
Biconditional-BDD Ordering for Autosymmetric
Functions

Anna Bernasconi
Dipartimento di Informatica

Università di Pisa, Italy
anna.bernasconi@unipi.it

Valentina Ciriani
Dipartimento di Informatica

Università degli Studi di Milano, Italy
valentina.ciriani@unimi.it

Gabriella Trucco
Dipartimento di Informatica

Università degli Studi di Milano, Italy
gabriella.trucco@unimi.it

Abstract—Autosymmetric functions are particular “regular”
Boolean functions that are exploited for logic optimization, since
it is possible to reduce the number of variables and the number of
points of the original autosymmetric function before its synthesis.
In this paper we study this regularity in oder to derive a suitable
variable ordering for Biconditional Binary Decision Diagrams
(BBDDs). BBDDs are a new version of BDD that have EXOR of
two variables (instead of a variable) in the nodes. These diagrams
are employed for logic synthesis in new technologies such as
silicon nanowires and DG-SiNWFETs. We show that it is possible
to find a useful variable ordering for these functions and the
experimental results validate our approach showing that in the
97% of the cases we get an ordering that gives a number of nodes
that is lower or equal to the one obtained with the standard
ordering.

I. INTRODUCTION

Function “regularities” have been studied in different con-
texts of logic synthesis [2], [15], [16]. In particular, partially
symmetric Boolean functions are Boolean functions that are
invariant under the permutation of some input variables [19],
[20]. A partially symmetric function that is invariant under the
permutation of all variables is called symmetric. Symmetric
and partially symmetric Boolean functions are often exploited
in logic synthesis and are widely used in cryptology. The
symmetric properties of these functions have been exploited
for deriving suitable variable orderings for their representation
via Ordered Binary Decision Diagrams (OBDDs) [14], [21].

In this paper we study a different kind of “symmetry”
called autosymmetry [6], [7], [8], [9], [10] in order to find
a suitable variable ordering for Biconditional Binary Decision
Diagrams [3], [4], [5], which are a new variant of OBDDs
used for representing EXOR rich functions. In particular,
Biconditional Binary Decision Diagrams are Binary Decision
Diagrams based on biconditional expansion:

f = (xi ⊕ xj)fxi 6=xj
+ (xi ⊕ xj)fxi=xj

.

Each node in a BBDD contains an EXOR of two variables (or
a single variable that is in EXOR with the constant 1).

For example, Figure 2 shows a BBDD represen-
tation for the completely specified Boolean function
f = {0000, 00001, 0010, 0100, 0101, 01111, 1000, 1010, 1011,
1101, 1110, 1111}. Each node contains a couple of variables.
If the two variables are different in value (i.e., the EXOR of
the two variables is true) then we consider the branch ! =,
otherwise (i.e., the EXOR is false) we consider the branch =.

A dotted line corresponds to a complemented edge, i.e., the
value of the corresponding sub-function is complemented.

Logic synthesis for emerging technologies is still at the
beginning, but it is quite clear that there is a higher demand
of new primitives. In this context, BBDDs have been ex-
ploited for a controllable-polarity DG silicon nanowires field
effect transistors (SiNWFETs) and controllable-polarity DG-
SiNWFETs [4]. Experimental results show that the BBDD pre-
structuring for circuits based on emerging technology devices
is more effective than for standard CMOS.

In this context, the regularity of a Boolean function f of
n variables is expressed by an autosymmetry degree k (with
0 ≤ k ≤ n), computed in polynomial time. While the extreme
value k = 0 means no regularity, for k ≥ 1 the function f is
said to be autosymmetric, and a new function fk, called the
restriction of f , is identified in polynomial time. In a sense,
fk is “equivalent” to, but smaller than f , depends on n − k
variables (y1, . . . , yn−k) only, and the number of points of fk
is equal to the one of f divided by 2k. Therefore, the minimiza-
tion of fk is naturally easier than that of f . The new variables
y1, . . . , yn−k are built as EXOR combinations of the original
variables, that is yi = EXOR(Xi), with Xi ⊆ {x1, . . . , xn}.
These EXOR equations are called reduction equations and are
exploited, in this paper, for deriving a suitable ordering for
BBDDs.

For example, consider the completely specified Boolean
function f = {0000, 00001, 0010, 0100, 0101, 01111, 1000,
1010, 1011, 1101, 1110, 1111}. The function f is 2-
autosymmetric and Figure 1 shows the the BBDD
representation of f using the standard variable ordering
x1, x2, x3, x4. As shown in Section III, the autosymmetry
property suggests that the each variables in these two sets
{x1, x3} and {x2, x4} should be adjacent in the ordering. In
fact, the BBDD representation of f , with ordering x1, x3, x2,
x4, depicted in Figure 2 is more compact.

