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Abstract—Among the many motivations to encourage the use
of Electric Vehicles (EVs) there is the attractive possibility
to implement Vehicle-to-Grid (V2G) functionalities. They are
attractive both for EV owners, who can sell their own energy
to the grid when they do not need to travel, and also for
the power grid, as the stored energy can be used to back-up
the fluctuating energy produced from renewable sources or to
improve the grid stability at critical times. In this paper we
illustrate a distributed algorithm that solves the V2G problem
in a fair manner, trying to achieve an optimal trade-off between
power generation costs and inconvenience to the vehicle owner.
Results are shown and discussed for a case study simulated in
the OpenDSS power system environment. Keywords: EV, V2G,
Decentralised optimisation, Microgrid

I. INTRODUCTION

One of the most attracting functionalities of Electric
Vehicles (EVs) is the possibility to use them as a large
virtual battery to support the power grid when needed. In
particular, energy can be stored when the grid produces
excess energy, and can be delivered back to the grid in times
of need [1]-[4]. The attractiveness of having EVs providing
energy to the grid, usually denoted as Vehicle-to-Grid (V2G),
stems from the fact that EV owners see in this process the
possibility of earning money by selling the V2G service to
the grid when the EV is not needed. Also, this service can
be provided without inconvenience for the owners, as they
simply have to maintain the EV constantly plugged-in, even
when it is fully charged. At the same time, there is a high
interest in V2G functionalities from the perspective of the
smart grid as well. In fact, in a forthcoming scenario when
a large share of energy will be provided from renewable
sources, it will be possible to mitigate the fluctuations of the
renewable energy by storing it when it is in excess, and by
recovering it from the EVs when the renewable energy is not
enough to match the power load. Note that nowadays most of
the support to renewable energy is performed by switching
on conventional power plants that are more expensive than
solar/wind plants (as there are some fuel and carbon costs to
be paid), and also less environmentally friendly in terms of
produced CO2, NOx or other pollutants’ emissions. In this
context, note that some countries are already characterised by
a high penetration level of energy produced from renewables,
see for instance the case of Denmark, where wind plants

alone provided more than 30% of the electricity production in
2012, and are planned to supply 50% of the overall demand
by the year 2020 [5]. Also, Denmark is currently trying to
become a system based only on renewable energy by 2050 [6].

Recent works on V2G practises can be found in references
[7]-[9]. A recent paper on the same topic [10] overviews
the optimality criteria that should be considered when
planning V2G functionalities. In particular, it shows that V2G
functionalities should be planned in a wise fashion, as taking
electricity from vehicles in an indiscriminate fashion, could
sometimes give rise to an environmental cost that might even
exceed the environmental gain of using power generated from
renewables (e.g., if the consequence of V2G services is that
the EV owner has to take a dirty vehicle because his/her EV
does not have enough energy for the next trip anymore).

In this paper we model the V2G problem as an optimisation
problem that aims at finding the optimal trade-off between
the economic convenience of using energy from renewables
instead of energy from other more expensive power plants,
and the inconvenience caused to the owner in terms of
residual energy remaining in the EV. Also, we are interested
in computing a “fair” solution, where fairness is related to
the fact that the same energy should be taken from all EVs
participating to the V2G programme (i.e., some EVs’ owners
might decide not to participate to such a programme to
preserve the level of energy in their EVs for future usage).
Note that the difficulty of such an optimisation problem is
that the utility functions associated with each EV are strictly
personal, as the inconvenience for the owner depends on
personal factors. Also, we are interested in computing the
optimal solution in a distributed fashion, to avoid increasing
computation loading in the central server and improving
flexibility and robustness from a system perspective.

This paper is organised as follows: the next section
describes the mathematical formulation of the V2G problem,
giving the details of the utility functions, of the battery
model, and analysing the proposed distributed algorithm.
Section III simulates the proposed algorithms in a microgrid
scenario, using the popular power system simulation software
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OpenDSS [11]. Section IV discusses the results obtained
in the simulation environment. Finally in Section V we
summarise our findings and outline future lines of research.

