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Abstract 
The IEC 61499 standard has been developed to allow the modeling and design of distributed control systems, providing 

advanced concepts of software engineering (such as abstraction and encapsulation) to the world of control engineering. 

The introduction of this standard in already existing control environments poses challenges, since programs written using 

the widespread IEC 61131-3 programming standard cannot be directly executed in a fully IEC 61499 environment 

without reengineering effort. In order to solve this problem, this paper presents an architecture to integrate modules of the 

two standards, allowing the exploitation of the benefits of both. The proposed architecture is based on the coexistence of 

control software of the two standards. Modules written in one standard interact with some particular interfaces that 

encapsulate functionalities and information to be exchanged with the other standard. In particular, the architecture 

permits to utilize available run-times without modification, it allows the reuse of software modules, and it utilizes  

existing features of the standards. A methodology to integrate IEC 61131-3 modules in an IEC 61499 distributed solution 

based on such architecture is also developed, and it is described via a case study to prove feasibility and benefits. 

Experimental results demonstrate that the proposed solution does not add substantial load or delays to the system when 

compared to an IEC 61131-3 based solution. By acting on task period, it can achieve performances similar to an IEC 

61499 solution. 
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1. INTRODUCTION 
rogrammable Logic Controllers (PLCs) are some of the most widespread devices in industrial automation, being used 

in industry for decades [30]. In 1993, the International Electro-technical Commission (IEC) published the IEC 61131-

3 standard [1] in order to define a common programming interface for PLCs produced by different manufacturers. Since 

then, the standard has been widely adopted among PLC producers. 

Evolution of computer networks brought the technology to realize control applications distributed among different 

devices. The new market demands [32] for flexibility and reconfigurability in manufacturing and process industries 

motivate the need of a transition from centralized to distributed control systems [2], [4], [31], [41]. Distributed control is 

highly desirable in manufacturing industry, however, the design of a distributed control system is more challenging than 

a centralized one [4]. In particular, in an IEC 61131-3 environment, the aspects of distribution of control logic (such as 

the mapping of the code modules or variables to the devices and the communications) must be considered from the 

beginning of the design phase [40]. This complicates the design of the distributed control system and, moreover, it limits 

the ability to reconfigure the system, since changing the control system environment requires a redesign effort and the 

modification of existing software modules [40].  

In order to facilitate the design of distributed control systems, IEC proposed the IEC 61499 standard [3]. The standard 

introduces in the development of distributed control application advanced concept derived from distributed systems and 

the software engineering discipline, such as encapsulation, independence of the control logic from the communication 

infrastructure, and development of software component independently from their mapping to hardware. The standard 

defines an open architecture, based on an event driven execution approach, that permits to model and design control 

applications organized in software components distributed across networked devices [4]. Practical case studies [5], [6], 

[7] have proved the benefits of the standard, and there are some commercial tools supporting it already on the market 

(ISaGRAF [8] and nxtControl [9]).  

 

Since IEC 61131-3 has been in use for years [30], there are both a large number of control systems in operation and 

already developed and tested software libraries that are based on this standard. Unfortunately, it is not possible to directly 
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execute IEC 61131-3 applications in an IEC 61499 based runtime environment [4], [11], so the adoption of the IEC 

61499 would result in the waste of such existing code, know-how and competences, as also noted for the batch process 

industry and the IEC 61512 standard [33]. Besides, the adoption of IEC 61499 in an existing system would result at least 

in the modification of the software implementation of the control algorithm, with consequent need of new design and 

testing phases and interventions on the production line with the eventual stop of operation. The switching cost to the new 

standard is then perceived to be very high, and it could be lowered if some of the IEC 61131-3 investments are retained 

[33]. For these reasons, companies that have been already slow to adopt languages other than IEC 61131-3 [30], are even 

less inclined to convert existing systems to IEC 61499 [31], nevertheless, many of these systems still may take advantage 

from distribution of control logic to increase interoperability, reduce human work, improve control decisions, reliability, 

scalability, reconfiguration and deployment [2], [4], [31], [41]. One solution to minimize the cost, retain the investment 

and exploit distribution consists in developing some components in the new standard, while keeping the other software 

modules already written in the old. 

For instance, starting from an existing IEC 61131-3 system, there is the need to redesign new components to allow a 

more flexible distributed control when the application is running on more devices. In such a situation, it is convenient to 

adopt, for the new components, the IEC 61499 standard, while reusing, to retain the investment, the available IEC 61131-

3 code. In a different use case, starting from an IEC 61131-3 system, the introduction of new hardware components 

determine the introduction of new software modules devoted to their management. Such modules can be written again in 

the new standard, to exploits the benefit of it. As a general observation on the advantage of coexistence of both the 

standards, we can say that the IEC 61131-3 standards permits to see software modules as hardware-like modules (ladder 

diagrams or FB diagrams), while the IEC 61499 standard gives the system a more software oriented vision, with 

components, connections and events. The IEC 61499 vision is useful for system designers, who are usually experienced 

software/control engineers and have to deal with the distributed aspects of control. Nevertheless, the hardware-like vision 

is useful for plant staff, which, although inexperienced in advanced control engineering techniques, need to keep the plant 

operational [11], [30]. 

Such examples motivate the needs of architectures that permits the coexistence of code modules written in the two 

standards [12]. Such coexistence is not simple to realize by system designers, as IEC 61131-3 modules can’t be directly 

executed on IEC 61499 runtime [4], [11]. 

 

In this paper, we deal with such problem, and we propose an architecture, namely LE-INT (LowEffort-INTegration 

architecture) to realize the coexistence of code modules written in the two standards without requiring, for system 

designers, effort and knowledge higher to the ones required to write software modules in the two standards. In particular, 

the proposed solution does not require modifications to the run-time support of the two standards, as well as modification 

to the development tools, as it utilizes defined features of the two standards.  

In the proposed solution, there are physical devices able to execute IEC 61131-3 and IEC 61499 code modules. Such 

modules can be on the same device or on different physical devices; they can exchange information through appropriate 

mechanisms that encapsulates the interaction and the implementation details of the communications. As a consequence, 

IEC 61131-3 developers and staff people do not need to know the details of IEC 61499 code, that is abstracted as IEC 

61131-5 function blocks, with no loss of acquired competence and development effort. From the IEC 61499 perspective, 

the IEC 61131-3 control logic is abstracted as one or more Service Interaction Function Blocks (SIFB), that can be 

utilized as standard IEC 61499 modules, adhering to the concept of encapsulation of the standard.  

Based on LE-INT, we define a methodology for the integration of IEC 61131-3 code modules in IEC 61499 logic. In 

this way, as we will show with a case study, existing IEC 61131-3 code can be kept and easily integrated in an IEC 

61499 distributed solution. 

 

Main fields of application of LE-INT are the manufacturing and automation processes (such as, but not only, discrete 

part production lines [37]) organized in a modular way and as sequences of processing steps. Such systems may have a 

not sequential information flow and may include branching paths. Examples can be found in [37], [38], [39]. LE-INT is 

effective in these systems, to realize the following use scenarios (use cases): 

1) transition to distributed mixed systems using both standards from existing IEC 61131-3-based systems; 

2) insertion of one or more existing IEC 61131-3 system in an existing distributed IEC 61499 system; 

 

In the first use-case, LE-INT can be used to transform a centralized or several independent IEC 61131-3 systems in a 

distributed system based on both IEC 61131-3 and IEC 61499 standards. In this scenario, LE-INT permits to use the 

distribution features of IEC 61499, while reusing existing IEC 61131-3 code. A limit of our approach consists in the need 

of performing a decomposition of the existing system (in case of a centralized system) that is not straightforward and 

requires effort. However, when the manufacturing process is organized in distinct steps [38] or the system is composed of 

different physical subsystems [39], usually the centralized system is structured in a modular way where different code 
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modules manage different parts of the physical system, communicating via global variables [39]. In these cases, the effort 

of decomposing the system is greatly reduced, since code is already decoupled. 

The second use-case refers to the insertion of an existing IEC 61131-3 module in a modular distributed production-line 

programmed in IEC 61499, as shown in [39]. In this case, LE-INT allows to see, from the IEC 61499 point of view, the 

IEC 61131-3 system as a software component (a SIFB) that can become part of the distributed application. The 

disadvantage of this approach consists mainly in the delay added by the mixing of cyclic and event-driven execution 

models, delay that we will evaluate in the paper, with reference to a case study.  

Results of the evaluation indicate that LE-INT performs similarly to a pure IEC 61131-3 solutions and, by acting on 

task period, it can achieve performance similar to a pure 61499 solution, while the overhead in terms of CPU and 

memory usage, introduced by the contemporary execution of two runtimes, in negligible. As a summary, the advantages 

introduced by LE-INT (derived from the opportunity of reuse, distribution and expansion) are not overwhelmed by 

performance drawbacks. 

