1 Sex differences in fighting-induced hyperaggression in a fly

Giovanni Benelli ^a, Donato Romano ^a, Nicolas Desneux ^b, Russell H. Messing ^c, Angelo
 Canale ^a

⁶
 ^a Insect Behaviour Group, Department of Agriculture, Food and Environment, University of
 ⁸ Pisa, Pisa, Italy

^b French National Institute for Agricultural Research (INRA), Sophia-Antipolis, France

^c Kauai Agricultural Research Center, University of Hawaii at Manoa, Kapaa, HI, U.S.A.

10

9

2

11 In many animals, after experiencing an intraspecific aggressive interaction, winners are 12 more likely to win again (the winner effect) and losers more likely to lose again (the loser 13 effect). However, the winner and loser effect has been studied in few arthropod models, 14 and comparative approaches between the sexes are hard to find. In this study, we 15 evaluated the role of previous experience in male-male and female-female contests of Mediterranean fruit flies, Ceratitis capitata (Diptera: Tephritidae). In this 16 17 species, lekking males fight for courtship territories, while females fight to maintain single oviposition sites, as well as for mates. We addressed the following questions. (1) 18 19 Are winners more likely to win again and losers more likely to lose again? (2) Are different 20 interfight intervals critical to detect experience-induced effects on aggression? (3) Are 21 winning and losing probabilities affected solely by the outcome of the previous contests, or is fighting experience itself sufficient to induce the effect? (4) Does experience affect 22 23 differently aggression displayed by males and females? Results showed reduced fighting 24 success in males and females that experienced a single defeat, while individuals that 25 experienced two previous victories or defeats had higher aggression rates and more wins 26 in subsequent contests (i.e. hyperaggression). This was achieved merely by experiencing 27 a contest, while the actual outcomes of previous fights did not affect the aggressiveness level. Some differences were documented between male-male and female-female 28 29 contests (e.g. females fought longer than males), showing the value of a comparative approach between the sexes when studying experience-induced hyperaggression. This 30 study highlights that both consecutive victories and defeats enhance fighting performances 31 of fruit fly males and females defending courtship territories and oviposition sites, 32 respectively. To the best of our knowledge, this is the first evidence about how repeated 33 34 defeat experiences reverse the loser effect in animals, leading to higher fighting success. 35• **Previous** article in issue 36• Next article in issue

37 Keywords

- 38 aggressive behaviour
- 39 contest
- 40 invertebrate
- 41 learning
- 42 physical fighting
- 43 winner and loser effect
- 44

45 Aggression plays a pivotal role across the animal kingdom (Lorenz, 1966). It enables individuals to acquire and/or defend resources that are often limited (e.g. food, mates and 46 territories; Dierick & Greenspan, 2006). The defence of key resources using aggressive 47 48 displays enables individuals to survive and pass on their genes through the generations (Dukas, 2008). In this context, the evolution of aggressive traits is shaped by a trade-off 49 50 between benefits (from access to limited resources) and costs (risk of injuries, time and energy losses) (Hsu, Earley, & Wolf, 2006). Furthermore, the 'struggle for life' is usually 51 52 most severe in intraspecific dynamics, where individuals are more likely to compete for the 53 same resources (Darwin, 1859). Game theory predicts that evolutionarily stable strategies 54 for conflicts between conspecifics may involve stereotyped contests characterized by the 55 ritualized exchange of agonistic cues (Maynard Smith and Price, 1973, Parker, 1974, Stevenson and Rillich, 2012). 56 Aggression is a highly flexible behaviour (Dukas, 2008); for example, aggressive 57 motivation is affected by factors such as the presence and quality of resources, social 58 59 upbringing, physical exertion and learning from previous contests (Hsu et al., 2006, Van 60 Wilgenburg et al., 2010, Yurkovic et al., 2010). Previous aggression experience affects aggressive performance in subsequent contests in animals (Stevenson & Schildberger, 61 2013), and losing tends to decrease subsequent aggression intensity, duration and/or 62 fighting success (the loser effect) in many species (Hsu et al., 2006, Iwasaki et al., 2006). 63 By contrast, winning tends to increase willingness to escalate a contest and/or the 64 65 probability of fighting success (the winner effect; Hsu et al., 2006, Rillich and Stevenson, 2011, Rutte et al., 2006, Yurkovic et al., 2010). Theoretical models based on this 66 assumption predict that the loser effect can occur with or without occurrence of the winner 67 effect (Fawcett & Johnstone, 2010). By contrast, the winner effect cannot persist alone, at 68 least when contestants lack fighting experience (Mesterton-Gibbons, 1999; but see 69 70 also Van Doorn et al., 2003a, Van Doorn et al., 2003b). In addition, when both effects coexist, the loser effect is predicted to be longer and of greater magnitude than the winner 71 72 effect (Hsu et al., 2006, Kasumovic et al., 2010). However, a recent study on 73 the parasitoid *Eupelmus vuilleti* (Hymenoptera: Eupelmidae) demonstrated that the winner

reflect also exists in the absence of any obvious loser effect (Goubault & Decuignière,

75 <u>2012</u>), and proposed that the winning effect may actually occur through variation in

contestants' subjective value of resources rather than via a reassessment of individuals'fighting ability.

