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Abstract. The standard virtual crack closure technique may calculate negative values of the modal 

contributions to the energy release rate when analysing problems with highly asymmetric cracks. 

To avoid such physically meaningless results, a method is proposed, where the partitioning of 

fracture modes is based on the decomposition of the crack-tip nodal force into energetically 

orthogonal components. As an example, a delaminated cantilever beam subjected to bending 

moments is analysed. Both geometric and algebraic interpretations of the method are discussed. 
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1 Introduction 

The virtual crack closure technique (VCCT) is a well-established method for 

calculating the energy release rate, G, when analysing fracture problems via the 

finite element method (Krueger 2004, Krueger et al. 2013). The technique is 

based on the numerical implementation of the crack closure integral (Irwin 1958), 

as first proposed for two-dimensional problems by Rybicki and Kanninen (1977) 

and later extended to three-dimensional problems by Shivakumar et al. (1988). 

For mixed-mode fracture problems, such as the delamination of composite 

materials and interfacial fracture, the energy release rate is the sum of three 

contributions, GI, GII, and GIII, associated to the three basic fracture modes (I or 

opening, II or sliding, and III or tearing). According to the standard VCCT, the 

modal contributions correspond to the amounts of work done to close the 

extended crack by the Cartesian components of the crack-tip nodal force. In 

particular, for I/II mixed-mode fracture problems, GI is related to the work done 

by the normal crack-tip force component, Z, on the corresponding crack-tip 

opening displacement, ∆w, while GII is related to the work done by the tangential 

crack-tip force component, X, on the corresponding crack-tip sliding 
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displacement, ∆u (here, normal and tangential refer to the direction of crack 

propagation). Nevertheless, Valvo (2012) has shown that the standard VCCT may 

be inappropriate to analyse problems with highly asymmetric cracks, as negative 

values of GI and GII may be calculated. Furthermore, he has found that the origin 

of such physically meaningless results resides in the lack of energetic 

orthogonality between the Cartesian components of the crack-tip force used to 

compute GI and GII. In fact, for asymmetric cracks, the normal and tangential 

crack-tip force components may cause opening and sliding displacements that 

give rise to non-zero mutual work (in the sense of Betti’s reciprocity theorem). 

When the mutual work is negative, depending on the geometry and loads of the 

analysed problem, either GI or GII may take on negative values. 

To overcome the above described drawback, Valvo (2012) has proposed a 

revised VCCT, where non-negative GI and GII are obtained by associating such 

quantities to the amounts of work done by two energetically orthogonal – i.e. 

having a null mutual work – systems of forces. The latter correspond to the 

components of the crack-tip nodal force along the directions of two conjugate 

diameters of an ellipse of crack-tip flexibility, similar to the ellipse of elasticity 

(Culmann 1875). However, since there are infinitely many couples of conjugate 

diameters – all corresponding to two energetically orthogonal systems of forces – 

there are infinitely many ways to define GI and GII as non-negative quantities. The 

definition adopted by Valvo (2012) leads to the result that pure mode I fracture 

(GII = 0) is obtained when the tangential crack-tip force component is zero 

(X = 0), while pure mode II fracture (GI = 0) is obtained when the crack-tip 

opening displacement is zero (∆w = 0). Accordingly, however – as the example 

analysed in this paper will show – there is a range of behaviour where 

contributions to GI come also from compressive normal crack-tip force 

components (Z < 0), which should instead be excluded (Fett 2001). 

The present brief note aims at making a further step towards the 

development of a physically consistent virtual crack closure technique. Here, the 

partitioning of fracture modes proposed by Valvo (2012) is called into question. 

In its place, a different definition is advanced, based on the assumption that pure 

mode I fracture corresponds to a null crack-tip sliding displacement (∆u = 0). 

Accordingly, GI and GII are still associated to the amounts of work done by two 

energetically orthogonal systems of crack-tip forces. But, pure mode II 
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corresponds to a null normal crack-tip force (Z = 0). As a result, it is possible to 

enforce GI = 0 when Z < 0 and obtain a ‘smooth’ transition from the range of I/II 

mixed-mode behaviour to pure mode II conditions. However, it should be noted 

that, when Z < 0, the computation of GII requires some additional considerations, 

which are postponed to a forthcoming paper (Valvo 2015). 