 

The rest of the paper is structured as follows: section 2 presents related works, basic concepts of IEC 61131-3 and IEC 

61499 are discussed in section 3, the proposed architecture is described in section 4, in section 5 a methodology of 

integration is presented via a case study, while section 6 discusses implementation and performance evaluation. Section 7 

concludes the paper.  

 

2. Related Work 
A review of the research activity around the IEC 61499 standard is presented by Vyatkin in [4], while a preliminary 

work on its diffusion is presented by Thramboulidis in [10]. Works about the coexistence of the standards and migration 

from IEC 61131-3 to IEC 61499 are particularly relevant for the problem addressed in this paper. 

Zoitl et al. [12] discussed the importance of the coexistence and harmonization of both standards, seeing IEC 61499 

more as a complementary standard to IEC 61131-3, rather than a replacement. They proposed three different approaches 

to achieve harmonization between the two standards: 1) parallel use of both standards with a communication interface to 

provide interoperability;2) IEC 61131-3 based system enhanced with IEC 61499 concepts;3) IEC 61499 based system 

enhanced with IEC 61131-3 concepts. 

To the authors’ best knowledge, the existing work dealing on the first approach can be summarized in a proposed 

annex [19], whose contents have been now included in the second edition of IEC 61499 standard [3] in the informative 

Annex D.6. Such an annex proposes a set of IEC 61499 function blocks for interoperability with IEC 61131-5 compliant 

devices.  

Regarding the others two approaches, ISaGRAF [8] is a commercial solution that utilizes the second approach, 

implementing the IEC 61499 concepts in an IEC 61131-3 environment. This implementation has some differences from 

the other implementations of the standard (analyzed by Vyatkin and Chouinard in [20]). Sünder et al. [21] discussed the 

possibility of a component based implementation of the third approach. In addition, nxtSTUDIO is an IEC 61499 

commercial tool developed by nxtControl [9] that recently introduced the opportunity to code program parts using IEC 

61131-3 following the third approach. 

In this work, we choose the first approach. In a preliminary paper [26], we presented the initial ideas of an architecture 

that follows such an approach, but lacking case studies and methodologies to prove the benefits of it. To point out the 

differences between our work and the annex D.6 of IEC 61499 [3], the function blocks introduced by the annex assume 

that interactions are performed following a client/server model where IEC 61131-3 PLCs can act as servers that respond 

to requests by IEC 61499 clients [19]. The SIFBs introduced to perform the communication are READ, UREAD, 

WRITE and TASK, based on IEC 61131-5 [13] primitives with the same names. Referring to the terminology introduced 

in IEC 61131-5, these function blocks allow to perform interactions described as “polled data acquisition” and 

“parametric control” [13]. As explained in section 4.2, our proposed approach, instead, is based on the USEND, URCV, 

SEND and RCV IEC 61131-5 function blocks that allow to perform “programmed data acquisition” and “interlocked 

control” interactions. From this point of view, our approach is complementary to the one proposed in the annex D.6 ([3], 

[19]) and, together, they allow to realize all the communication models included in the IEC 61131-5 standard. Besides, in 

our approach, both the IEC 61131-3 PLC and the IEC 61499 devices can act as client/server, and this is more adherent to 

the IEC 61131-5 and IEC 61499 specifications. 

 

Migration case studies are presented by Gerber et al. in [14] and Dai and Vyatkin in [15], where some real world IEC 

61131-3 systems are re-designed in IEC 61499 systems. While the first one focuses on the translation of each IEC 61131-

3 code module into an IEC 61499 code module, the second one describes two different approaches to redesign the entire 

system. Both papers also give some general guidelines to simplify future migration processes. Similarly, Wenger et al. 

present in [16] and [25] some transformation rules to manually migrate a system. Even, though recommendations, 
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guidelines and transformation rules can facilitate the migration process, a re-engineering process is still required, so 

automated approaches have been studied. Shaw et al. [17] presented an automated process to convert programs in ladder 

diagram into C programs to be included into IEC 61499 reusable code modules, while Wenger et al. [18] have automated 

the transformation of an entire IEC 61131-3 system following most of the rules presented in [16]. Dai et al. [45] propose 

a new approach of migration from IEC 61131-3 to IEC 61499 utilizing semantic web technologies. However, many of 

these approaches are incomplete and they are still not sufficiently compatible to convert a system without further human 

work. Another limit of these approaches is that if the IEC 61131-3 systems make use of vendor-specific code modules 

(that usually are closed-source and allow to access to complex features of hardware modules furnished by the 

manufacturers), such code modules should be ported in the IEC 61499 runtime, and this operation may require significant 

effort. Moreover, in some cases the code automatically generated has poor structure and it is not very readable, so it 

would be difficult to maintain. Above all, the migration approach may entail the loss of the IEC 61131-3 code, and then it 

may not solve the disadvantage of adopting standards other than IEC 61131-3 [30]. 

 

Many recent works are focused on techniques to improve the programmability and reuse of modern distributed control 

systems. Yang and Vyatkin propose transformation of Simulink models to IEC 61499 FB to help verification and 

validation of distributed control systems [31], while Bengtsson et al. introduce methodologies to improve the reuse of 

PLC code [30]. Hästbacka et al. and Thramboulidis et al. provide means for developing control applications using 

domain-specific modeling concepts to increase productivity and enhance solutions reuse [32], [34]. Bonfè et al. present 

object oriented modeling approaches and design patterns supporting the implementation of industrial control systems 

[35], while a software architecture based on mobile agents for distributed process control applications has been proposed 

by Di Stefano et al. [29]. All of such works are orthogonal to our work, in that they provide mechanisms that can 

integrate our solution. 

3. Basic Concepts 

3.1. IEC 61131-3 Basics 

The IEC 61131-3 [1] standard defines a set of programming languages (three graphical and two text-based) as well as 

some common elements to all programming languages for the development of applications for programmable controllers. 

Such applications can be concentrated or distributed on more devices. 

The common elements include definition of data types, variables, Program Organization Units (POUs) and a software 

model of the PLC, used to organize the execution of the program code into a set of tasks. The POUs allow to structure the 

code into programs, functions and function blocks. In particular, the Function Block (FB) is a code module that can have 

multiple inputs, multiple outputs and some internal memory that maintains the status of the function block instance 

between successive invocations. Representation of a sample IEC 61131-3 FB is shown in Fig. 1 (a). 
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Fig. 1: A simple counter function block realized in both standards. The IEC 61131-3 FB (a) counts rising edges of CU data input. The 

IEC 61499 FB (b) counts the occurrences of CU event. 

 

3.2. IEC 61499 Basics 

The IEC 61499 standard defines an architecture where a system consists of a set of devices connected by 

communication networks. The basic unit of reusable code defined by the standard is the function block. IEC 61499 

function blocks extend the concept of FB defined in IEC 61131-3 adding event inputs and outputs in addition to data 

inputs/outputs. In Fig. 1 (b) an example of IEC 61499 FB is shown. Connections between event inputs and data inputs 

indicate which input data lines must be sampled at occurrence of a specific event. In a similar way, connections between 

event outputs and data outputs indicate which output data lines must be updated when a particular event is sent. The IEC 

61499 standard uses the same data types defined by IEC 61131-3. 

The standard defines three kind of function blocks: 

• Basic Function Block: its behavior is defined by a state-chart machine called Execution Control Chart (ECC) that is 
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invoked each time an input event is received. The ECC triggers the execution of algorithms that may be written in any 

language (IEC 61131-3 languages are advised) and sends output events. 

• Composite Function Block: it is composed by interconnecting two or more FBs. 

• Service Interface Function Block: it allows to utilize services provided by the device whose implementation is 

hidden and its interface is described using time-sequence diagrams. It is often used to implement low-level functionalities 

such as communication or user interface. 

Function blocks provide the concept of data and control abstraction, exposing an interface that hides implementation 

details of control logic. In this way, control systems can be modeled and prototyped without considering hardware or 

other implementation-specific details. Applications are sets of interconnected function blocks that may be distributed to 

different devices. 

3.3. Execution Models of the Two Standards 

In IEC 61131-3, the developer defines the tasks of the system and associates the program or function block instances 

to these tasks. When a task is activated for execution, the associated function blocks are executed in a designed order. 

The tasks can be of three kinds: 

• cyclic tasks: they are executed cyclically, that means that the code modules associated to the task are executed and 

when the task completes its execution it starts again; 

• periodic tasks: they are executed at regular time intervals; the developer choose the period of task activation and the 

associated modules are executed at each activation; 

• event tasks: they are executed at the occurrence of particular events such as the change of value of a particular 

boolean condition, in that case, when the event occurs the code modules associated to the task are executed once. 

The most common task types are periodic and cyclic, because they are based on the typical scan-based execution 

approach of the PLCs, where the following steps are executed cyclically: reading of the PLC inputs, execution of control 

logic, updating of the PLC outputs. For this reason, most function blocks (such as IEC 61131-5 communication function 

blocks) are designed to work with cyclic or periodic execution.  