Although autosymmetric functions form a subset of all
possible Boolean functions, a great amount of standard func-
tions of practical interest fall in this class. Note that an
autosymmetric function f depends in general on all the n
input variables, however we shall be able to study f in a
n− k dimensional space; i.e., f is in general not degenerated,
whereas all degenerated functions are autosymmetric.

Experimental results show that the ordering derived from
reduction equations gives interesting results. In 97% of the
considered benchmarks, we have that the number of nodes

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80260602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


X1 X2

X2 X3

!=

X2 X3

=

X3 X4

=

1

!=

!=

=

!= =

Fig. 1. BBDD of the 2-autosymmetric function f = {0000, 00001,
0010, 0100, 0101, 01111, 1000, 1010, 1011, 1101, 1110, 1111} with vari-
able ordering x1, x2, x3, x4.

in a BBDD with our ordering is lower or equal then that in
the BBDD with a standard initial ordering (in the 56% of the
benchmarks we get a strictly lower number of nodes).

The paper is organized as follows. Section II summaries
the concepts of autosymmeric functions and Biconditional
Binary Decision Diagrams. Section III shows the method for
deriving a BBDD ordering for autosymmetric functions that
have reduction equations containing EXORs with at most
2 literals. Section IV provides the experimental results and
Section V concludes the paper.

II. PRELIMINARIES

A. Autosymmetric Functions

In this section we briefly review autosymmetric functions
that are introduced in [17] and further studied in [6], [7],
[8], [9], [10]. For the description of these particular regular
functions we need to summarize several concepts of Boolean
algebra [13].

Given two binary vectors α and β, let α⊕β be the
elementwise EXOR between α and β, for example 11010 ⊕
11000 = 00010. We recall that ({0, 1}n,⊕) is a vector space,
and that a vector subspace V is a subset of {0, 1}n containing
the zero vector 0, such that for each v1 and v2 in V we have
that v1⊕v2 ∈ V . The vector subspace V contains 2k vectors,
where k is the dimension of V , and is generated by a basis
B containing k vectors. Indeed B is a minimal set of vectors
of V such that each point of V is an EXOR combination of
some vectors in B.

Now, let us consider a completely specified Boolean func-
tion f : {0, 1}n → {0, 1}; recall that f can be described as the

X1 X3

X2 X4

!=

1

=

!= =

Fig. 2. BBDD of the 2-autosymmetric function f = {0000, 00001,
0010, 0100, 0101, 01111, 1000, 1010, 1011, 1101, 1110, 1111} with vari-
able ordering x1, x3, x2, x4.

set of binary vectors in {0, 1}n for which f takes the value 1.
Using this notation we can give the following definition. The
function f is closed under a vector α ∈ {0, 1}n, if for each
vector w ∈ {0, 1}n, w ⊕ α ∈ f if and only if w ∈ f .

For example, the function f = {0000, 0001, 0010, 0011,
0100, 0101, 0110, 0111, 1000, 1011, 1101, 1110} is closed un-
der α = 0011, as it can be easily verified.

It is easy to observe that any function f is closed under
the zero vector 0. Moreover, if a function f is closed under
two different vectors α1, α2 ∈ {0, 1}n, it is also closed under
α1⊕α2. Therefore, the set Lf = {β: f is closed under β}
is a vector subspace of ({0, 1}n,⊕). The set Lf is called the
vector space of f . For instance, the function f of our previous
example is closed under the vectors in the vector space Lf =
{0000, 0011, 0101, 0110}.

For an arbitrary function f , the vector space Lf provides
the essential information for the definition of the autosymmetry
property:

Definition 1 ([9]): A completely specified Boolean func-
tion f is k-autosymmetric, or equivalently f has autosymmetry
degree k, 0 ≤ k ≤ n, if its vector space Lf has dimension k.

In general, f is autosymmetric if its autosymmetry degree is
k ≥ 1. For instance, the function f of our running example is
2-autosymmetric since its vector space Lf has dimension 2.

We now define a special basis, called canonical, to repre-
sent Lf . Consider a 2k ×n matrix M whose rows correspond
to the points of a vector space V of dimension k, and whose
columns correspond to the variables x1, x2, . . . , xn. Let the
row indices of M be numbered from 0 to 2k − 1. We say that
V is in binary order if the rows of M are sorted as increasing
binary numbers. We have:

Definition 2 ([9]): Let V be a vector space of dimension
k in binary order. The canonical basis BV of V is the
set of points corresponding to the rows of M with indices



 
 
 
©  2015 IEEE. Personal use of this material is permitted. Permission from IEEE 
must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. 
 
 
   
 
 



20, 21, . . . , 2k−1. The variables corresponding to the first 1
from the left of each row of the canonical basis are the
canonical variables of V , while the other variables are non-
canonical.

It can be easily proved that the canonical basis is indeed a
vector basis [12]. The canonical variables of Lf are also called
canonical variables of f .