About the definition of pure fracture modes, it seems appropriate to recall 

the contributions by Wang and Guan (2012), Wang and Harvey (2012), and Wang 

et al. (2013). They propose an orthogonal fracture mode partition theory and 

define two pairs of ‘locally’ pure modes. Interestingly, their first and second pairs 

of pure modes respectively correspond to the two, alternative conditions for pure 

modes obtained in the present work (∆u = 0 and Z = 0) and in Valvo (2012) (X = 0 

and ∆w = 0). It should also be mentioned that Wang and co-workers calculate 

negative GI and GII for load cases falling in between the ‘locally’ pure modes. 

The paper is structured as follows. First, the basics of the virtual crack 

closure technique are briefly recalled and an expression of G based on the 

definition of a crack-tip flexibility matrix is deduced. Then, GI and GII are defined 

by associating such quantities to the amounts of work done by the crack-tip forces 

in an ideal two-step process of closure of the extended crack. As an example, the 

analysis of a delaminated cantilever beam subjected to bending moments is 

illustrated. Discussion about possible geometric and algebraic interpretations of 

the method follows. In particular, the ellipse of crack-tip flexibility is introduced, 

which helps to visualise the relationship between the directions of the crack-tip 

force and relative displacement vectors. Furthermore, it is shown how the 

proposed partitioning of fracture modes corresponds to a particular decomposition 

of the crack-tip flexibility matrix. 

2 Virtual crack closure technique 

2.1 Problem formulation 

A two-dimensional (plane stress or plane strain) problem is considered, where a 

body of width B is affected by a straight crack of length a (Fig. 1a). Suitable static 

and/or kinematic conditions are prescribed at the body’s boundary. The material is 

assumed to be linearly elastic. A Cartesian reference system, Oxz, is fixed with the 

x- and z-axes respectively parallel and orthogonal to the crack propagation 
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direction. Let u and w denote the displacement components along the x- and z-

axes, respectively. 

The problem is analysed via the finite element method (FEM). In the 

neighbourhood of the crack tip (Fig. 1b), the body is discretised through a regular 

mesh of 4-node plane elements of size ∆a in the x-direction. The nodes placed on 

the fracture surface are orderly labelled with the letters A, B, C, … in the direction 

of crack advance. Superscripts – and + respectively denote the nodes on the lower 

and upper crack faces. Such nodes are initially bonded together by suitable 

internal constraints, which are progressively released to simulate crack growth. 

The crack tip is initially located at node C– (coincident with C+). 

 

 

Fig. 1 Problem formulation: a cracked body; b finite element mesh in a neighbourhood of the 

crack tip 

2.2 Energy release rate 

The energy release rate, G, is the total potential energy of the system spent in the 

crack growth process, per unit area of new surface created. According to Irwin 

(1958), the energy spent to produce an extension of the crack is equal to the work 

done to close the crack by the forces acting on the crack faces prior to crack 

extension. Within the adopted FEM framework, Irwin’s concept yields 

( )1

2
G X u Z w

B a
= ∆ + ∆

∆
, (1) 

where X and Z respectively are the tangential (x-axis) and normal (z-axis) 

components of the crack-tip nodal force (Fig. 2a), while ∆u and ∆w are the 

corresponding relative displacements (Fig. 2b) (Rybicki and Kanninen 1977, 

Krueger 2004). 
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Fig. 2 Virtual crack closure technique: a crack-tip forces; b crack-tip relative displacements 

The relative displacements caused by crack advance are equal in 

magnitude (and opposite in sign) to the relative displacements produced by 

application of the crack-tip forces. Thus, for a linearly elastic body it turns out that 

and
xx xz zx zz

u f X f Z w f X f Z∆ = + ∆ = + , (2) 

where fxx, fxz, fzx, and fzz are flexibility coefficients, equal to the crack-tip relative 

displacements produced by unit forces applied at nodes C+ and C– (Fig. 3). The 

flexibility coefficients can be computed by conducting two preliminary analyses 

on the finite element mesh with the extended crack (Valvo 2012). It is noted that 

the coefficient fxz (= fzx by virtue of Betti’s reciprocity theorem) expresses an 

elastic coupling between the crack-tip force in the x-direction and the relative 

displacement in the z-direction and, vice versa, between the crack-tip force in the 

z-direction and the relative displacement in the x-direction. This coupling vanishes 

(fxz = 0) for bodies with symmetric cracks, but is generally present (fxz ≠ 0) for 

bodies with asymmetric cracks. 
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Fig. 3 Flexibility coefficients: a unit forces in the x-direction; b unit forces in the z-direction 