The IEC 61499 execution model uses a pure event-based approach where a function block is executed when it receives 

an input event and, after its execution, it may generate one or more output events connected to other function blocks. In 

this case, the execution order is not fixed like in IEC 61131-3 but depends on the sequence of events. For example, in 

IEC 61499, if a function block never receives an event, it will never be executed, while in IEC 61131-3 the function 

block is executed at each task activation whether its computation is needed or not. 

These execution models are profoundly different and each method has its advantage over the other one: the event-

driven approach of IEC 61499 allows better performance (only the function block that actually have work to do are 

executed), but the fixed execution of IEC 61131-3 is more predictable, fundamental aspect in the developing of real-time 

applications [4]. 
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Fig. 2: IEC 61131-5 communication function blocks for programmed data acquisition (a) and interlocked control (b). 

3.4. Support to Communication  

IEC 61131-3 tasks running on the same device can communicate via shared memory (shared variables). The IEC 

61131-3 software model defines access paths that allow to access PLC variables from other PLC via communication 

services while the IEC 61131-5 standard [13], another part of the IEC 61131 standard, introduces the communication 

services of PLCs. It defines a set of communication paradigms and communication function blocks that can be utilized in 

IEC 61131-3 programs to exchange data among different PLCs connected through a network. In the following (Fig. 2), 

two of the communication paradigms described in IEC 61131-5 are presented, since their concepts are used in the 

proposed architecture: the programmed data acquisition and the interlocked control. Programmed data acquisition allows 

to transfer data from a PLC to another PLC and the transfer is initiated by the sender PLC. Such operation is useful, for 

instance, to signal to another PLC the state change or new data acquired from a sensor. Interlocked control is used to 

realize a sort of remote procedure call between different PLCs, where a PLC requests a computation to another PLC, 
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sending some parameters and waiting for results. Such operation is useful, for instance, when a PLC needs to move in an 

assigned position (specified as input parameter) an arm controlled by another PLC, and waits for the 

successful/unsuccessful completion of the operation. Fig. 2 (a) shows the IEC 61131-5 communication function blocks 

that realize the programmed data acquisition paradigm to send data from a sender PLC (that has an instance of the 

USEND FB) to a receiver PLC (that has an instance of the URCV).The communication is initiated by the sender PLC 

when a rising edge is detected on the REQ input of the USEND instance, then data (SD_1, … SD_n) are transferred to 

the receiver PLC, then the NDR output of the URCV instance pulses to indicate the data reception (RD_1, … RD_n). 

Fig. 2 (b) shows the communication function blocks that realize the interlocked control communication paradigm. This 

type of communication is used when the sender PLC (that has an instance of the SEND) requests the receiver PLC (that 

has an instance of the RCV) for executing an operation and wants to know the results. The communication is initiated by 

the sender when a rising edge is detected on the REQ input of the SEND instance, then the parameters of the operation 

(SD_1, … SD_n) are sent to the receiver PLC. When data arrives the NDR output of the RCV instance pulses and the 

parameters are available to the program on the RD_1, … RD_n outputs of the RCV instance. The program on the 

receiver PLC then calculates the results of the requested operation and sends them back to the receiver by putting them 

on the SD_1, … SD_m inputs of the RCV instance and raising the RESP input. When result data arrives to the sender 

PLC, the NDR output of the SEND instance pulses and the results are available in the RD_1, … RD_m outputs. 

In the IEC 61499 standard, two communication paradigms are defined: the publish/subscribe and the client/server. The 

first paradigm is used for unidirectional communication of data between devices, while the second one is used for 

bidirectional communications. As an example, the function blocks used to realize the publish/subscribe model are shown 

in Fig. 3. The transfer is initiated when the PUBLISHER FB receives a REQ event: the data on SD_1, … SD_n data 

inputs are sent through the network and, when done, a CNF output event is issued to inform the application. When the 

SUBSCRIBE FB receives the data, it informs the application with an IND event that data are available on the RD_1, … 

RD_n outputs of the function block. When data are read, the application notifies the SUBSCRIBE FB with a RSP event. 

 

Differently from IEC 61131-3, the IEC 61499 standard includes advanced concepts of distributed systems and 

software engineering. In particular, it allows the design of distributed control application without considering the 

implementation aspects of communication, and it decouples the design phase of software from its mapping phase, a basic 

concept to achieve software reuse. In the IEC 61499 standard, in fact, the control application is seen as a network of 

function blocks that exchanges data and events, and it is designed without considering the hardware infrastructure and the 

distribution aspects. Only after the design phase, the function blocks of the application are mapped to the devices. In this 

phase, communication function blocks are inserted between connected function blocks that are mapped to different 

devices [42]. Using this approach, the designer can build in an easier way the application, as (s)he does not have to 

consider the distribution aspects [46], while reconfigurability is simplified with respect to the IEC 61131-3, since the 

mapping of the function blocks to the devices can be easily changed without redesign effort.  

 

 

4. LE-INT Architecture 
We consider (Fig. 4) a control system composed of different devices that interact to realize the control law. Our 

proposal provides execution capabilities for IEC 61131-3 tasks and IEC 61499 applications that are executed in full 

compliance with the standard they belong to (Fig. 4a).  
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Fig 4.a: Reference System 
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Fig. 3: IEC 61499 function blocks that realize the publish/subscribe communication model. 
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IEC 61131-3 Program3IEC 61131-3 Program2IEC 61131-3 Program1

IEC 61499 Application

 
Fig. 4b: An example of control application with communications between modules written in two different standards. Code modules 

of different standards communicate only via specific FBs (the darker blu/green in figure) 

 

LE-INT code modules of different standards can communicate only via specific FBs (Fig. 4b), and there are no 

constraints on where the couples of FBs are allocated. The idea consists in providing two mechanisms: the first one is a 

communication channel from a module written in one standard to a module written in the other standard; the second one, 

consists in requesting a service offered by modules of the other standard, specifying some input parameters, and waiting 

for the results. 

 

As for the implementation, the code modules that belong to different standard can communicate via the programmed 

data acquisition and interlocked control paradigms defined in the IEC 61131-5 standard [13]. In particular, our 

architecture is based on a set of FBs (on the IEC 61131-3 side) and SIFBs (on the IEC 61499 side) available to the 

programmer to realize communications. FBs and SIFBs for a specific interaction are automatically generated. In 

particular, we utilized the USEND, URCV, SEND and RCV IEC 61131-5 standard FBs. 

 

Fig. 5a shows the basic concept of a programmed data acquisition operation initiated by a IEC 61131-3 task that sends, 

via a USEND FB, data to the corresponding IEC 61499 SIFB. Such operation is useful, for instance, to signal to the high 

level distributed IEC 61499 application the state change of a sensor. When the IEC 61131-3 program needs to send data, 

it puts the data on the DATA_IN input and requests the operation to the USEND FB via the REQ input. The architecture 

then moves the data, transparently to the programmer, to DATA_OUT output of the IEC 61499 SIFB, and an IND event 

is generated to signal the application. 

 

 

Fig. 5b shows the basic concept of a programmed data acquisition operation initiated by a IEC 61499 application, that 

sends data to the corresponding IEC 61131-3 URCV FB. When the IEC 61499 application needs to send data, it puts the 

data on the DATA_IN input and requests the operation to the SIFB via the REQ input. The architecture then moves the 

data, to DATA_OUT output of the IEC 61131 FB, and the NDR output is set to indicate that a new data has been 

received. 

 

Fig. 6 show the behavior in case of interlocked control, i.e. when the IEC 61499 application needs to send data and 

wait for an answer from the IEC 61131-3 program. This is useful when the IEC 61499 application needs a service that is 
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Fig. 5a: programmed data acquisition initiated by a IEC 61131-3 

task 

Fig. 5b: programmed data acquisition initiated by a IEC 61499 

application 
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available on the 61131-3 part of the application, and it can send a request with some input parameters and expect a 

response with some outputs, in a way similar to a remote procedure call. When the application requests the services (Fig 

6a), it put the parameters on the PAR_IN lines and send a REQ event to the SIFB. The architecture then moves the data, 

transparently to the programmer, to the PAR_OUT output of the IEC 61131 RCV FB, which, when executed, set NDR to 

signal the program that new data are ready. The IEC 61131-3 program then executes its logic, and signals (Figure 6b) the 

completion of the service execution using the RESP input of the RCV FB. Response data present in the DATA_IN inputs 

are then sent to the DATA_OUT lines of the SIFB, that signals the conclusion of the service issuing an CNF output event 

to the application. The dual case of interlocked control initiated by a IEC 61131-3 task works in a similar way, by 

utilizing the SEND FB and the specific SIFB (Fig. 7).  
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Fig. 6: Interlocked control initiated by a IEC 61499 application. Fig. 7: Interlocked control initiated by a IEC 61131-3 task. 

 

4.1. PLC Data Exchanges 

As a summary, the proposed communication architecture is based on sets of pairs of IEC 61131-5 FB and 61499 SIFB, 

where input/output from FB are connected to output/input of SIFB, and a communication paradigm is defined on the pair. 