Example 1: Consider the vector space Lf of the function
f of our running example. We can arrange its vectors in a
matrix in binary order:

x1 x2 x3 x4
0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 0

The canonical basis is composed of the vectors in position
1 and 2, that are the vectors 0011 and 0101. The canonical
variables of f are x2 (corresponding to the first 1 in 0101)
and x3 (corresponding to the first 1 in 0011). The remaining
variables x1 and x4 are non-canonical.

For a vector w ∈ {0, 1}n and a subset S ⊆ {0, 1}n,
consider the set w⊕S = {w⊕ s | s ∈ S}. In a sense vector
w is used to “translate” a subset S through the vector space.
We have:

Definition 3: Let V be a vector subspace of ({0, 1}n,⊕).
The set A = α ⊕V , α ∈ {0, 1}n, is an affine space over V
with translation point α.

Note that if S is a vector subspace then w ∈ A, because S
contains the zero vector 0, hence w⊕ 0 = w. Moreover any
other vector of A could be chosen as w, thus generating the
same affine space.

There is a simple formula that characterizes the vector
space associated to a given affine space A, namely [13]:

V = α ⊕A, with α any point in A.

That is, given an affine space A there exists a unique vector
space V such that A = α⊕V , where α is any point of A.

As proved in [6], the points of a k-autosymmetric function
f can be partitioned into ` = |f |/2k disjoint sets, where |f |
denotes the number of points of f ; all these sets are affine
spaces over Lf . I.e., S = w⊕Lf , where S is any such a
space and w∈ f . Thus:

f =
⋃̀
i=1

(wi ⊕ Lf )

and for each i, j, i 6= j, (wi ⊕ Lf ) ∩ (wj ⊕ Lf ) = ∅. The
vectors w1, . . ., w` are chosen as all the points of f where all
the canonical variables have value 0.

Example 2: Consider the function f = {0000, 0001, 0010,
0011, 0100, 0101, 0110, 0111, 1000, 1011, 1101, 1110} of our
running example. By Example 1 the canonical variables of
f are x2 and x3. Thus, if we take the points of f with all
canonical variables set to 0, i.e., w1 = 0000, w2 = 0001, and
w1 = 1000, we have

f = (0000⊕ Lf ) ∪ (0001⊕ Lf ) ∪ (1000⊕ Lf ),

where Lf = {0000, 0011, 0101, 0110}.

Autosymmetric functions can be reduced to “equiva-
lent, but smaller” functions; in fact, if a function f is k-
autosymmetric, then there exists a function fk over n − k
variables, y1, y2, . . ., yn−k, such that

f(x1, . . . , xn) = fk(y1, . . . , yn−k) ,

where each yi is an EXOR combination of a subset of xi’s.
These combinations are denoted EXOR(Xi), where Xi ⊆
X , and the equations yi = EXOR(Xi), i = 1, . . . , n − k,
are called reduction equations. The function fk is called a
restriction of f ; indeed fk is “equivalent” to, but smaller than
f , and has |f |/2k points only.

The restriction fk can be computed from f and its vector
space Lf by first identifying the canonical variables, and then
deriving the cofactor of f where all the canonical variables
are set to 0 (see [6] and [9] for more details). The reduction
equations correspond to the homogeneous system of linear
equations whose solutions define the vector space Lf , and they
can be derived applying standard linear algebra techniques as
shown in [6], [9].

Example 3: Consider the 2-autosymmetric function f in
our running example, with Lf = {0000, 0011, 0101, 0110} and
canonical variables x2 and x3. We can build f2 by taking the
cofactor fx2=0,x3=0 = {00, 01, 10}, that contains only 3 points
and corresponds to the function f2(y1, y2) = y1y2. The homo-
geneous system whose solutions are {0000, 0011, 0101, 0110}
is: {

x1 = 0
x2 ⊕ x3 ⊕ x4 = 0

Thus the reduction equations are given by

y1 = x1
y2 = x2 ⊕ x3 ⊕ x4 .

B. Biconditional Binary Decision Diagrams

A Binary Decision Diagram (BDD) over a set of Boolean
variables X = {x1, x2, . . . , xn} is a rooted, connected direct
acyclic graph, where each non-terminal (internal) node N is
labeled by a Boolean variable xi and has exactly two outgoing
edges, the 0-edge and the 1-edge, pointing to two nodes called
the 0-child and the 1-child of node N , respectively. Terminal
nodes (leaves) are labeled 0 or 1. Binary decision diagrams
are typically used to represent Boolean functions. Let f be a
completely specified Boolean function, and fxi

and fxi
be the

cofactors derived from f substituting the variable xi with the
values 1 and 0, respectively. The Shannon decomposition of f
around xi is:

f = xifxi
+ xifxi

,

where xi is the negation of the variable xi. Any node in a
BDD represents a Boolean function. The leaves represent the
constant functions 0 and 1 and the root represents the entire
Boolean function f . If the non-terminal node N (with label
xi) represents the function g, then the 1-child of N (resp. 0-
child) represents the function gxi

(resp., gxi
). In other words,

each internal node represents the Shannon decomposition with
respect to its variable. The value of f on the input x1, . . . , xn
is found by following the path indicated in the BDD by the



values of x0, . . . , xn−1. A 1-path (resp. 0-path) in a BDD is
a path from the root to a leaf labeled by 1 (resp. 0).