It is convenient to introduce vector notation by collecting the crack-tip 

force and displacement components into the crack-tip force vector, r = (X, Z)T, 

and crack-tip relative displacement vector, ∆s = (∆u, ∆w)T, respectively 

(superscript T denotes the matrix transpose operation). As a consequence, Eqs. (2) 

can be written compactly as 

∆ =s F r , (3) 

where 

xx xz

zx zz

f f

f f

 
=  
 

F  (4) 

is the (symmetric) crack-tip flexibility matrix. With Eqs. (3) and (4), the 

expression for the energy release rate Eq. (1) becomes 

( )T T1 1 1
,

2 2 2

xx xz

zx zz

f f X
G X Z

f f ZB a B a B a

   
= ∆ = =   ∆ ∆ ∆   

r s r Fr . (5) 

It is worth noting that, because of its physical meaning, G is a non-

negative quantity. Hence, F is a positive definite matrix, which implies 

20 and det( ) 0
xx xx zz xz

f f f f> = − >F . (6) 

2.3 Fracture mode partitioning 

According to Rybicki and Kanninen (1977), the modal contributions to G 

correspond to the two addends in parenthesis in Eq. (1): 
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I IIand
2 2

Z w X u
G G

B a B a

∆ ∆= =
∆ ∆

. (7) 

However, a physically meaningful partitioning of fracture modes requires 

decomposing the energy release rate into the sum of two non-negative modal 

contributions. Instead, Valvo (2012) has demonstrated that Eqs. (7) may yield 

negative values of GI and GII. This happens when one crack-tip force component, 

X or Z, is opposite in sign with respect to the corresponding relative displacement, 

∆u or ∆w, and thus does negative work in closing the crack (Wang and Guan 

2012). In particular, this shortcoming has been revealed in the analysis of bodies 

with highly asymmetric cracks. In this respect, it should be noted that Rybicki and 

Kanninen (1977) – following Irwin (1958) – have obtained Eqs. (7) having in 

mind Westergaard’s (1939) solution for the problem of a single straight crack in 

an infinite plane body made of a linearly elastic, isotropic, and homogeneous 

material. In this case, the system of acting forces can be decomposed into the sum 

of a symmetric part and an antisymmetric part (with respect to the crack plane), 

respectively related to fracture modes I and II. Such a decomposition leads to the 

correct partitioning of fracture modes for symmetrically cracked bodies. However, 

it makes little sense in the case of bodies with asymmetric cracks (including 

bimaterial interface cracks), for which it is not surprising that Eqs. (7) may be no 

longer valid. 

As an alternative, fracture mode partitioning is based here on the 

assumption that pure mode I fracture corresponds to a null crack-tip sliding 

displacement (∆u = 0). As a consequence, the mode II contribution to G will be 

related to the closure of ∆u, while the mode I contribution will be given by the 

difference between the total energy release rate and the mode II contribution. In 

practice, GI and GII can be calculated as associated to the amounts of work done 

by the crack-tip force components in an ideal two-step process of closure of the 

extended crack. Starting from the fully open crack (Fig. 4a), in the first ideal step, 

corresponding to the mode II contribution, the crack-tip sliding displacement, ∆u, 

is closed by applying a suitable tangential crack-tip force, XII, and a null normal 

crack-tip force (Fig. 4b). Eqs. (2) show that the necessary forces are 

II IIand 0xz

xx xx

fu
X X Z Z

f f

∆= = + = , (8) 
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which produce the relative displacements 

II IIand xz

xx

f
u u w u

f
∆ = ∆ ∆ = ∆ . (9) 

In the second ideal step, corresponding to the mode I contribution, the 

remainders of the crack-tip forces (Fig. 4c), 

I II I IIandxz

xx

f
X X X Z Z Z Z Z

f
= − = − = − = , (10) 

are applied to the crack-tip nodes, which – according to Eqs. (2) – undergo the 

relative displacements 

2

I I II

1
0 and ( )

xx zz xz

xx

u w w w f f f Z
f

∆ = ∆ = ∆ − ∆ = − . (11) 

 

 
 

Fig. 4 Fracture mode partitioning: a fully open crack; b step 1) mode II contribution, residual 

crack-tip opening displacement; c step 2) mode I contribution, complete crack closure 
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Eqs. (9) show that in the first ideal step the gap in the x-direction, ∆u, is 

completely closed, while the gap in the z-direction, ∆w, may be partly closed (if 

fxz ∆u > 0) or further opened (if fxz ∆u < 0). Eqs. (11) indicate that in the second 

ideal step the gap in the x-direction is not altered, while the residual gap in the z-

direction, ∆w – ∆wII, is closed. 