Such pairs are put in the IEC 61131-3 program and in the IEC 61499 application respectively, to implement the 

communication, as shown if Fig. 4b. We define each of these pairs as PLC Data Exchanges or PDEs. 

 

Fig. 8–11 summarize the 4 types of PDEs furnished by our architecture, giving information about the function blocks 

of both standards needed to perform the data exchange and their interactions. A detailed description of the Programmed 

Data Acquisition PDE from IEC 61131-3 to IEC 61499 (Fig. 8) is provided below. For the other PDEs, only some 

general information is provided while the rest can be deduced in a similar way from Fig. 9–11 and Fig. 5 and 6.  

The Programmed Data Acquisition PDE from IEC 61131-3 to IEC 61499 (Fig. 5a and Fig. 8) allows IEC 61131-3 

programs to send data to IEC 61499 applications. An instance of IEC 61131-5 USEND function block, shown in Fig. 8 

(a), is used to communicate data to an instance of the associated SIFB shown in Fig. 8 (b). The USEND FB has a REQ 

input, that is used to request the data transfer; a DONE output that signals the completion of the transfer operation; R_ID 

and ID inputs that identify the PDE (they are automatically managed by the software) and SD_1, … SD_n inputs that 

hold the data to be transferred. Such inputs correspond to the DATA_IN input of Fig. 5a. 

The SIFB has an IND event output for signaling data reception; the PARAMS inputs  that are the PDE identifier, and 

RD_1, … RD_n data outputs that hold the received data. Such outputs correspond to the DATA_OUT output of Fig. 5a. 

According to the standard, the SIFB has also INIT/INITO events for initialization and the input and output qualifiers 

(respectively QI and QO) are used to giving a positive or negative characterization to an event, according to their boolean 

state.  

Fig. 8 (c) shows the time-sequence diagram of the Programmed Data Acquisition PDE. When a rising edge is detected 

on the REQ input of the USEND FB, the data are transferred to the SIFB. The SIFB then triggers an IND+ event in order 

to indicate the data reception to the IEC 61499 application. The USEND FB signals that data is sent pulsing the DONE 

output. 

The Programmed Data Acquisition PDE from IEC 61499 to IEC 61131-3 (Fig. 5b and Fig. 9) allows IEC 61499 

applications to communicate data to IEC 61131-3 programs. From the IEC 61131-3 side, an instance of the URCV FB is 

used. The URCV FB has an EN_R input that allows to enable/disable reception of data and a NDR output that is used to 

signal the reception of new data. The IEC 61499 SIFB has a REQ event that is used to request data transfer and a CNF 

event that is issued when the data transfer has completed.  

The Interlocked Control PDE from IEC 61131-3 to IEC 61499 is used when an IEC 61131-3 program needs a service 
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that is available on the IEC 61499 part of the application (Fig. 7 and Fig. 10). The IEC 61131-5 SEND FB has a REQ 

input for requesting the service and a NDR output that indicates that response data is arrived. Also, a R input may be 

used to cancel the service request. The IEC 61499 has a IND event output that indicates when a procedure call is 

requested and the application must compute response data and issue an RSP event to conclude the handshake. A similar 

mechanism is used for Interlocked Control PDEs from IEC 61499 to IEC 61131-3, shown in Fig. 11. 

Further details about initialization procedures can be found in the authors’ previous paper [26].  
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Fig. 8: Programmed Data Acquisition PDE from IEC 61131-3 to IEC 

61499: (a) IEC 61131-3 FB; (b) IEC 61499 SIFB; (c) time-

sequence diagram. 

Fig. 9: Programmed Data Acquisition PDE from IEC 61499 to IEC 

61131-3: (a) IEC 61131-3 FB; (b) IEC 61499 SIFB; (c) time-

sequence diagrams. 

 

(b)

(c)

IEC 61131-3 IEC 61499

REQ

r. edge
IND+

NDR 

pulse

normal_pde

(a)

ANY

ANY

BOOL

SEND

REQ BOOL

BOOLERROR

NDR

INTSTATUSID

STRING R_ID

COMM_CHANNEL

ANY

SD_n

SD_1

ANY

.
.
.

.
.
.

BOOL R

RD_m

RD_1

.
.
.

.
.
.

INIT INITO

IND

STATUSPARAMS

QO

RD_1

RD_n

QI

EVENT

EVENT

BOOL

ANY

ANY

ANY

EVENT

BOOL

STRING

.
.
.

.
.
.

RSP

SD_1

SD_m

ANY

.
.
.

.
.
.

ANY

EVENT

RSP+

IEC 61131-3 IEC 61499

REQ

r. edge
IND+

R

r. edge

reset_request

IND-
 

(b)

(c)

IEC 61131-3 IEC 61499

NDR 

pulse

REQ+

RESP

r. edge

normal_pde

ANY

ANY

INIT INITO

CNF

STATUSPARAMS

QO

RD_1

RD_n

QI

EVENT

EVENT

BOOL

ANY

ANY

ANY

EVENT

BOOL

STRING

.
.
.

.
.
.

REQ

SD_1

SD_m

ANY

.
.
.

.
.
.

ANY

EVENT

CNF+

IEC 61131-3 IEC 61499

reset_request

(a)

BOOL

RCV

EN_R BOOL

BOOLERROR

NDR

INTSTATUSID

STRING R_ID

COMM_CHANNEL

ANY

SD_n

SD_1

ANY

.
.
.

.
.
.

BOOL RESP

RD_m

RD_1

.
.
.

.
.
.

RESETEVENT

NDR 

pulse

REQ+

ERROR 

pulse

RESET+

 
Fig. 10: Interlocked Control PDE from IEC 61131-3 to IEC 61499: 

(a) IEC 61131-3 FB; (b) IEC 61499 SIFB; (c) time-sequence 

diagrams. 

Fig. 11: Interlocked Control PDE from IEC 61499 to IEC 61131-3: 

(a) IEC 61131-3 FB; (b) IEC 61499 SIFB; (c) time-sequence 

diagrams. 

 

4.2. Interaction Function Blocks 

In order to simplify the design of the distributed application, we can use the proposed mechanisms to build more 

complex communications mechanisms, in such a way that the communications logically related to specific IEC 

61131-3 components (for instance a program or the set of programs running on a resource) can be seen in the IEC 

61499 application as a single SIFB (this is a typical solution adopted in the IEC 61499 standards to expose to an 

applications the set of services offered by a single device). An example is given in figure 12, where the three IEC 

61131-3 program3 communications are seen as a single SIFB in the IEC 61499 application.  

We will refer to this SIFB as Interaction Function Block (IFB), where each IFB involves a set of PDEs. 
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IEC 61131-3 Program3IEC 61131-3 Program3

IFB

 
Fig. 12: The concept of Interaction Function Block (IFB) 

 

 

Fig. 13 shows an example of an Interaction Function Block constituted by the three PDEs (with reference to the 

Interaction Function Block presented in Fig. 12) 1) PDE A - a Programmed Data Acquisition PDE sending data from IEC 

61499 to IEC 61131-3; 2) PDE B - an Interlocked Control PDE realizing a procedure call from IEC 61131-3 to IEC 

61499;  3) PDE C - a Programmed Data Acquisition PDE sending data from IEC 61131-3 to IEC 61499. 

 

Each event input/output of the IFB (Fig. 13 (a)) is associated to a single PDE. In the figure this association is indicated 

appending A, B or C according to the particular PDE at the end of the event identifier. Connections between event and 

data input/outputs indicates the parameters to be exchanged: for example, the association between REQ_A event input 

and P1 data input indicates that P1 holds the value that the IFB must send to the IEC 61131-3 FB needed to implement 

PDE A. 

 

Fig. 13 (b) shows the interface of the three associated IEC 61131-5 FBs. The IEC 61131-5 communication function 

blocks must be associated to the particular IFB and PDEs in order to properly communicate with the IEC 61499 

application. This association is done using the identification inputs (ID and R_ID) of the IEC 61131-5 function blocks. In 

particular the ID input is used to identify the associated IFB, while R_ID is used to identify the particular PDE.  

5. Methodology and Case Study 
Basing on the proposed architecture and the PDEs described in the previous section, it is possible to derive a 

methodology for the integration and/or the coexistence of IEC 61131-3 and IEC 61499 logic. In this section, such 

methodology is described, with reference to a case study.  