A BDD is ordered if there exists a total order < over the
set X of variables such that if an internal node is labeled by xi,
and its 0-child and 1-child have labels xi0 and xi1 , respectively,
then xi < xi0 and xi < xi1 . A BDD is reduced if there exist no
nodes whose 1-child is equal to the 0-child and there not exist
two distinct nodes that are roots of isomorphic subgraphs. A
reduced and ordered BDD is called ROBDD. The ROBDD is a
canonical form; indeed, given a function f : {0, 1}n → {0, 1}
and a variable ordering <, there is exactly one ROBDD with
variable ordering < that represents f .

ROBDDs are usually quite compact, but there are functions
whose ROBDD representation has a size, i.e., number of
nodes, exponential in the number of input variables. Therefore,
several extensions of BDDs have been considered (see [4] for
a review of the main extensions). In this paper we consider
a very recent extension, called Biconditional Binary Decision
Diagram (BBDD), introduced in [3] and further studied in [4],
[5]. In contrast to BDDs where each internal node represents a
Shannon expansion, each internal node in a BBDD represents
the biconditional expansion

f = (xi ⊕ xj)fxi 6=xj
+ (xi ⊕ xj)fxi=xj

,

where fxi 6=xj and fxi=xj are the two cofactors derived from
f substituting xi with xj and xj , respectively. The two
variables xi and xj are called the Primary variable (PV) and
the Secondary variable (SV). In order to fully decompose
a Boolean function by biconditional expansions, a boundary
condition for the expansion of single variable functions is
needed. This boundary condition can be obtained by fixing
the secondary variable to the constant 1, so that biconditional
expansion is reduced to Shannon expansion.

Thus, any non-terminal node N (with variables xi and
xj) in a BBDD has exactly two outgoing edges, the 6=-edge
and the =-edge, pointing to two nodes called the 6=-child
and the =-child of node N , respectively: if N represents the
function g, then the 6=-child of N (resp. =-child) represents the
function gxi 6=xj (resp., gxi=xj ). For instance, the DDs depicted
in Figures 1 and 2 are BBDDs.

To get an ordered BBDD a variable order must be imposed
for PVs and a rule for the other variables assignment must be
provided. In [4], [5], the authors propose to use the Chain
Variable Order (CVO): given a Boolean function f and an
order π = (π1, π2, . . . , πn) for the input variables of f , the
CVO assigns PVs and SVs as{

PVi = πi
SVi = πi+1

for 1 ≤ i < n;

{
PVn = πn
SVn = 1

for i = n.

BBDDs ordered by the CVO are called OBBDDs. For exam-
ple, while the BBDDs shown in Figures 1 has the standard
variable ordering (x1, x2, x3, x4), the BBDD in Figure 2 has
the ordering (x1, x3, x2, x4).

As for OBDD, OBBDDs can be reduced applying some
reduction rules. In particular, an OBBDD is weak Reduced
(weak ROBBDD) if it contains no nodes whose 6=-child is
equal to the =-child and it contains no isomorphic subgraphs.
Moreover, an OBBDD is strong Reduced (strong ROBBDD)
if besides being weak reduced:

• it contains no empty levels, i.e., levels created by
the CVO but containing no nodes as a result of the
augmented functionality of biconditional expansion;

• subgraphs representing single variable functions are
collapsed into a single BDD node driven by the
Shannon expansion.

Both weak and strong ROBBDDs are canonical forms, as
proved in [4].

In summary, BBDDs represent a generalization of BDDs,
where the Shannon expansion is entirely substituted with the
biconditional expansion. As a result, in a BBDD we can have
both standard nodes labeled by single variables and nodes
where the branching condition depends on two variables, rather
than only one as in standard BDDs. Considering two variables
per time enhances the expressive power of a decision diagram,
as experimentally shown in [4], [5]: BBDDs are about 20%
smaller, in terms of node count, with respect to BDDs built
and sifted using the CUDD library [1].

Finally, recall that it is possible to create circuits from
BDDs by directly mapping the BDD representing a Boolean
function onto a network of multiplexers. As a result the depth
of the circuit is quite large; in fact the depth is equal to the
number of primary inputs. But as an advantage the circuits
are quite compact for a large range of functions. The same
can be done for BBDDs, that can be mapped onto networks
of multiplexers and EXOR gates, both particularly suitable for
emerging technologies based on graphene [18], [22].

