in order now. Even if Range+WAND seems
to be noncompetitive w.r.t. Range+RMQ, intuition suggests
that these two strategies complement each other. Indeed,
Range+RMQ is very efficient on high-degree friends of u
because they are likely to have much more than k matching
results and, thus, RMQ operations allow us to skip most of
them. Range+WAND, instead, is more likely to exclude low-
degree friends of u which will have lower maxima on average.
Experiments confirm this intuition: Range+RMQ+WAND
improves Range+RMQ by a factor up to 1.7. The largest im-
provements are on large degree nodes where Range+RMQ has
the smallest gain with respect to the baseline Range+Score.
This way, our solutions improve the gain over the baseline
Range+Score, which is now at least a factor 5.0 instead of
2.9.

We finally report that the time gain of the best solutions
decreases on longer patterns, vanishing with patterns of
length |P | = 5. This is due to the fact that the pattern’s
occurrences are few enough that Range+Score is sufficiently
fast to identify the top-k nodes among them. We remark that
the reduced time gain of Range+RMQ over long patterns
does not occur for graphs of average degree smaller than
Twitter and, we foresee that, this will not occur for a larger
snapshot of Twitter where we expect more pattern’s results
to be scanned, so that Range+Score will turn out to be slower
than Range+RMQ on par of what happens on our snapshot
for shorter patterns.

6. FUTURE WORK
First of all we would like to experiment our solutions on

much larger networks. As shown in our experiments, the gain
of our solutions increase with the social network size.

Second, we would like to extend our solutions to the case of
queries over multi-attribute nodes, such as age, geographic lo-
cation, preferences, and so on. The simplest approach to deal
with this scenario would be to apply our node-renumbering
scheme onto each attribute, thus blowing-up the space by a
factor proportional to the number of indexed attributes. We
foresee to design solutions which do not pass through an ex-
plicit replication of the graph, but rather exploit information-
theoretic ideas to encode succinctly different permutations of
the same adjacency lists.

Finally we remark that our graphs were static so that
every node/edge change would require a reconstruction of
the corresponding part of the index. In a more realistic
setting, we would need to update efficiently the index by e.g.
any known dynamization technique [26,31]. An experimental
evaluation on real graph-update traces is foreseen.

Acknowledgments
We wish to warmly thank Domenico Dato and Daniele Vitale
(Istella, Tiscali) for exposing us to some of the problems we

addressed in this paper and for fruitful discussions. This work
was partially supported by MIUR PRIN ARS-Technomedia.

7. REFERENCES
[1] S. Alstrup, G. S. Brodal, and T. Rauhe. Optimal static

range reporting in one dimension. In STOC, pages
476–482, 2001.

[2] A. Amir, M. Lewenstein, and N. Lewenstein. Pattern
matching in hypertext. In WADS, LNCS 1272, pages
160–173, 1997.

[3] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and
X. Lan. Group formation in large social networks:
membership, growth, and evolution. In KDD, pages
44–54, 2006.

[4] M. A. Bender and M. Farach-Colton. The LCA
problem revisited. In LATIN, pages 88–94, 2000.

[5] P. Boldi, M. Santini, and S. Vigna. Permuting web and
social graphs. Internet Mathematics, 6(3):257–283,
2009.

[6] P. Boldi and S. Vigna. The webgraph framework I:
compression techniques. In WWW, pages 595–602,
2004.

[7] N. Brisaboa, R. Cánovas, F. Claude,
M. Mart́ınez-Prieto, and G. Navarro. Compressed string
dictionaries. In SEA, LNCS 6630, pages 136–147, 2011.

[8] N. R. Brisaboa, S. Ladra, and G. Navarro. k2-trees for
compact web graph representation. In SPIRE, pages
18–30, 2009.

[9] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Y. Zien. Efficient query evaluation using a two-level
retrieval process. In CIKM, pages 426–434, 2003.

[10] F. Chierichetti, R. Kumar, S. Lattanzi,
M. Mitzenmacher, A. Panconesi, and P. Raghavan. On
compressing social networks. In ACM SIGKDD, pages
219–228, 2009.