5.1. Description of the Test Case 

A production chain is considered as test bed. It consists of a series of mechatronic units that work on a workpiece in 

successive steps. Two particular units, shown in Fig. 14, and their interactions are considered in this case study. The unit 

on the left side is the feeder unit. It has a magazine of workpieces and a pusher to push workpieces out of the magazine, 
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Fig. 13: Example of an Interaction Function Block composed of three PDEs. (a) Interaction Function Block Interface; (b) 

corresponding IEC 61131-3 FB interfaces; (c) time-sequence diagrams. 
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making them available for other units. On the right side, there is a transfer unit, that is a manipulator that moves 

workpieces from a left position to a right position. In this case, the transfer unit is used to take workpieces provided by 

the feeder and to transfer them to the next position, where they are supposed to be processed by other automated 

machines. In the initial configuration, the units are controlled using two independent IEC 61131-3 systems and each unit 

has no information regarding the status of the other one. A human operator is needed to give orders to the units for each 

workpiece to prevent clashes between mechanical parts. In order to automate this task, a proper control application must 

be designed. This control application needs information from both the feeder and the transfer units, so it is particularly 

suitable to be designed as a distributed control application using IEC 61499.  

This test case is largely inspired by the one presented in [24] (derived from [27]) but there are some substantial 

differences. In [24], both units (feeder and transfer) are controlled by a single centralized system and the authors show 

how it is possible to redesign the control logic using IEC 61499 in order to allow distribution. In this paper, each unit is 

initially controlled by its own control system with independent control logic and we show how it is possible to add IEC 

61499 distributed control logic by reusing the components written in the IEC 61131-3 standard. 
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Fig. 14: The mechatronic units for workpiece storage [27]. The names of PLC input/output variables are mostly self-explanatory. An 

explanation of the less intuitive names follows: pos_e – position extended; pos_r – position retracted; vmon – workpiece sucked in; 

vcm_on/vcm_off – start/stop sucking a workpiece. 

 

5.2. Initial Configuration 

In the initial configuration (Fig. 14), the feeder unit and the transfer unit are independent. The control panel of the 

feeder units has three buttons and three LEDs: the START and STOP buttons allow to start and stop the feeder unit; the 

PUSH button pushes a workpiece out of the magazine; the ON LED indicates if the feeder unit is enabled, the PUSHED 

LED signals that a workpiece has been pushed out of the magazine and the EMPTY LED indicates that there are no more 

workpieces in the magazine. 

The transfer unit control panel has four buttons and three LEDs: the START and STOP buttons allow to start and stop 

the transfer unit; the TRANSF button moves the manipulator arm to the left position, takes the workpiece from the left to 

the right position, leaves it in the right position and moves the arm back to the left position (so the next station can catch 

the workpiece without clashing); the FREE button allows to move the manipulator arm from the left to the right position, 

in order to allow the feeder to push another workpiece without clashing; the ON LED indicates if the transfer unit is 

enabled, the READY LED indicates that the transfer unit is ready to accept a workpiece from the feeder (the left position 

is free) and the MOVED LED indicates that a workpiece has been moved to the right position. 

The human operator must manually handle the synchronization between the units in the following way: 

1) push the FREE: the arm moves to the right position; 

2) wait for the READY LED to be lit to indicate the end of the operation; 

3) push the PUSH button: a workpiece is pushed out of the magazine; 

4) wait for the PUSHED LED to be lit to indicate the end of the operation; 

5) push the TRANSF button: the arm moves to the left position, takes the workpiece, moves the workpiece to the right 

position, leaves the workpiece and comes back to the left position; 

6) wait for the MOVED LED to be lit to indicate the end of the operation; 

7) command the next station to take the workpiece and go back to step 1. 
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The IEC 61131-3 program that controls the feeder unit is shown in Fig. 15 (a). The used language is Function Block 

Diagram (FBD) and the program basically connects the input buttons and output LEDs to the Feeder Function Block that 

implements most of the control logic. For simplicity, the behavior of the Feeder FB is shown as a state chart diagram in 

Fig. 15 (b) that can be implemented with any IEC 61131-3 language. The EN input of the Feeder FB is used to enable the 

function block. When the FB is enabled, the STARTED output indicates that the Feeder FB is enabled. When a rising 

edge is detected on the PUSH input, the BUSY output becomes active and a workpiece is pushed out of the magazine. 

When the operation is finished, the BUSY is deactivated (becomes off) and the DONE output becomes high (on) for one 

cycle. 

The IEC 61131-3 program that controls the transfer unit is shown in Fig. 16 (a). Similarly to the feeder unit, the 

program connects the input buttons to the Transfer Function Block, whose behavior is shown in Fig. 16 (b). The EN input 

and the STARTED output work as it has already been seen for the Feeder FB. The FREE input allows to move the 

manipulator arm from the magazine to the right position, while the TRANSF input allows to transfer a workpiece from 

the magazine to the right position. When the FREE or the TRANSF inputs are activated, the BUSY output is activated 

until the requested operation is finished. Then the BUSY output is set to 0 and DONE is activated. The NEXT and MGZ 

outputs are updated according to the position of the manipulator arm. 

 
 

(a) 

 

(b) 

 
 

Fig. 15: IEC 61131-3 program that controls the feeder unit. 

(a)      Main program in Function Block Diagram (pink/dark – standard FBs, green/clear – custom FBs) 

(b) State machine describing the behavior of the Feeder function block (Upper case variables refers to the Feeder FB input/outputs, 

while lower case variables refers to PLC 1 input/outputs shown in Fig. 14). 

 

 
 

 
 

(a) 

 

(b) 

 
Fig. 16: IEC 61131-3 program that controls the transfer unit. 

(a)     Main program in Function Block Diagram (pink/dark – standard FBs, green/clear – custom FBs) 

(b) State machine describing the behavior of the Transfer function block (Upper case variables refers to the Transfer FB 

input/outputs, while lower case variables refers to PLC 2 input/outputs shown in Fig. 14). 

 

5.3. A methodology for the Integration Based on the LE-INT Architecture 

The methodology proposed for the integration of existing systems in a more advanced distributed solution is based on 

(re) using IEC 61131-3 code for the implementation of the low-level control logic and using IEC 61499 for high-level 

integration control logic, by utilizing the communication facilities offered by the LE-INT architecture. The low-level IEC 
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61131-3 control logic deals with sensors and actuators and performs basic control tasks that are already developed in the 

existent systems. The high-level IEC 61499 control logic performs more complex tasks that involve interactions between 

different systems using functionalities and information provided by the low-level logic. 

In particular, the steps for the integration of the systems are the following: 

1) Definition of the requirements of the distributed solution: in this step, the behavior of the integrated distributed 

system is defined. In case of integration of independent systems (as in this case study) this step requires some designing 

effort to individuate the additional activities of the automated solution, while in case of distribution of a centralized 

system, this step is straightforward since the requirements will not change. 

2) Definition of the PDEs and the Interaction Function Blocks: in this step, from the analysis of the IEC 61131-3 logic, 

functionalities to expose and information to be exchanged with the IEC 61499 logic are individuated; these 

functionalities and information are mapped to LE-INT PDEs and IFBs. In case of integration of independent systems (as 

in this case study) this step is quite simple, since each system has its own program. In case of distribution of a centralized 

system, this step requires more effort to decompose the program code. However, as already said, usually program code is 

organized in a modular way and may be easily decomposed. 

3) Implementation of IEC 61131-3 interface code: basic modifications are applied to the IEC 61131-3 code to add the 

PDEs. 

4) Implementation of IEC 61499 control application: the high level distributed control application that fulfills the 

requirements defined in step 1 is developed, using functionalities offered by the IEC 61131-3 low-level layer. 

5.4. Definition of the Requirements of the Distributed Solution 

In the first step, we define the behavior of the solution obtained integrating the feeder and transfer unit. This system 

allows the automation of the synchronization task presented in 5.2 and performed by the human operator. Two operative 

modes are defined: single or automatic mode. In single mode, the synchronization between the feeder and transfer units is 

managed by the distributed application, but the human operator is still necessary to handle the synchronization with 

additional successive stations of the production line, even though its work is reduced compared to the initial 

configuration. In this mode, the system waits for an acknowledgment from the operator after each workpiece is 

transferred. In automatic mode, all the synchronizations are handled by the distributed control application. In this case, 

the next station must be programmed so that it communicates information necessary to allow synchronization avoiding 

mechanical clashes between the stations. In this mode, no acknowledgement from the human operator is required. 
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Fig. 17: A distributed scenario for the feeder and transfer units control. 

 

The control panel of the new system has been redesigned to meet the new requirements. It has three buttons, a switch 

and two LEDs: START and STOP buttons allow to start or stop the feeder and the transfer units; the ACK button is used 

to confirm a workpiece transfer in single mode; the SINGLE switch allows to select single or automatic mode of 

operation; the ON LED indicates if the system is enabled and the MOVED LED is used in single mode to indicate that a 

workpiece has been transferred and the system waits for acknowledgment. 

Fig. 17 shows a possible distributed solution for the control system. In this case, the precedent PLC configuration is 

maintained with few modifications to change the panel. The two panels are replaced with the panel designed for the new 

system. PLC 1 is connected to sensors/actuators relative to the feeder unit and also manages the input/outputs lines from 

the new control panel. PLC 2 is connected to sensors/actuators relative to the transfer unit. The two PLCs are now 

connected by a network that allows communication of synchronization information. 
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5.5. Definition of the Interaction Function Blocks and Implementation of IEC 
61131-3 Interface Code 

In the second step, we define the Interaction Function Blocks. An IFB for each unit is created. These are used to 

encapsulate (from the IEC 61499 point of view) the existing IEC 61131-3 code that manages the two units. In addition, a 

third IFB is created to interact with the IEC 61131-3 code that manages the command panel. We decided to implement 

the management of the control panel using IEC 61131-3 to show that the architecture can also be used in the design of 

mixed IEC 61131-3 and IEC 61499 systems from scratch.  