III. VARIABLE ORDERING FOR AUTOSYMMETRIC
FUNCTIONS

In this section we show how to derive a variable ordering
for BBDD representations of autosymmetric functions. Sec-
tion II-A shows that a k-autosymmetric function is associated
to a vector space Lf with dimension k and a set of reduction
equations.

In a Boolean space {0, 1}n described by n variables x1, . . .,
xn, let a 2-EXOR be an EXOR with at most 2 input variables,
one of which possibly complemented. Given two Boolean
variables x1, x2, all the possible 2-EXORs are essentially x1,
x1, x2, x2, (x1⊕x2) and (x1⊕x2) (in fact, x1⊕x2 = x1⊕x2,
and x1 ⊕ x2 = x1 ⊕ x2).

In this paper we will consider autosymmetric functions
whose reduction equations contain only 2-EXORs. This choice
will give us a simple method for partitioning the variables in
order to determine a useful ordering for BBDDs. Moreover, we
have experimentally evaluated that the 98% of autosymmetric
benchmark functions has this property.

Example 4: The following reduction equations contain 2-
EXORs only: 

y1 = x2
y2 = x1 ⊕ x3
y3 = x1 ⊕ x5
y4 = x6
y5 = x7 ⊕ x8

Recall that reduction equations are constructed from a ho-
mogeneous linear system. For instance, the reduction equations



in the above example correspond to the system1:
x2 = 0

x1 ⊕ x3 = 0
x1 ⊕ x5 = 0

x6 = 0
x7 ⊕ x8 = 0

=


x2 = 0
x1 = x3
x1 = x5
x6 = 0
x7 = x8

From this system we derive the following equalities:

0 = x2 = x6
x1 = x3 = x5
x7 = x8 .

These equalities suggest a natural partition of the set
{0, x1, x2, . . . , x9}:

{{0, x2, x6}, {x1, x3, x5}, {x7, x8}, {x4}, {x9}} ,

where each subset contains a set of variables (or the constant
0) that must have the same value, and where we have added
the two singletons {x4} and {x9} representing the variables
that can assume all the possible values. In particular, in our
example x2 and x6 must be always equal to 0, while x1, x3,
and x6 must have the same value (0 or 1), moreover, x7 and
x8 must have the same value.

In general we can give the following definitions.

Definition 4: Let S be a homogeneous linear system con-
taining only 2-EXORs:

xi1 ⊕ xj1 = 0
...

xik ⊕ xjk = 0
xl1 = 0

...
xlm = 0

The equality system is the system ES such that:

xi1 = xj1
...

xik = xjk
xl1 = 0

...
xlm = 0

It is straightforward to verify that S and ES have the same
solutions since xi ⊕ xj = 0 if and only if xi = xj .

Definition 5: Let SE be an equality system in the Boolean
space described by the set of variables {x1, x2, . . . , xn}:

xi1 = xj1
...

xik = xjk
xl1 = 0

...
xlm = 0

where xih , xjh ∈ {x1, x2, . . . , xn} for 1 ≤ h ≤ k and xlh ∈
{x1, x2, . . . , xn} for 1 ≤ h ≤ m. The partition derived from

1Recall that xi ⊕ xj = 0 if and only if xi = xj .

ES is the partition PS of the set {0, x1, x2, . . . , xn} where, for
any x and y in {0, x1, x2, . . . , xn}, x and y are in the same
subset of the partition if and only if the equality x = y can be
derived from the system SE .

We now show how the homogeneous linear systems and
the corresponding partitioning of Boolean variables give a
suitable ordering for BBDDs for autosymmetric functions
whose homogeneous system contains 2-EXORs only. In fact,
each EXOR node of a BBDD is an EXOR between two
variables that are adjacent in the given ordering (the ordering
CVO shown in Section II-B). From the partition we can
describe the following ordering:

Definition 6: Let PS be a partition derived from an equal-
ity system ES such that PS = {p1, p2, . . . , ps} and each pi
(1 ≤ i ≤ s) is a subset of {0, x1, x2, . . . , xn}. An ordering OS

derived from PS is v1, v2, . . . , vs where each vi (1 ≤ i ≤ s)
represents the variables of pi in any order.

For example an ordering OS derived from PS =
{{0, x2, x6}, {x1, x3, x5}, {x7, x8}, {x4}, {x9}} of the previ-
ous example is

OS = x2, x6, x1, x3, x5, x7, x8, x4, x9 .

Recall that a n variable k-autosymmetric function indeed
depends on n − k new variables y1, y2, . . . , yn−k that are
linear combinations of the original variables {x1, x2, . . . , xn}
through the reduction equations. For this reason BBDD seem
to be be quite suitable for such functions provided that any
two variables, that are in EXOR in the reduction equations,
are also adjacent in the ordering.