According to the above, the mode I and II contributions to the energy 

release rate respectively correspond to the amounts of work done by the force 

component ZI on the displacement ∆wI and by XII on ∆uII: 

I I II II
I IIand

2 2

Z w X u
G G

B a B a

∆ ∆= =
∆ ∆

. (12) 

By substituting Eqs. (8)–(11) into (12), the following expressions for the 

modal contributions are obtained: 

( ) ( )22 2

I II

1 1 1 1
and

2 2
xx zz xz xx xz

xx xx

G f f f Z G f X f Z
B a f B a f

= − = +
∆ ∆

. (13) 

Eqs. (13) – by recalling also Eqs. (6) – show that the present assumption 

on fracture mode partitioning leads to calculate both GI and GII as non-negative 

quantities. This result can be regarded as a consequence of the energetic 

orthogonality of the systems of forces defined by Eqs. (8) and (10). Actually, it is 

an easy task to demonstrate that they give rise to a null mutual work, 

XI ∆uII + ZI ∆wII = XII ∆uI + ZII ∆wI = 0. 

For implementation, it is also convenient to express GI and GII as functions 

of the displacements only. To this aim, by inverting Eqs. (2) and substituting the 

result into (13), the following expressions are obtained: 

( )2 2

I II2

1 1 1
and

2 2

xz xx

xx xx zz xz xx

f u f w u
G G

B a f f f f B a f

∆ − ∆ ∆= =
∆ − ∆

. (14) 

Eqs. (13) and (14) also reveal the conditions for pure fracture modes: pure 

mode I (GII = 0) is obtained when ∆u = 0, pure mode II (GI = 0) when Z = 0. 

Lastly, it is noted that for fxz = 0, Eqs. (8) and (11) yield XII = X and 

∆wI = ∆w. In this case – since from Eqs. (9) and (10) also ∆uII = ∆u and ZI = Z – 

Eqs. (7) and (12) coincide, hence the proposed method reduces to the standard 

VCCT. This happens, in particular, for bodies with symmetric cracks. 
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3 Example 

3.1 Finite element analysis 

As an illustrative example, the method is applied to the problem of a delaminated 

cantilever beam subjected to bending moments, M1 and M2, on its upper and lower 

arms, respectively (Fig. 5a). The beam has length L = 100 mm, width B = 25 mm, 

and thickness H = 10 mm. The delamination length is a = 50 mm. The two arms 

have thicknesses H1 = 0.5 mm and H2 = 9.5 mm. The material is linearly elastic, 

isotropic, and homogeneous, with Young’s modulus E = 100 GPa and Poisson’s 

ratio ν = 0.3. A finite element analysis of the problem has been carried out using 

the commercial software Abaqus 6.9. The beam has been modelled with 4-node 

linear plane stress (CPS4) elements (Fig. 5b). The element size in the crack-tip 

region is ∆a = 0.10 mm (Fig. 5c). The present analysis does not account for 

contact and interpenetration constraints, which means that the crack faces may 

overlap freely. Such constraints will be instead considered in a forthcoming paper 

(Valvo 2015). 

 

 

Fig. 5 Delaminated cantilever beam subjected to bending moments: a geometry and loads; b FEM 

model; c detail of the mesh at the crack tip 
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3.2 Results 

In order to explore a wide range of mode mixities, M1 = 1 N m is kept fixed, while 

M2 varies. Figures 6a and 6b respectively show the normal and tangential 

components of the crack-tip nodal force, X and Z, and crack-tip relative 

displacements, ∆u and ∆w, as functions of M2. Figure 6c shows the mode I and II 

contributions to the energy release rate, GI and GII, as functions of M2. Continuous 

lines correspond to the present method, Eqs. (14). Dotted lines correspond to the 

standard VCCT, Eqs. (7). 

The standard VCCT predicts pure mode I conditions (GII = 0) for two 

distinct values of M2, corresponding to ∆u = 0 and X = 0, and negative mode II 

contribution (GII < 0) for M2 in the range between those values. Likewise, it 

predicts pure mode II conditions (GI = 0) for M2 corresponding to Z = 0 and 

∆w = 0 and negative mode I contribution (GI < 0) for M2 in the range between. 

Instead, the present method furnishes always non negative values of GI and GII 

and predicts pure mode I and II conditions for M2 = M2I ≅ −187.67 N m (∆u = 0) 

and M2 = M2II ≅ 249.51 N m (Z = 0), respectively. 