[11] M. Curtiss and et al. Unicorn: A system for searching
the social graph. VLDB, 6(11):1150–1161, Aug. 2013.

[12] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan.
Keyword search on external memory data graphs.
VLDB Endow., 1(1):1189–1204, 2008.

[13] P. Elias. Universal codeword sets and representations of
the integers. IEEE Transactions on Information
Theory, 21(2):194–203, 1975.

[14] R. M. Fano. On the number of bits required to
implement an associative memory. Memorandum 61,
Computer Structures Group, MIT, Cambridge, MA,
1971.

[15] P. Ferragina and R. Grossi. The String B-tree: A new
data structure for string search in external memory and
its applications. J. ACM, 46(2):236–280, 1999.

[16] P. Ferragina, F. Luccio, G. Manzini, and
S. Muthukrishnan. Compressing and indexing labeled
trees, with applications. J. ACM, 57(1), 2009.

[17] P. Ferragina and R. Venturini. The compressed
permuterm index. ACM Transactions on Algorithms,
7(1):10, 2010.

[18] P. Ferragina and R. Venturini. Compressed
cache-oblivious String B-tree. In ESA, pages 469–480,
2013.

[19] J. Fischer. Optimal succinctness for range minimum
queries. In LATIN, pages 158–169, 2010.

[20] E. Fredkin. Trie memory. Communication of the ACM,
3(9):490–499, Sept. 1960.

[21] M. Gjoka, M. Kurant, C. Butts, and A. Markopoulou.
Walking in facebook: a case study of unbiased sampling
of osns. In IEEE Conference on computer
communications, 2010.

[22] B. P. Hsu and G. Ottaviano. Space-efficient data
structures for top-k completion. In WWW, pages
583–594, 2013.

[23] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In WWW,
pages 591–600, 2010.

[24] U. Manber and S. Wu. Approximate string matching
with arbitrary costs for text and hypertext. In Proc.
IAPR Workshop on Structural and Syntactic Pattern
Recognition, pages 22–33, 1992.

[25] C. D. Manning, P. Raghavan, and H. Schülze.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[26] K. Mehlhorn and M. H. Overmars. Optimal
dynamization of decomposable searching problems. Inf.
Process. Lett., 12(2):93–98, 1981.

[27] A. Moffat and L. Stuiver. Binary interpolative coding
for effective index compression. Inf. Retr., 3(1):25–47,
2000.

[28] S. Muthukrishnan. Efficient algorithms for document
retrieval problems. In SODA, pages 657–666, 2002.

[29] G. Navarro. Improved approximate pattern matching
on hypertext. In LATIN, Lecture Notes in Computer
Science, Vol. 1380, pages 352–357, 1998.

[30] G. Ottaviano and R. Venturini. Partitioned Elias-Fano
indexes. In SIGIR, pages 273–282, 2014.

[31] M. H. Overmars. The Design of Dynamic Data
Structures. Lecture Notes in Computer Science #156,
Springer, 1983.

[32] D. Salomon. Variable-length Codes for Data
Compression. Springer, 2007.

[33] P. Sarkar and A. W. Moore. Fast nearest-neighbor
search in disk-resident graphs. In ACM SIGKDD, pages
513–522, 2010.

[34] A. A. Stepanov, A. R. Gangolli, D. E. Rose, R. J.
Ernst, and P. S. Oberoi. Simd-based decoding of
posting lists. In CIKM, pages 317–326, 2011.

[35] F. M. Suchanek and G. Weikum. Knowledge bases in
the age of big data analytics. PVLDB, 7(13):1713–1714,
2014.

[36] J. Ugander and L. Backstrom. Balanced label
propagation for partitioning massive graphs. In WSDM,
pages 507–516, 2013.

[37] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow.
The anatomy of the facebook social graph. In Preprint
arXiv:1111.4503v1, 2011.

[38] S. Vigna. Quasi-succinct indices. In WSDM, pages
83–92, 2013.

[39] H. Yan, S. Ding, and T. Suel. Inverted index
compression and query processing with imized
document ordering. In WWW, pages 401–410, 2009.

[40] M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-scalar RAM-CPU cache compression. In ICDE,
pages 59–70, 2006.