In order to show that the proposed ordering OS guar-
antees this property, we give the following example. Con-
sider the reduction equations in Example 4, we have that
y2 = x1 ⊕ x3 and y3 = x1 ⊕ x5. The proposed ordering
OS = x2, x6, x1, x3, x5, x7, x8, x4, x9 seems to be not suitable
since x1 is next to x3, but not to x5. However, this is not a
problem since x1 = x3 = x5, therefore the reduction equations
in Example 4 are completely equivalent to the following ones:

y1 = x2
y2 = x1 ⊕ x3
y3 = x3 ⊕ x5
y4 = x6
y5 = x7 ⊕ x8

where y3 = x3⊕x5. Therefore, the ordering inside each subset
is not important since the variables in the subset are equal.

We can finally state and prove the following proposition.

Proposition 1: Let OS be an ordering derived from a
homogeneous linear system S containing only 2-EXORs. It
is always possible to find a homogeneous linear system S′

equivalent to S (i.e., with the same solution of S) such that
each 2-EXOR in S′ corresponds to a couple of adjacent
variables in OS .

Proof: Let s a set of variables contained in the partition
PS . We construct S′ considering the following three cases:

1) If s is a singleton, i.e., a set with exactly one element
x, then x does not occur in the homogeneous linear
system S. We do not insert x in S′.



2) If sx is the set containing the constant 0, for each
variable x ∈ s we have that x = 0 (i.e., x is not
in an EXOR with another variable). Thus, for each
variable x ∈ s we insert the equation x = 0 in S′ .

3) Otherwise, the set s is not a singleton and contains
variables only. In this case, each variable xi ∈ s is
contained in at least an EXOR of S with another
variable xj , which is in the same partition of xi,
(by construction of OS), i.e., xj ∈ s. Without
loss of generality, let x1, x2, . . . xh be the variables,
contained in the set s, ordered following the ordering
OS . We can put in S′ the h−1 equations: xi = xi+1

with 1 ≤ i ≤ h − 1. It is straightforward to verify
that these equations are enough to express the fact
that the variables in s must all have the same value.

The system S′ is therefore equivalent to S and each EXOR
of two variables in S′ corresponds to a couple of adjacent
variables in OS , by construction.

Of course, we can construct a set of reduction equations
from the system S′ derived in Proposition 1 as described in
Section II-A. Therefore, we can conclude that OS could be
a suitable ordering for BBDDs, since each EXOR of two
variables in the reduction equations is composed by a couple
of variables that are adjacent in the ordering OS .

For a complete example, consider the completely specified
Boolean function f = {0000, 00001, 0010, 0100, 0101, 01111,
1000, 1010, 1011, 1101, 1110, 1111}. Note that Lf = {0000,
0101, 1010, 1111} since f is closed only under the vectors in
Lf . Moreover, f = 0000⊕Lf ∪ 0001⊕Lf ∪ 1000⊕Lf . The
homogeneous linear system S corresponding to Lf is:{

x1 ⊕ x3 = 0
x2 ⊕ x4 = 0

Finally, the ordering OS is x1, x3, x2, x4. The ordering
suggested by the system gives a BBDD representation of f ,
in Figure 2, more compact that the BBDD obtained by the
standard ordering x1, x2, x3, x4 in Figure 1.

IV. EXPERIMENTAL RESULTS

A. Experimental results

In this section we report the experimental results related
to variable ordering for BBDD of autosymmetric functions.
The experiments have been run on a Linux Intel Core i7,
3.40 GHz CPU with 8 GB of main memory. The benchmarks
are taken from LGSynth93 [23]. Multioutput benchmarks have
been synthesized minimizing each single output independently
from the others.

The software used to derive the reduction equations used to
determine the variable ordering for BBDD of autosymmetric
functions is described in [6], [7], [8], [9]. As specified in
Sect. III, since 98% of autosymmetric benchmark functions are
described by reduction equations containing only 2-EXORs,
we consider only this set of benchmarks. The general criterion
used to specify the list of ordered variables is the following:
first of all we insert in the ordered list each variable xi which
is in EXOR with another variable xj ; then we consider all
singletons, and finally all other variables.

TABLE I. COMPARISON OF EXOR NODES AND VAR NODES:
ORDERED VS NOT ORDERED CASE WITH (RO 0; ST 0) CONFIGURATION.