Three IFBs are defined (Table 1): 

• PI_FED: composed of the PDEs relative to the feeder unit; 

• PI_TR: composed of the PDEs relative to the transfer unit; 

• PI_PAN: composed of the PDEs relative to the panel. 

The feeder unit IEC 61131-3 software layer implements the low-level control of the pusher. So, it exports to the IEC 

61499 layer a PUSH service, that is used to command the feeder to push a new workpiece and it is realized with an 

Interlocked Control PDE. In addition, it communicates information about the emptiness of the magazine, the started 

status of the unit and it requires enable information from the IEC 61499 layer to enable/disable the unit. 

So, the PI_FED has the following PDEs (Table 1): 

• FED_EN: Programmed Data Acquisition PDE from IEC 61499 to IEC 61131-3 of the Boolean enable; 

• FED_STARTED: Programmed Data Acquisition PDE from IEC 61131-3 to IEC 61499 of the Boolean started 

status; 

• FED_EMPTY: Programmed Data Acquisition PDE from IEC 61131-3 to IEC 61499 of the Boolean empty status 

• FED_PUSH: Interlocked Control PDE from IEC 61499 to IEC 61131-3 of the PUSH service that has no 

input/output parameters. 

In Fig. 18 (a) the IEC 61131-3 code of the feeder unit is shown. The existing code (Fig. 15 and 16) is reused, and data 

lines that were previously connected to I/O of the control panel now interact with the darker/blue Function Blocks that 

constitute the PDEs executed. Note that Programmed Data Acquisition PDEs from IEC 61131-3 to IEC 61499 

(FED_EMPTY, FED_STARTED) are performed only when the data change, so the CHGD FB is used to detect changes 

on the data to be sent. The CHGD code is shown in Fig 18 (d). 

The transfer unit IEC 61131-3 software layer provides the services FREE and TRANSFER that allow, respectively to 

command a free operation and a transfer operation. These operations are realized by Interlocked Control PDEs from IEC 

61499 to IEC 61131-3. For error management, these PDEs carry two Boolean output parameters (MGZ and NEXT) that 

indicate the position of the manipulator after the operation is completed. In addition, similarly to the feeder unit, the 

transfer unit provides information about its started status and requires enable information from the IEC 61499 layer. 

So, the PI_TR IFB has the following PDEs (Table 1): 

• TR_EN: Programmed Data Acquisition PDE from IEC 61499 to IEC 61131-3 of the Boolean enable; 

• TR_STARTED: Programmed Data Acquisition PDE from IEC 61131-3 to IEC 61499 of the Boolean started status; 

• TR_FREE: Interlocked Control PDE from IEC 61499 to IEC 61131-3 of the FREE service with two Boolean inputs 

(MGZ and NEXT); 

• TR_TRANSFER: : Interlocked Control PDE from IEC 61499 to IEC 61131-3 of the TRANSFER service with two 

Boolean inputs (MGZ and NEXT). 

Fig. 18 (b) shows the IEC 61131-3 code of the transfer unit. As for the feeder unit, the original code is left unmodified 

and the PDEs is added. 

Finally, the panel control logic is designed from scratch. Following the proposed methodology, the input from the 

buttons and the outputs to the LEDs are managed by the PI_PAN IFB, that has the following PDEs: 

• PAN_BTN: Programmed Data Acquisition PDE from IEC 61131-3 to IEC 61499 of the status of the buttons; 

• PAN_LED: Programmed Data Acquisition PDE from IEC 61499 to IEC 61131-3 to drive the LEDs; 

Fig. 18 (c) shows the IEC 61131-3 code that simply connects the PLC input/outputs to the blue/darker FBs that 

performs the PDEs. 

According to the hardware configuration shown in Fig. 13, the Feeder and the Panel programs are executed on PLC 1 

and the Transfer program on PLC 2. Differently from Fig. 10, now PLC 1 and PLC 2 are connected via a network 

infrastructure. 

 

5.6. Implementation of IEC 61499 Control Application 

The application is organized in two blocks, one for controlling the feeder unit and the other one for controlling the 

transfer unit. In order to coordinate the operations between the two units, a simple protocol ([24]) is adopted. Fig. 19 

shows a scheme of the protocol where the stations are modeled with an IEC 61499 function block: each unit of the 
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production line communicates with the unit on the left and the one on the right, passing the variables ALLOW_LEFT and 

ALLOW_RIGHT and receiving LEFT_OK and RIGHT_OK. Before performing operations that could cause collision 

between mechanical parts, the controller must check the guard variable (LEFT_OK and RIGHT_OK) corresponding to 

the unit that may collide. These variables are set by the other units using ALLOW_RIGHT and ALLOW_LEFT. For 

example, if a station (called left station) wants to use a shared section that may collide with the station on its right (called 

right station), it must check its RIGHT_OK variable. This variable was previously set by the right station using its 

ALLOW_LEFT variable, to indicate that the shared section is not in use. While the left station uses the shared section, it 

must prevent the right station from accessing it, resetting ALLOW_RIGHT variable. 

Fig. 20 (a) shows the IEC 61499 control application. The dark/blue function blocks are the Interaction Function 

Blocks. The clear/green function blocks are IEC 61499 basic function blocks that implement the control application. 

The FeederCtl FB implements the control of the feeder unit. It is connected with the IFBs PI_PAN and PI_FED and 

also sends the ALLOW_RIGHT variable to the TransferCtl FB and receives from it the RIGHT_OK variable for 

synchronization. The function block basically, when enabled, try to push workpieces from the magazine whenever 

possible, that is, when the transfer unit signals that it is ok to transfer (using the RIGHT_OK variable) and the magazine 

is not empty. The ECC (Execution Control Chart) of the FeederCtl function block is shown in Fig. 20 (b). 

In similar manner, the TransferCtl FB implements the control of the transfer unit. It is connected to the IFBs PI_PAN 

and PI_TR and it exchanges the ALLOW_LEFT and LEFT_OK variables with FeederCtl. In addition, an eventual station 

at the right of the transfer unit can implement the synchronization protocol sending the RIGHT_OK variable. Fig. 20 (c) 

shows the ECC. When enabled, the station performs a FREE operation on the transfer unit (if an eventual unit to the right 

does not block it). When the FREE is completed, the FeederCtl block is allowed to execute the PUSH and the TransferCtl 

waits for the completion of the PUSH operation, that is the LEFT_OK variable is on. When this happens, the TransferCtl 

performs a TRANSFER operation and, if single mode is selected, it lights the MOVED LED and waits for the ACK from 

the control panel. 

Table 1: Organization of the IFBs used in the Test Case. 

IFB PDE IEC 61131-5 FB 
IEC 61131-5 FB 

Inputs/Outputs 

IFB Data 

Inputs/Outputs 

PI_FED 

FED_EN URCV RD EN 

FED_STARTED USEND SD STARTED 

FED_EMPTY USEND SD EMPTY 

FED_PUSH RCV - - 

PI_TR 

TR_EN URCV RD EN 

TR_STARTED USEND SD STARTED 

TR_FREE RCV 
SD_0 MGZ 

SD_1 NEXT 

TR_TRANSFER RCV 
SD_0 MGZ 

SD_1 NEXT 

PI_PAN 

PAN_BTN USEND 

SD_0 START 

SD_1 STOP 

SD_2 ACK 

SD_3 SINGLE 

PAN_LED URCV 
RD_0 ON 

RD_1 MOVED 
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(a) 

 
 

(b) 

 
(c) 

 

(d) 

 
 

 

 
 

BOOL

CHGD

IN BOOLOUT

VAR

  LAST: BOOL;

END_VAR

OUT := IN<>LAST;

LAST := IN;
 

 

  

Fig. 18: IEC 61131-3 part of the code of the distributed system (pink – standard FBs, green – custom FBs, blue – interface FBs). 

(a)      Program that controls the feeder unit, in Function Block (FB) Diagram. The legacy IEC 61131-3 code shown in Fig. 11 is reused. 

(b) Program that controls the transfer unit, in FB Diagram. The legacy IEC 61131-3 code shown in Fig. 12 is reused. 

(c)     Program that controls the command panel. Written from scratch in FB Diagram. 

(d) Definition of the CHGD custom Function Block. Code is written in Structured Text. 

 

 



 

 

17 

 
Fig. 19: A synchronization protocol [24] realized with IEC 61499 function blocks that represent the units of a production line. 

 
(a) 

 
(b) 

 

(c) 

 
Fig. 20: IEC 61499 part of the code of the distributed system. 