II. MODEL AND ALGORITHM

A. Model Set-up

In the smart grid framework, a microgrid can be regarded
as an efficient and environmentally friendly energy subsystem
consisting of Distributed Generators (DGs) and loads capable
of operating in parallel with, or independently from, the
main power grid [12], [13]. In our context, we consider a
microgrid where a number of EVs are plugged-in in a large
parking lot, e.g., a parking lot in a city airport. Some of such
EVs decide to participate to a V2G programme: during their
parking period, they can be discharged/recharged within some
given limits in order to improve the economic operation of
the grid. The EVs participate to such a programme to get
some economic revenues. The discharge should thus occur in
a fair way to avoid having some EVs getting more money
than others.

These EVs are coordinated by an EV aggregator in the
microgrid. In this scenario, the optimal power discharge rate
is computed by taking into account both some economical
aspects and some Quality of Service (QoS) of customers. We
assume that the grid will charge the EV batteries with excess
energy produced from renewable sources in the microgrid.
This implies that in the future, when needed, the grid will
consider the possibility of taking energy from EVs back to
the grid if the load exceeds the energy currently produced
from renewables (e.g., peak-time hours). Without EVs
connected, the grid would have to use the power generated
from conventional sources, thus incurring in high generation
costs (e.g., fuel and consumption costs) and in increased
harmful pollution (e.g., CO and NOx). Thus, the economical
convenience of using EVs relies in recovering energy from
the EVs rather than producing new energy from conventional
plants. The QoS aspect of the utility functions takes into
account the concerns of the EV owners, as not too much
energy should be taken from their EVs or they will have a
reduced mobility range.

We mathematically formulate the previous problem as follows.
Let N denote the maximum number of EVs participating into
the scheme. Define the set I := {1, 2, ..., N} for indexing
all EVs and the set φ(t) for indexing the EVs available at
time t, i.e., the EVs with enough SOC for participating to
discharge cycles in the scheme. Let |φ(t)| denote the number
of elements in the set φ(t). Let ci(t) denote the discharge
rate of the i′th EV in set I . Further, let cimax represent the
maximum discharge rate that can be injected to the grid.
Both values are assumed to be positive in the V2G mode.
The corresponding discharge rate vector for all EVs at time
t is defined as C(t)T := [c1(t), c2(t), ..., cN (t)]. In our study,
V2G power dispatch to the grid is discretised into M time
slots (indexed as 1,2,...,M ) each of length ∆T. Each EV is

scheduled connecting to the grid within certain time slots,
which is represented by the range [ai, bi]. Due to technical
diversity of batteries and chargers, each EV may have a
different battery capacity (kWh) and a different energy
transferring efficiency. The parameters for both factors are
denoted as Bi and ηi respectively. Furthermore, to protect
the EVs from over-discharging, the minimum SOC for i′th
EV is defined as SOCimin. This parameter defines the drop
out criteria for the EV. Thus, if SOCi(t) ≤ SOCimin, then
ci(t) = 0. To this end, given the initial V2G regulation time
as t0, the SOC for the i′th EV at time t is given by:

SOCi(t) = SOCi(t0)−
t−1∑
j=t0

ci(j) ·∆T
Bi

, ∀i ∈ I (1)

B. Utility Functions

In addition to the basic model parameters, each EV i is also
associated with a utility function f (i) : R 7→ R, which models
both economical and QoS term of the energy delivered from
the i′th EV. In our context, this function will be modelled
as a convex function arising from combining the two terms.
In addition, we will denote the first derivative of the utility
function f (i) as f ′(i).

Now we model the utility functions in detail. As already
mentioned, each function is composed of two different terms
that take into account the economic and the QoS aspects
respectively. A schematic diagram is illustrated in Fig.1
demonstrating the basic function relation of both terms
related to the EV discharge rate.
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Fig. 1. Schematic diagram of the utility function

Note that in Fig.1 the notation fe and fq refer to the economic
term and the inconvenience term of discharge rate (i.e., ci(t))
respectively. The maximum discharge rate is assumed to be
4kW corresponding to the parameter cimax in our model.
According to this diagram, the economic term fe implies that
the less is the energy delivered from EVs, the greater is the
money required by the grid for purchasing more expensive



power generation, e.g., conventional power plants. In fact,
power generation costs in the literature are typically modeled
as a quadratic function of the energy produced in a unit of
time [14], [15]. On the other hand, the inconvenience term
fq indicates that the more energy is delivered from EVs, the
higher is the inconvenience to EV owners. With this idea,
we approximately model the overall utility function taking
account of both terms as a quadratic function. Considering the
difference of the inconvenience term of the users, we perturbed
each function with a factor according to the SOC of each EV.
To this end, the overall expression of the utility function of
the i′th EV is modelled as follows:

f (i)(ci(t)) = f (i)
q (ci(t)) + f (i)

e (ci(t)) = αi · ci(t)2 + βi · ci(t)
+
[
1−

(
SOCi(t0)− SOCimin

)]
· ci(t) + γi, ∀i ∈ φ(t).