not ordered ordered
benchmark EXOR nodes VAR nodes EXOR nodes VAR nodes

add6(0) 6 0 1 0
add6(1) 12 1 2 1
add6(2) 22 2 6 2
add6(3) 38 3 14 3
add6(4) 62 4 30 4
add6(5) 94 5 62 5
adr4(1) 26 1 16 3
adr4(2) 15 1 6 2
adr4(3) 8 1 2 1
adr4(4) 4 0 1 0
al2(11) 27 4 20 4

alcom(5) 5 3 3 3
apla(5) 11 1 10 1

b7(5) 3 1 3 1
b9(3) 327 6 262 2

b11(5) 3 1 1 1
b12(6) 100 4 31 4

bcd.div3(0) 2 0 2 0
dc1(5) 5 2 3 2

dekoder(0) 6 1 6 1
dekoder(1) 5 2 5 2

dk27(8) 7 1 7 1
dk27(0) 11 1 9 1
dk27(1) 11 1 9 1

ex7(3) 327 6 262 2
exps(18) 13 1 6 1
exps(19) 11 1 6 1
f51m(6) 1 0 1 0

luc(3) 8 3 5 3
m1(8) 7 1 4 1

max1024(0) 8 0 8 0
max1024(1) 16 0 16 0
max1024(2) 36 0 36 0
max1024(3) 55 0 55 0
max1024(4) 78 0 78 0
max1024(5) 103 0 103 0

misex1(0) 5 1 1 0
mytest(0) 1 0 1 0

newcond(1) 2 1 2 1
newcwp(0) 3 1 3 1
newcwp(3) 1 0 1 0

p82(10) 3 1 3 1
pope.rom(18) 9 1 4 1
pope.rom(32) 2 1 2 1
pope.rom(35) 2 0 2 0
pope.rom(41) 3 1 3 1
pope.rom(47) 6 1 3 1

radd(0) 4 0 1 0
radd(1) 8 1 2 1
radd(2) 14 2 6 2
radd(3) 22 3 14 3
rd53(1) 5 0 5 0
risc(4) 3 1 1 1

squar5(6) 3 1 3 1
sqn(0) 31 2 11 3

sqr6(8) 3 1 1 1
t4(2) 25 1 27 1
t4(3) 119 1 146 1

wim(2) 5 2 5 2
Z5xp1(8) 1 0 1 0
Z9sym(0) 18 0 18 0

For our experimentation we used the BBDD package,
implemented in C language and presented in [5]. Since the
BBDD package receives as input a Verilog description of a
combinational logic network, flattened onto primitive Boolean
operations, we have to translate our benchmarks in the proper
format using ABC [11]. For each Verilog description of a
single benchmark we save two different versions: the first one
is the plain version with not ordered variables; the second
one is the version where we specify a different variable order
(based on the reduction equations previously described). We
then run the BBDD package on both versions of the same
benchmark, and to compare the obtained results. We consider



benchmark functions with at least an EXOR of two variables
in the reduction equations.

Recall that BBDD contains two type of nodes: nodes that
are EXOR of two variables (which we call here EXOR nodes)
and nodes that contain a single variable, i.e., that are EXOR
of one variable with the constant 1, (which we call here
VAR nodes). In Table I we compare the number of EXOR
nodes and the number of VAR nodes for not-ordered versus
ordered bechmarks. The first column reports the name of
the benchmarks followed by the number of the considered
output (indicated in brackets). The following columns report,
by groups of two, the number of EXOR nodes and the number
of VAR nodes obtained running BBDD package. The first
group (columns two and three) refers to plain benchmarks with
not ordered variables, the second group (columns four and
five) refers to benchmarks with ordered variables. To obtain
the results reported in Tab. I, we ran the simulation requiring
that the order of the variables is exactly the one specified in
the input file that describes the benchmark. This is achieved by
disabling dynamic and static reordering (otherwise, by default
the BBDD package makes reordering to minimize the size).

The results are interesting, showing that ordering the
variables is useful. In 97% of cases, imposing the ordering
of the variables we obtain a number of EXOR nodes lower
than or equal to the corresponding number of EXOR nodes of
benchmark without variable ordering (the percentage is equal
to 56% if we consider a number of nodes strictly lower than the
corresponding number of nodes in not-ordered benchmarks).
Similarly, the number of VAR nodes decreases or is equal
to the number of VAR nodes obtained by the simulation of
the not-ordered benchmark in 95% of the cases (5% if strictly
lower than the not-ordered case). Of course, since the ordering
we propose is the result of a heuristic approach, sometimes
the results for ordered benchmarks could be worse than those
relative to the not-ordered case, as it happens for instance
for the benchmark t4(3). The average gain obtained with the
ordering of variables is about 23% in the case of EXOR nodes
and 6% in the case of VAR nodes. Moreover, we ran the
experiments without disabling dynamic and static reordering
(using the i-sifting command setting, that is an iterative version
of the standard sifting procedure). In this way the BBDD
package makes its own reordering to minimize the size of the
circuits. In this case, there is no difference in the results by
changing the order of the variables in the input files describing
the benchmarks, and the BBDD package finds similar solution.