(a) Distributed application. IFBs used to interact with IEC 61131-3 FBs are the darker/blue ones. 

(b)Execution control chart of the FeederCtl function block 

(c) Execution control chart of the TransferCtl function block 

Algorithms associated to the states are self-explanatory (e.g. SET_EN sets the EN variable to 1, while RESET_EN sets the EN variable 

to 0). 
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6. Implementation and Evaluation 
In this section, considerations about the possible implementations of LE-INT are presented and the details of the 

implementation used for the test case are described. In addition, we provide and discuss experimental results obtained by 

running the proposed test case and other implementations, based only on IEC 61499 or IEC 61131-3, in a simulated 

environment. 

6.1. Chosen Implementation 

The test implementation of the architecture is based on the parallel execution of an IEC 61131-3 runtime and an IEC 

61499 runtime. It has been realized on an industrial PC-based PLC environment with Microsoft Windows CE and also on 

a PC with Windows XP 32-bit. 

We take a runtime environment for the IEC 61131-3 code [23] that has been extended with custom-defined 

communication FBs written in C language to realize the PDEs. 

The IEC 61499 part of the system is realized using an open source runtime environment [23]. The SIFBs realizing the 

PLC interfaces have been implemented in the C++ language and included in the runtime. 

Code modules belonging to PDEs communicate via shared memory. 

IEC 61131-5 FBs were developed and installed as C functions. Each invocation of the function block instance is 

executed as a function call and inputs, outputs and internal state are passed to this function as parameters.  

SIFBs for the IEC 61499 part are designed as C++ classes. The behavior of a SIFB on the reception of events is 

defined by a particular function, while for the generation of SIFBs output events when a data exchange is initiated by IEC 

61131-3, it has been introduced an external event handler thread that waits for data from IEC 61131-3. 

 

6.2. Alternatives to the Implementation 

Different implementation strategies can be adopted to realize the proposed architecture, since it does not pose 

particular limits, as long as the control system (composed of different networked devices) is able to execute both IEC 

61499 and IEC 61131-3 code and the IEC 61131-3 and IEC 61499 programs are able to communicate with each other via 

the defined interfaces and paradigms. 

We have individuated three possible implementation approaches: 

1) The control system is composed of some IEC 61499 only devices and some IEC 61131-3 only devices. The PDEs 

realizing data exchanges between standards communicate through the network. 

2) Each device of the control system runs a runtime environment capable of executing both IEC 61131-3 and IEC 

61499 programs, handling also the inter-standard communications. 

3) Each device of the control system executes in parallel the runtime environments for both standards and the data 

exchanges are realized by a software layer that uses inter-process communication techniques to transfer data between the 

runtime environments. 

The first approach has the advantage that it does not require an heavy customization of the device, so it can be applied 

even to devices with a closed software architecture that does not permit to install a dedicated runtime for the other 

standard or does not permit to implement low-level custom function blocks. As long as the runtime provides basic 

communication function blocks for sending data through the network, the architecture can be implemented following this 

first approach. However this approach limits the flexibility of the proposed architecture, since each device is limited to 

execute code of a single standard. In addition, the execution of the code of different standards on different devices results 

in an increased inter-standard communication overhead [28] (data must be transmitted through the network) compared to 

the other approaches where all the code is executed on a single device. 

The second approach is the most efficient of the three proposed approaches, since there is a single runtime that handles 

execution of modules of both standards, whenever the implementation of such environment requires a high development 

effort and specific competences about the software architecture of the devices. So this strategy can be implemented 

particularly by run-times developers. 

The last approach is used in our implementation: it allows to execute programs of both standards on a single device, 

giving more flexibility than the first approach and usually reducing the inter-standard communication time overhead, 

since inter-process communication is faster than network communication and can exploits the benefits of CMP 

architectures [36]. Differently than the second approach, this one requires a low design effort since only the software 

layer that realizes the communication between the two runtimes must be implemented. As a drawback, the parallel 

execution of two runtimes can consumes more resources in terms of CPU usage and memory usage. The evaluation of 

such overhead is discussed in Section 6.4. 
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6.3. Evaluation Environment 

The aim of our evaluation was to characterize the performance of the proposed architecture in terms of:  i) the CPU 

and memory usage, ii) the response time, and iii) the PDE delay time. 

The control software, the runtimes for the two standards, and the IFB and PDE were executed on real machines. In 

particular, the evaluation was performed on two hardware configurations. The first configuration (that will be referred as 

WinCE) is composed of two compact industrial PCs [44], each one with an ARM9 CPU at 520 MHz and 64 MBytes of 

RAM. The two devices use Windows CE as operating system and are connected to each other using an Ethernet network. 

The second configuration (that will be referred as Win32) is composed of two high-performance PCs: Intel Pentium 4 at 

3 GHz with 2 GB RAM. The two PCs use 32-bit Windows XP as operating system and are connected to each other using 

an Ethernet network. In both configurations the devices were equipped with the IEC 61131-3 runtime and the IEC 61499 

runtime. Only the mechatronic components of the system were simulated, and they were designed to generate the input 

changes as in the actual machines according to the timing constants shown in Table 2, derived from analysis of real 

systems. In performance measures, their CPU and memory usage of this processes has not been considered. 

For the tests, the control application was configured in SINGLE mode, so each workpiece transfer had to be confirmed 

by an ACK signal. The evaluation environment automatically sent the panel commands to start the transfer and feeder 

units and sent the ACK each time a workpiece was successfully transferred (MOVED LED active). The ACK was sent 

after a random amount of time, in order to decouple the pressure of the ACK button from the period of the control task. 

This workpiece transfer was repeated 100 times for each simulation run, while the evaluation environment collected the 

following performance data: 

• response time: it is the time interval between the push of the ACK button (that indicates the system to transfer 

another workpiece) and the MOVED LED is lit (that indicates that the workpiece has been transferred); 

• CPU usage: it is the percentage of CPU time dedicated to the execution of the runtimes and the control application; 

• memory usage: it is the memory allocated by the runtimes for the execution of the control application; 

• PDE delay time: it is the time interval between the instant in which a request arrives to a PDE (rising edge of the 

REQ input for IEC 61131-3 or REQ event for IEC 61499) and the instant when the data is available (rising edge of NDR 

output for IEC 61131-3 or IND event for IEC 61499). 

 
Table. 2. Time constants used for configuring the simulation environment. 

Time constant Value 
Feeder extension time 350 ms 
Feeder retraction time 250 ms 

Transfer move time (empty) 1450 ms 

Transfer move time (loaded) 1850 ms 
Vacuum on time 900 ms 

Vacuum off time 50 ms 

 

 

6.4. Simulation Results 

The proposed architecture has been evaluated in different configurations and has been compared with different 

implementations. In particular, we considered the following implementations: 

• LE-INT. It is the solution described in Section 5.6. This application has been tested on a single device (without 

network communications) and on two devices (networked solution). It has also been tested with different task periods for 

the IEC 61131-3 tasks: 10 ms, 50 ms and 100 ms. 

• IEC 61499. It is a pure IEC 61499-based solution. The control application has been developed following the multi-

layer distributed controllers approach [24]. This solution also has been executed on a single device or distributed on two 

devices.  

• IEC 61131-3. It is a pure IEC 61131-3 solution. This is a centralized solution (described in [24] with a state 

machine) and it has been implemented only on a single device. The solution has been executed with different values of 

task period: 10 ms, 50 ms and 100 ms. 

Each implementation has been tested on the hardware architectures described in the previous section: WinCE and 

Win32. 

Fig. 21 shows the response time of the various configurations. The bars indicate the average recorded response time of 

the 100 runs of the simulation, while the line indicates the variance. The analysis of these results indicates that the pure 

IEC 61499 implementation has the best (lowest) response times and has the lowest variance. This is due to the better 

efficiency permitted by the event-driven model, opposed to the cyclic execution of IEC 61131-3. For the mixed and pure 

IEC 61131-3 configurations, the average response time and the variance depend on the chosen task period, since a larger 

period means an increased delay between the change of a PLC input and the relative processing. The use of the mixed 
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approach over a pure IEC 61131-3 solution causes only a small increment in the response time (especially at 10ms where 

the difference is practically insignificant). 

 

 
Fig. 21: Response times of the different tested configurations. The bars indicate the average response time while the line indicate the 

variance of response times. 

 

The results showed also that there are not substantial differences between running the control application on one or 

two devices. This means that a single device is more than enough to satisfy the processing needs of application and also 

means that communications does not introduce significant delays to the control application (the communication overhead 

is compensated by the parallel execution on different devices, as the experiment are in a single core environment). 

Finally, because of the difference in computational power, Win32 response times are slightly lower than WinCE response 

times. 