(2)

Comment: In the equation (2), parameters αi, βi and γi refer
to the pricing function adopted by the grid to give revenues
to the EVs participating to the programme. Each perturbed
function f (i) is associated with an increasing affine function
with positive parameter

[
1−

(
SOCi(t0)− SOCimin

)]
. Thus,

the closer is the EV to its safety level of energy SOCimin
required to come back home, the greater is the inconvenience
to the owner. In practice, the EV owners can indicate a bigger
SOCimin than the one truly needed, if they are particularly
anxious to have enough energy for their next journey. In
addition, they can always set the parameter SOCimin to 1 to
be automatically excluded from the V2G programme.

With the utility functions in place, the overall optimisation
problem can be defined as follows:

minimise
C(t)

∑
i∈φ(t)

f (i)(ci(t))

subject to:

 ci(t) = cj(t), ∀i 6= j ∈ φ(t)
0 ≤ ci(t) ≤ cimax

SOCimin ≤ SOCi(t) ≤ 1

(3)

C. Optimal Solution

In this section we will introduce a theorem that will be help-
ful for solving problem (3). The detailed proof of the theorem
has been given in [18]. Here we briefly recall the mechanism
of the theorem for further discussion of the algorithm given
in Section II-D.

To begin with, we introduce some notation for the opti-
misation problem to be considered in (5). Let n denote the
total number of agents to be optimised. Let n denote the set
{1, 2, ..., n}. Let x(i) denote the i′th entry of vector x ∈ Rn.
Each agent i is associated with a function f (i) : R 7→ R. Let
us assume that each function f (i) is also a strictly convex,
continuous and second order differentiable function. Also its
first derivative function f ′(i) has strictly positive and bounded
growth rate for ∀i ∈ n, that is for all a 6= b

0 < d
(i)
min ≤

f ′(i)(a)− f ′(i)(b)
a− b

≤ d(i)
max,∀i ∈ n (4)

for suitable constants d(i)
min, d(i)

max. The optimisation problem
of our interest is now given as follows:

mininise
x∈Rn

n∑
i=1

f (i)(xi)

subject to: xi = xj , ∀i 6= j ∈ n
. (5)

Now, we introduce some notation for the Theorem. Let 1
denote the vector with all entries equal to 1 of appropriate
length. Define G as the summation of the derivative functions,
that is:

G(x) =

n∑
i=1

f ′(i)(xi), ∀x ∈ Rn. (6)

Define a finite set P :=
{
P (1), P (2), ..., P (m)

}
of primitive,

row-stochastic matrices with strictly positive main diagonal
entries.

Now we consider the nonlinear dynamical system:

xk+1 = Pkxk + µ · (0−G(xk))1 (7)

Note that, we will denote xk as the solution defined by (7)
starting from an arbitrary initial point x0.

Theorem 1: Let {Pk} ⊂ Rn×n be a sequence in P . Then
the elements of xk defined by (7) will approach each other for
all initial conditions, that is,

lim
k→∞

xpk − x
q
k = 0, ∀p, q ∈ n. (8)

Further, for all µ satisfying

0 < µ < 2

(
n∑
i=1

d
(i)
max

d
(i)
min

)−1

(9)

then limk→∞ xk = x∗1, where x∗1 is the optimal point of
problem (5), that is,

n∑
i=1

f (i)(x∗) ≤
n∑
i=1

f (i)(x) (10)

for all x ∈ R and the equality holds if and only if x = x∗.

D. Optimal Distributed Consensus Algorithm

We now describe an optimal distributed consensus (ODC)
algorithm that consistently with the Theorem 1 is applied into
the practical scenario of interest. Such an algorithm follows
from the principles obtained from Theorem 1 and takes into
account the practical grid constraints. In the algorithm, N i

t

represents the set of neighbours of the agent i at time t,
satisfying N i

t ⊂ φ(t) and i ∈ N i
t , which can send its discharge

rate signal to the i′th EV. In this work, we assume that each EV
can communicate to its neighbours at each time step. Although
the neighbours of each EV might change in time, the resulting
communication network of all EVs is required to be connected
all the time (i.e. there should exist a path from each EV to
every other EV in the network). The parameter µ is chosen in
the range discussed in Section II-C, while a detailed discussion
on the choice of ψ can be found in [17] and [18].