V. CONCLUSION

In this paper we have proposed a method for deriving an
ordering for the BBDD representation of autosymmetric func-
tions with reduction equations containing 2-EXORs, where
BBDDs are a new DD data structure exploited for emerging
technologies. In the experiments of this paper we have tested a
function for autosimmetry and derived its reduction equations
using a standard tool that also computes the restriction fk,
which is not relevant for BBDD ordering. Future work includes
the design of “ad hoc” preprocessing functions that directly
compute the BBDD ordering for an autosymmetric function.
Another interesting direction is the study of new “symmetries”
of Boolean functions that can give good informations for
deriving ordering for BBDDs or other variations of BDDs.

REFERENCES

[1] CUDD: CU Decision Diagram Package Release 2.5.0.
[2] F. Aloul, A. Ramani, I. Markov, and K. Sakallah, “Solving Difficult SAT

Instances in the Presence of Symmetry,” in ACM/IEEE 39th Design
Automation Conference (DAC), 2002, pp. 731–736.

[3] L. G. Amarù, P. Gaillardon, and G. D. Micheli, “Biconditional BDD: a
novel canonical BDD for logic synthesis targeting xor-rich circuits,” in
Design, Automation and Test in Europe, DATE 13, Grenoble, France,
March 18-22, 2013, 2013, pp. 1014–1017.

[4] ——, “Biconditional binary decision diagrams: A novel canonical logic
representation form,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 4,
no. 4, pp. 487–500, 2014.

[5] ——, “An efficient manipulation package for biconditional binary
decision diagrams,” in Design, Automation & Test in Europe Conference
& Exhibition, DATE 2014, Dresden, Germany, March 24-28, 2014,
2014, pp. 1–6.

[6] A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli, “Fast Three-Level
Logic Minimization Based on Autosymmetry,” in ACM/IEEE 39th
Design Automation Conference (DAC), 2002, pp. 425–430.

[7] ——, “Implicit Test of Regularity for Not Completely Specified
Boolean Functions,” in IEEE/ACM 11th International Workshop on
Logic & Synthesis (IWLS), 2002, pp. 345–350.

[8] ——, “Three-Level Logic Minimization Based on Function Regulari-
ties,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 22,
no. 8, pp. 1005–1016, 2003.

[9] ——, “Exploiting regularities for boolean function synthesis,” Theory
Comput. Syst., vol. 39, no. 4, pp. 485–501, 2006.

[10] ——, “Synthesis of autosymmetric functions in a new three-level form,”
Theory Comput. Syst., vol. 42, no. 4, pp. 450–464, 2008.

[11] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-
Strength Verification Tool,” in CAV’10, Springer, LNCS 6174, 2010,
pp. 24–40.

[12] V. Ciriani, “A New Approach to Three-Level Logic Synthesis,” Com-
puter Science Department, University of Pisa, Technical Report TR-02-
03, 2002, submitted.

[13] P. Cohn, Algebra Vol. 1. John Wiley & Sons, 1981.
[14] L. Heinrich-Litan and P. Molitor, “Least Upper Bounds for the Size of

OBDDs Using Symmetry Properties,” IEEE Trans. Computers, vol. 49,
no. 4, pp. 360–368, 2000.

[15] V. Kravets and K. Sakallah, “Generalized Symmetries of Boolean
Functions,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2000, pp. 526–532.

[16] ——, “Constructive Library-Aware Synthesis Using Symmetries,” in
Design, Automation and Test in Europe Conference & Exhibition
(DATE), 2001, pp. 208–213.

[17] F. Luccio and L. Pagli, “On a New Boolean Function with Applica-
tions,” IEEE Transactions on Computers, vol. 48, no. 3, pp. 296–310,
1999.

[18] S. Miryala, V. Tenace, A. Calimera, E. Macii, M. Poncino, L. Amarú,
G. De Micheli, and P.-E. Gaillardon, “Exploiting the Expressive Power
of Graphene Reconfigurable Gates via Post-Synthesis Optimization,” in
Proceedings of the 25th Edition on Great Lakes Symposium on VLSI,
ser. GLSVLSI ’15, 2015.

[19] T. Sasao, “A new expansion of symmetric functions and their applica-
tion to non-disjoint functional decompositions for LUT type FPGAs,”
in International Workshop on Logic Synthesis, 2000, pp. 105–110.

[20] ——, Switching Theory for Logic Synthesis. Kluwer Academic
Publishers, 1999.

[21] J. Shi, G. Fey, and R. Drechsler, “BDD Based Synthesis of Symmetric
Functions with Full Path-Delay Fault Testability,” in 12th Asian Test
Symposium (ATS 2003), 17-19 November 2003, Xian, China, 2003, pp.
290–293.

[22] V. Tenace, A. Calimera, E. Macii, and M. Poncino, “One-pass Logic
Synthesis for Graphene-based Pass-XNOR Logic Circuits,” in Proceed-
ings of the 52Nd Annual Design Automation Conference, ser. DAC ’15,
2015.

[23] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide
Version 3.0,” Microelectronic Center, User Guide, 1991.