Fig. 22 shows various graphs of CPU and memory usage; we could not collect CPU usage data for Win32 

configurations because the values were too small to ignore measure error (average CPU usage less than 0,1%). The 

results show that the IEC 61131-3 runtime resource consumption (both in terms of CPU and memory) is far greater than 

IEC 61499 runtime resource consumption. From the CPU usage point of view, this can be explained by the fact that the 

IEC 61131-3 runtime uses a cyclic approach so it must keep a task scheduler running at high frequency to activate the 

tasks of the control application, while the 61499 runtime uses an event-driven approach where function blocks are 

executed only when needed. In particular, for the 61131-3 runtime, the CPU usage is determined in a large part by the 

runtime activity and only a very small part by the control application; in fact, even if the task period is changed or if the 

application is distributed on two controllers, the CPU usage remains basically the same. In the distributed approach, the 

CPU and memory usage of the 61499 runtime are increased, since it must also handle the data communication through 

the network. The contribution of the 61499 runtime in terms of resource consumption is negligible when compared to the 

61131-3 one. 

Summarizing, in terms of resource usage (memory and CPU), the proposed solution is similar to a pure IEC 61131-3 

solution, it is greater than a pure IEC 61499 solution but it is not critical even on a low-end hardware configuration (less 

than 2% CPU usage in all the configurations). From the performance point of view, the faster solution is the pure IEC 

61499 one, however it is possible to achieve similar performance in our solution by acting on the task period. 
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Fig. 22: Resource usage: (a) WinCE average CPU usage, (b) WinCE memory usage, (c) Win32 memory usage 

 

Fig. 23 shows the average delay times measured for the different PDEs. The delay have been measured in the LE-INT 

configuration with a single controller and only the PDE sufficiently stimulated during the simulation runs have been 

reported (FED_PUSH, TR_FREE, TR_TRANSFER, PAN_LED and PAN_BTN). The values have been normalized to 

the task period. The interlocked control PDEs perform data transfers in both directions, so they appear twice in the graph, 

once for sending the parameters and once for receiving the results. Data transfers form IEC 61499 to IEC 61131-3 have a 

delay slightly smaller than 1 task period. This is due to the fact that data are actually available to the IEC 61131-3 

runtime when the task is invoked, so even if the data transfer is instantaneous, the data reception is delayed to the next 

invocation. However, we always get a delay that is almost one period. This behavior can be explained by considering that 

in our particular control application, every IEC 61499 event chain is generated by requests coming from the IEC 61131-3 

0

0,5

1

1,5

2

2,5

PLC1 PLC2 PLC1 PLC2 PLC1 PLC2 PLC1 PLC2

10ms 50ms 100ms IEC61499 10ms 50ms 100ms 10ms 50ms 100ms

LE-INT IEC61131-3 LE-INT IEC61499

Single Distributed

C
P

U
 u

sa
ge

 (
%

)

(a) 61131-3 Runtime 61499 Runtime

0

200

400

600

800

1000

PLC1 PLC2 PLC1 PLC2 PLC1 PLC2 PLC1 PLC2

10ms 50ms 100ms IEC61499 10ms 50ms 100ms 10ms 50ms 100ms

LE-INT IEC61131-3 LE-INT IEC61499

Single Distributed

M
e

m
o

ry
 U

sa
ge

 (
K

b
yt

e
s)

(b)
61499 Runtime 61131-3 Runtime

0

2000

4000

6000

8000

10000

12000

14000

16000

PLC 1 PLC 2 PLC 1 PLC 2 PLC 1 PLC 2 PLC 1 PLC 2

10ms 50ms 100ms IEC61499 10ms 50ms 100ms 10ms 50ms 100ms

LE-INT IEC61131-3 LE-INT IEC61499

Single Distributed

M
e

m
o

ry
 U

sa
ge

 (
K

b
yt

e
s)

(c) 61499 Runtime 61131-3 Runtime



 

 

22 

layer, so the execution of IEC 61499 function blocks is synchronized with the task invocation.  

The delay of communications from the IEC 61131-3 to IEC 61499, on the other hand, is very low (less than one 

millisecond), since the event-based execution model of IEC 61499 allows to process data as long as it is received without 

any further delay. 

 

 
 

Fig. 23: Average delay time measured for the various PDEs. The values are normalized to the task period. Note that data transfers from 

IEC 61499 to IEC 61131-3 have a delay slightly smaller than 1 task period, while data transfers to the other direction (from IEC 

61131-3 to IEC 61499) are almost instantaneous (less than a millisecond). 

 

6.5. Discussion 

As stated in section 2, Zoitl et al. [12] proposed three different approaches to achieve harmonization between the two 

standards:  

1) parallel co-existence of the run-time of both the standards with a communication interface to provide interoperability; 

2) IEC 61131-3 based run time enhanced with IEC 61499 concepts and functionalities; 

3) IEC 61499 based run time enhanced with IEC 61131-3 concepts and functionalities. 

Our proposed solution follow the first approach, while solution presented in [8], [9], [20] and [21] are solutions that 

follow the other two approaches. All the three approaches guarantee the integration and reuse of IEC 61131-3 code in a 

IEC 61499 solution. The main differences can be identified in the following points: the effort in realizing the run-time, 

the effort in realizing the inter-standard communication interfaces, and the performance overhead in terms of response 

time, CPU and other resources usage.  

For our solution, the run-time support is not modified, so the only effort consists in coding the FBs model of our 

architecture, then the specific FBs of an application may be automatically generated from such model. The approaches 2 

and 3 instead are more complex because they require  the coding of the run-time support for a standard into the runtime 

of the other, and in fact, such complexity has been reduced in some cases by relaxing the full compatibility and 

compliance constraints. As for the effort in realizing the inter-standard communication interfaces, such effort is similar in 

all the three approaches, and it mainly concerns the specification of the data that must be exchanged. In conclusion, the 

effort to set-up our solution is minimal, and can be implemented with low additional resources, while some programming 

effort is required to realize integration. On the contrary, the effort to set-up the other two approaches is bigger, especially 

if they are devoted to the realization of systems that must run in critical environment, as it includes not only significant 

development effort but also significant testing effort. 

From the performance point of view, data in section 6.4 indicate that our solution, even when executed on a single 

machine, performs in a way similar to a pure IEC 61131-3 or IEC 61499 solution as for response time, while the CPU 

usage of the run-times, although higher with respect to the others, is not so significant (below 2%). As the proposed 

solution requires the parallel executions of two run-times, it represents the “worst case” among the three approaches, so 

we can expect that solutions based on the other approaches do not present significant differences with respect to our 

results. 

As stated in the paper, the approach 2 and 3 have been already implemented, although with some compliance issues. Our 

solution is a valid alternative, especially when there is the need to achieve fast solutions with low programming/economic 

effort.  
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7. Conclusion 
In this paper, we propose an architecture for coexistence and interaction of IEC 61131-3 and IEC 61499 standard in 

the same control environment. The architecture allows to design distributed control logic using IEC 61499 while 

maintaining existing IEC 61131-3 software. In addition, new features can be added to the system using the most 

appropriate standard. In order to maintain compatibility with both standards and to reuse well known concepts and 

function blocks, the architecture is based on IEC 61499 service interface function blocks and IEC 61131-5 

communication function blocks.  

A methodology for the integration is presented via a case study, where the architecture is used to realize IEC 61499 

distributed logic controlling two IEC 61131-3 units of a production line. The units previously operated independently and 

they needed a human operator for coordination. The case study shows how the proposed architecture and methodology 

can be used to integrate different systems maintaining the existent IEC 61131-3 control logic and using IEC 61499 to 

specify distributed control logic. This approach also improves the expansion possibilities of the system. In fact, if a new 

unit must be added to the distributed system, its control logic can be designed indifferently using IEC 61131-3 or IEC 

61499. 

The case study has been evaluated on various hardware configurations and it has been compared with a pure IEC 

61499 solution and a pure IEC 61131-3 solution. From the resource (CPU and memory) consumption point of view, the 

proposed solution introduces an overhead that is larger than the pure IEC 61499 solution but comparable to the pure IEC 

61131-3 solution; anyway, such overhead (derived from the coexistence of both IEC 61499 and IEC 61131-3 runtime 

environments) is relatively low even on limited hardware configurations (ARM CPU at 520MHz), so if a pure IEC 

61131-3 solution can be implemented on a particular hardware, it is also possible to implement a mixed solution with the 

proposed architecture on the same hardware. This means that the practices used for sizing a system based on a pure IEC 

61131-3 solution can be utilized also for the proposed solution. From the performance point of view, the pure IEC 61499 

solution is the fastest, but the proposed mixed solution can reach similar performance by acting on the task period. The 

inter-standard communication delay is smaller than a task period; this is comparable to the delay in detecting any other 

event in a cyclic execution model. As a summary, the advantages introduced by the LE-INT (derived from the 

opportunity of reuse, distribution and expansion) are not overwhelmed by performance drawbacks, so it represents a valid 

alternative to harmonization approaches proposed in literature, especially for low effort solutions. 

As for future works, we plan to characterize the real-time behavior of the proposed architecture, and to introduce 

support for debugging and testing. We plan also to apply the architecture to different application domains [22], [43]. 
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