Despite contact and interpenetration of the crack faces have not been 

modelled in the present FEM analysis, some comments can be made. As can be 

noted from figure 6a, for M2 > M2II, the normal crack-tip force component is 

compressive (Z < 0). However, figure 6b also shows that right of M2II there is a 

(small) range of values of M2, for which the crack faces open (∆w > 0), before 

entering the interpenetration region (∆w < 0). In this range, according to Valvo 

(2012), fracture would occur in I/II mixed-mode, with a GI contribution stemming 

from a negative normal crack-tip force. Instead, according to the present method, 

pure mode II can be enforced by setting GI = 0 for Z < 0 (Fig. 6c). The transition 

from the range of I/II mixed-mode behaviour to pure mode II conditions turn out 

to be ‘smooth’ (i.e. there is continuous join between the plots of GI left and right 

of M2II). It should be noted, however, that the expressions derived in Section 2.3 

are not generally valid in this range of behaviour, so that a different derivation for 

GII is needed for M2 > M2II (Valvo 2015). 
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Fig. 6 Results for the delaminated cantilever beam: a crack-tip nodal force components; b crack-

tip relative displacements; c energy release rate contributions 
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4 Discussion 

4.1 Ellipse of crack-tip flexibility 

A geometric construction can help to shed light on the matter at hand. To this aim, 

the conic section associated to the crack-tip flexibility matrix, F, is considered. It 

is defined by the equation 

2 22 1 0
xx xz zz

f x f xz f z+ + − = , (15) 

in the Oxz-plane. Since det(F) > 0 (recall Eqs. (6)), this conic section turns out to 

be an ellipse, Γ, termed the ellipse of crack-tip flexibility (Valvo 2012). The 

ellipse’s centre coincides with the origin of the reference system, Oxz. Its major 

and minor axes, a and b, are rotated by an angle φ (different from 0 unless fxz = 0) 

with respect to the reference axes (Fig. 7a). 

The ellipse of crack-tip flexibility shares many properties with Culmann’s 

(1875) ellipse of elasticity. The latter can be used to visualise the direction of the 

displacement caused by the application of a force to an elastic body. Likewise, the 

ellipse of crack-tip flexibility enables visualisation of the relationship between the 

directions of the crack-tip force vector, r, and relative displacement vector, ∆s. In 

fact, let r and s be the ellipse’s diameters respectively parallel to r and ∆s (Fig. 

7b). In addition, let t be the diameter conjugate to r (i.e. the diameter which is 

parallel to the tangents, t′ and t″, to the ellipse at the endpoints, P′ and P″, of the 

diameter r). Valvo (2012) has demonstrated that s is orthogonal to t. This means 

the direction of the crack-tip displacement vector, ∆s, can be obtained as follows. 

Given the crack-tip force vector, r, trace the diameter r. Let n be the outer normal 

to the ellipse at P′, the endpoint of r in the direction of r. The direction of ∆s will 

be the same as the direction of n. 

The above described graphic construction can be applied to better 

understand the meaning of the two-step crack closure process defined in Section 

2.3. To this aim, the crack-tip force components defined by Eqs. (8) and (10) are 

collected into two crack-tip force vectors, 

I II

I II

I II

and

0

xz xz

xx xx

f f
Z X ZX X

f f
Z Z

Z

   − +      = = = =       
      

   

r r . (16) 
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The vectors rII and rI respectively are the components of r along the 

directions of the x-axis and a new axis denoted with z . Such axes intersect the 

ellipse at points PII and PI, respectively (Fig. 7c). In particular, the -axisz  is such 

that the outer normal to the ellipse at PI is orthogonal to the x-axis (which implies 

that the x- and -axesz  have the directions of two conjugate diameters of the 

ellipse). During the first of the two crack closure steps, the application of the force 

rII at the crack-tip nodes produces the displacement ∆sII (parallel to the outer 

normal to the ellipse at PII). During the second step, the application of rI produces 

the displacement ∆sI (parallel to the outer normal to the ellipse at PI). It can be 

verified that ∆sI is orthogonal to rII, while ∆sII is orthogonal to rI. Consequently, 

the mutual work done by rI on ∆sII is zero, as well as the work done by rII on ∆sI. 

In other words, rI and rII are energetically orthogonal, as anticipated in Section 

2.3. This result is a consequence of the fact that the x- and -axesz  have the 

directions of two conjugate diameters of the ellipse. Actually, energetic 

orthogonality would be obtained as well, if r was decomposed along the 

directions of any other two conjugate diameters. 