Algorithm 1 Optimal Distributed Consensus algorithm
1: if t = t0 then
2: C(t) = 0
3: else
4: for each i ∈ I do
5: if ai < t ≤ bi then
6: if SOCi(t− 1) ≤ SOCimin then
7: φ(t)← φ(t− 1)− {i}
8: ci(t) = 0
9: else

10: φ(t)← φ(t− 1) + {i}
11: end if
12: else
13: ci(t) = 0
14: end if
15: end for
16:
17: for each i ∈ φ(t) do
18: gi(t) = ψ

∑
j∈Ni

t
(ci(t− 1)− cj(t− 1))

19: ei(t) =
∑

j∈φ(t)

f ′(j)(cj(t− 1))

20: ci(t) = gi(t) + µ · (0− ei(t)))
21: SOCi(t) = SOCi(t− 1)− ci(t) · ∆T

Bi

22: end for
23: end if

III. MICROGRID SIMULATION

To evaluate the performance of the proposed ODC algorithm
in a realistic microgrid scenario, a specific microgrid model
was constructed through a dedicated power system simulation
software OpenDSS. A schematic diagram is illustrated in Fig.2
to demonstrate the structure of the microgrid.

.

EMS

AggregatorDemand DGs

Power Flow
Power Flow

Power FlowInfo Flow

Info flow
Info flow

EVN……

V2G PowerInfo flow

EV1 EV2 EVi

Microgrid

External
Grid

Info Flow Power Flow

Info flow

Info flow

Info flow

Fig. 2. Schematic diagram of the microgrid

The power topology diagram of this microgrid is shown
in Fig.3. In the simulation, we assumed that several DGs
were installed in the Medium-Voltage (MV) network with
voltage level equal to 10kV. This network included three

Fig. 3. Power topology of the microgrid network

wind plants, two Photovoltaic (PV) plants and one Combined
Heat and Power (CHP) plant. These DGs associated with
the V2G power inverted from EV batteries were connected
through three phase 400V/10kV set-up transformers to the
MV network. Those DGs were modelled as constant P-Q
generators with the same power factor (i.e., 1.0) to generate
pure active power for the loads. In practice, we consider a
microgrid similar to the one of [16], with a smaller scale to
fit into the case of interest here. Due to the space limit, a
microgrid topology schematic diagram will be demonstrated
in the final version of the paper. The capacity of the wind
plants, the PV plants and the CHP were chosen as 600kW,
184kW and 800kW. The maximum wind power output for each
wind DG was randomly chosen from the real wind turbine
data according to [20]. In addition, the maximum solar power
generation profile of each PV was computed according to a
quadratic function with non-zero values from 6am to 6pm,
randomly perturbed to simulate cloud disturbances, as in [21].
We assumed that total demand in the microgrid was composed
of 20 basic loads connected randomly in the load area, each
of which had the nominal power consumption of 100kW. The
load profiles were randomly chosen for a period of 24 hours
according to [19]. Most of these assumption are consistent
with the microgrid illustrated in [16].

Although microgrids can be also operated in island mode,
we assumed in our example that it could still exchange a
bidirectional power flow with the external grid supplier, if
needed. The V2G programme is activated when the EMS sends
the signal to the aggregator that power dispatch from the EVs
is required. As long as the signal is not received, the EVs are
idle or charged and used as a virtual battery storage device.
Finally, we assumed that the CHP is used to balance the power
management within the microgrid, if required.

IV. RESULTS AND DISCUSSION

We assumed that at the beginning of the simulation, 50
EVs are participating to the V2G scheme. Then, we simulated
the arrival process of new EVs as a stochastic process where
every minute a new EV arrives with probability 5% until the
airport car park is full. The EVs arrive with an initial random
SOC greater than 10%, and with a desired SOCmin, which



corresponds to the minimum level of the battery that is strictly
required for coming back home from the airport at the end of
the journey. If the SOCmin is smaller or equal than the initial
SOC, then the EV immediately starts participating to the V2G
programme, and as illustrated in the algorithm, its SOC will
never drop below SOCmin. If the SOCmin is greater than the
initial SOC, then the grid treats the EV as a normal load,
and only when the SOC reaches the level of SOCmin the EV
starts participating to the V2G programme. We assumed that
the efficiency parameter of the batteries was different for each
EV, and included between 80% to 90%.