 

 
 

Fig. 7 Ellipse of crack-tip flexibility: a definition; b crack-tip force and relative displacement 

vectors; c decomposition of the crack-tip force vector into energetically orthogonal components 

The ellipse of crack-tip flexibility can also be used to determine 

graphically the acting fracture mode in a given problem (Fig. 8). When the 
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direction of the crack-tip force vector, r, coincides with the -axisz , fracture 

occurs in mode I. When r lies on the x-axis, fracture occurs in mode II. All the 

other directions of r correspond to I/II mixed-mode fracture. Furthermore, contact 

and interpenetration can be detected. To this aim, the -axisx  is introduced, which 

intersects the ellipse at the points where the outer normal, n, is orthogonal to the 

z-axis (it turns out that the -x  and z-axes have the directions of two conjugate 

diameters of the ellipse). When r has the direction of the -axisx , contact between 

the crack-tip nodes occurs (∆w = 0). When r falls in the region below the -axisx , 

interpenetration of the crack faces is expected (∆w < 0). Lastly, it is noted that 

when r falls in the region below the x-axis, the normal crack-tip force is 

compressive (Z < 0). In this case, as explained at the end of Section 3.2, pure 

mode II can be enforced by setting GI = 0, but the computation of GII requires a 

more refined analysis (Valvo 2015). 

 

Fig. 8 Ellipse of crack-tip flexibility: determination of fracture mode 

4.2 Decomposition of the flexibility matrix 

Besides the geometric interpretation illustrated in Section 4.1, it will be useful to 

discuss also a possible algebraic interpretation of the proposed method. To this 

aim, it is observed that the partitioning of fracture modes described in Section 2.3 

corresponds to the Cholesky decomposition of the crack-tip flexibility matrix: 

T=F U DU , (17) 

where 
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1

0 1

xz

xx

f

f

 
 =
 
  

U  (18) 

is a dimensionless, unit upper triangular matrix and 

II2

I

0
0

0 0

xx

xz
zz

xx

f
f

f
f f

f

 
  = =   −    

D  (19) 

is a diagonal flexibility matrix. By substituting Eq. (17) into (5), the expression 

for the energy release rate becomes 

T T1 1
( ) ( )

2 2
G

B a B a

∗ ∗= =
∆ ∆

Ur DUr r Dr , (20) 

where 

II

I

1

0 1

xz xz

xx xx

f f
X Zr X

f f
r Z

Z

∗
   +      = = = =               

r Ur  (21) 

is a ‘corrected’ crack-tip force vector. 

With Eqs. (19) and (21), the energy release rate Eq. (20) becomes 

2 2

I I II II

1 1

2 2
G f r f r

B a B a
= +

∆ ∆
. (22) 

It can be easily verified that the two addends in Eq. (22) correspond to the 

modal contributions, GI and GII, as given by Eqs. (13). 

The illustrated algebraic interpretation is the basis to extend the method to 

three-dimensional problems involving I/II/III mixed-mode fracture (Valvo 2014). 

5 Concluding remarks 

A modified virtual crack closure technique has been presented for calculating the 

energy release rate, G, and its modal contributions, GI and GII, in I/II mixed-mode 

fracture problems. The proposed method overcomes a shortcoming of the standard 

VCCT, which may calculate physically meaningless, negative values of GI and GII 

when analysing problems with highly asymmetric cracks. The method is based on 

the decomposition of the crack-tip nodal force into energetically orthogonal 

components and the assumption that pure mode I fracture corresponds to a null 
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crack-tip sliding displacement (∆u = 0). As a result, the condition for pure mode II 

fracture is a null normal crack-tip force (Z = 0). Thus, it is possible to enforce 

mode II conditions (GI = 0) when the normal crack-tip force is compressive 

(Z < 0) and obtain a ‘smooth’ transition from the range of I/II mixed-mode 

behaviour to pure mode II conditions. As an example, the analysis of a 

delaminated cantilever beam has been presented. Lastly, both geometric and 

algebraic interpretations of the method have been discussed. 

The presented method and results can be considered as a continuation of 

the work started by Valvo (2012) towards the development of a physically 

consistent VCCT. But, further work is necessary, for instance, to include the 

effects of contact and friction between the crack faces in the analysis (Laursen 

2002), as well as to extend the method to bimaterial interface cracks (Agrawal and 

Karlsson 2006, Krueger et al. 2013) and three-dimensional problems (Valvo 

2014). A full paper accounting for some of the aforementioned topics is currently 

in preparation (Valvo 2015). 
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