We assumed that the cost of generating power with the CHP
was a quadratic function with parameters α = 2, β = −3
and γ = 8. Then, we assumed that the grid would give
revenues to the EVs according to another quadratic function
with parameters αi = 1, βi = −5 and γi = 8. With such
values, it is always more convenient for the grid to take energy
from the EVs than from the CHP (though, obviously, other
pricing functions could be chosen to obtain the same result).
In addition, we set the iterative update time ∆T to 1 minute,
which corresponds to the sampling rate of the base load, and
the optimisation parameters ψ and µ were both set to 0.001.

We now first illustrate the dynamics of the ODC algorithm
and analyse the performance of the algorithm from discharging
fairness of EVs.Then, we show the benefits for the microgrid
after introducing the V2G regulation service by simulation
studies.
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Fig. 4. Discharge rates of the EVs with V2G in operation

Comment: Fig.4 illustrates the discharge rates of all available
EVs during the V2G power dispatch. It can be seen that the
discharge rates are approximately the same for all the EVs. To
better appreciate such a result, we now use the fairness index
introduced in [22], which is given by:

FI(t) =

( ∑
i∈φ(t)

ci(t)

)2

|φ(t)| ·
∑

i∈φ(t)

ci(t)2
, ∀t ∈ {1, 2, ...,M} (11)
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Fig. 5. Fairness index of the ODC algorithm with V2G in operation

Fig.5 shows that the V2G procedure is fair, apart for some
transitory time intervals when a new EV starts participating to
the scheme. However, fairness is restored in a very short time.
The maximum power that could be generated by each of the
DGs is depicted in Fig.6.

The power generated by the DGs is shown in Fig.7. In Fig.7,
Totaldemand refers to the power required by the Baseload
plus that required by the EVs that are being charged until
they reach the required level SOCmin. DGmax denotes the
maximum power that can be generated by all DGs, DGnoCHP
indicates the total maximum power generation by all DGs
without considering the CHP, which corresponds to the power
generated by renewable sources, and DGnoCHP + V2G corre-
sponds to the power generated by renewable sources plus that
stored in EVs. In practice, when the total power generated
by renewables sources is smaller than the base load, then the
EVs with high SOC are discharged. Vice versa, when the total
power generated by renewables sources is greater than the base
load, then the EVs participating to the V2G programme are
recharged. As a result, Fig.8 shows the evolution of the SOCs
of all EVs charging/discharging during the day.

The economical benefits for all stakeholders participating
into the V2G scheme are illustrated in Figs.9-14. The econom-
ical benefits for the EV owners are demonstrated in Figs.9-
10. Compared to the revenues achieved by the EV owners,
it is shown clearly from Figs.11-14 that both EV aggregator
and the grid company achieve greater economical advantages
by adopting the proposed V2G scheme. According to this
analysis, it can be concluded that all stakeholders in the market
will be positively encouraged to participating into the scheme
for maximising the potential benefits for EVs and renewables.

V. CONCLUSIONS

In this paper we used an optimal distributed consensus
algorithm to design a fair V2G programme. In this programme,
a microgrid stores the surplus energy generated by renewable
sources into EVs, and take back this energy when needed.
The optimality of the V2G strategy is with respect to utility
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Fig. 10. Accumulative economical benefits for all EVs in the scheme
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Fig. 12. Accumulative economical benefits for the EV aggregator
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Fig. 13. Economical benefits for the grid at each time slot
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Fig. 14. Accumulative economical benefits for the grid

functions that both contain an economic term (the more
energy is taken from the EVs, the better for the grid), and
a QoS aspect (too much energy should not be taken from
the vehicles to avoid getting close to the minimum level of
SOC required to safely come back home when the owner
takes his/her EV). Then, we formulated the fair power dispatch
problem of EVs as a consensus optimisation problem with
constraints. The basic algorithm to solve this problem will be
discussed in the final paper with detailed proofs on several
properties of the algorithm. Then we extended the theoretical
algorithm, to include realistic grid constraints, and illustrated
the ODC algorithm. Finally, we simulated the ODC algorithm
on a dedicated Matlab/OpenDSS testbed, and showed the
performance of the algorithm both in terms of fairness and
in terms of economic convenience for the grid.
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