78 Only a few insect models have been tested to study the effect of experience on aggressive

behaviour, mainly crickets (<u>Stevenson & Schildberger, 2013</u>) and drosophilid flies

80 (Yurkovic et al., 2010, Zwarts et al., 2012). True fruit flies (Diptera: Tephritidae) are good

81 insect models for studying aggression. In a number of species, males fight for courtship

82 territories, while females fight to maintain single oviposition sites (Benelli et al.,

83 <u>2014a</u>, <u>Benelli et al., 2015</u>, <u>Benelli et al., 2014b</u>). The occurrence of male–male and

84 female–female combats in the same species allows a comparative approach between the

85 sexes when studying winner and loser effects. Recently, higher aggression levels have

86 been found in experienced males of the <u>olive fruit fly</u>, *Bactrocera oleae* (Diptera:

87 Tephritidae): winners and losers of two consecutive encounters displayed a higher

88 intensity of aggression, fought longer in subsequent contests and achieved higher fighting

89 success than naïve flies (Benelli et al., in press). However, this research was conducted

90 using a self-selection procedure, not ideal for measuring winner and loser effects, since

91 with this approach the particular winning/losing experience cannot be disentangled from

92 intrinsic differences in fighting ability (<u>Hsu et al., 2006</u>).

93 In this study, we investigated sex differences in the magnitude of winner and loser effects

94 in the Mediterranean fruit fly, *Ceratitis capitata* (also known as the medfly). This species is

95 a tropical polyphagous tephritid with a male dominance polygyny mating system (Benelli,

96 <u>Daane, et al., 2014</u>). In *C. capitata*, highly ritualized aggressive interactions are present in

both sexes, and directly related to their reproductive activities. Males establish leks on host
and nonhost plants. They fight for courtship territories, then release long-

⁹⁹ range <u>pheromones</u> that attract females to behavioural exhibition sites. Females

100 discriminate between lek participants and copulate with males performing the best

101 courtship behaviour sequence, which includes wing movements combined with olfactory

and tactile cues (Benelli et al., 2014b, Briceño et al., 1999, Gaskin et al., 2002, Shelly,

103 <u>2000a</u>, <u>Shelly, 2000b</u>). Females express aggression against siblings to maintain

104 single <u>oviposition sites</u>, thus increasing the chances of their eggs developing successfully

105 (Benelli, Daane, et al., 2014). In addition, it has been reported that female–female

aggression may play a role also when they search for mates. Indeed, it has been observed

107 that female aggression against other females is virginity-related and declines strongly after

108 mating (Papadopoulos, Carey, Liedo, Muller, & Senturk, 2009). To study winner and loser

109 effects, we used a random selection procedure, whereby focal individuals are randomly

110 allocated to experimental groups and pitted against either a much stronger or weaker 111 opponent, to deliver the winning or losing experience. Since true predictors of contest outcomes (e.g. male body size, female egg load, Goubault and Decuignière, 112 2012, Kasumovic et al., 2010) are not available for the majority of tephritid flies (Benelli, 113 114 Daane, et al., 2014), we evaluated whether prior residence enhanced the fighting success in our C. capitata strain (experiment 1). To obtain flies that experienced victories or 115 defeats, we exploited the residence effect as a predictor of fighting success in a random 116 selection procedure (Hsu et al., 2006). We expected *C. capitata* winners to be more likely 117 to win again and losers more likely to lose again. On this basis, in experiment 2 we tested 118 119 medflies that experienced one or two victories against naïve ones, while in experiment 3 120 we tested medflies defeated one or two times against naïve individuals. Since winner and 121 loser effects in invertebrates are transient (Rillich & Stevenson, 2011), we tested two 122 interfight intervals (5 and 15 min) to evaluate whether the amount of time elapsed from a 123 previous contest was critical to detect experience-induced effects on aggression. To shed 124 light on the role of physical fighting in increasing aggression rates, in experiment 3 we 125 assessed whether winning and losing probabilities were affected solely by the outcome of the previous contests, or whether the fighting experience itself is sufficient to induce the 126 127 effect. All experiments were conducted on both sexes, allowing us to estimate whether 128 previous experience affected aggressive interactions displayed by males and females 129 differently.

130 Methods

131 Ethical Note

This research adheres to the guidelines for the treatment of animals in behavioural 132 133 research and teaching (ASAB/ABS, 2014). All treatments of the experimental animals 134 complied with the laws of the country (Italy) in which the study was performed (D.M. 116192) and the European Union regulations (European Commission, 2007). All 135 experimental procedures also followed the animal care guidelines of the University of Pisa 136 Ethical Committee. No particular permits were needed by the Italian government for 137 138 experiments involving *C. capitata*. All the experiments were based on behavioural 139 observations. Flies were treated as gently as possible given the constraints of the 140 experimental design. None were injured or killed during the experiments. Before the test 141 phase, having one animal per Plexiglas cup was not considered stressful, since this is not 142 a group-living species. The health of every animal was constantly assessed by checking

that they fed and behaved normally. After the test phase, all flies were kept separatelyfrom the rest of the mass rearing, and were not reused.

145 Insect Rearing and General Observations

We reared C. capitata as described in Canale and Benelli (2012). This medfly strain has 146 been reared in our laboratory since 1994, staring from an original stock of about 4000 wild 147 flies collected in fruit orchards (Sicily, Italy). Our strain has been periodically renewed by 148 adding wild flies in 1997, 2003, 2007 and 2012 (about 2000 flies per renewal, sex ratio 149 150 1:1). The rearing production unit was composed of cylindrical PVC cages, each containing 151 about 2000 flies (sex ratio 1:1). Adults were fed on a dry diet of yeast extract and sucrose mixture, at a ratio of 1:10 (w:w). Eggs were collected every 2 days and placed into plastic 152 153 bowls (50 × 15 cm and 2 cm high), each containing 500 g of artificial larval food medium. 154 The resulting pupae were maintained under controlled conditions (21 ± 1 °C, 55 ± 5% 155 relative humidity, 16:8 h light:dark) to wait for adult emergence. Newly emerged flies were gently separated and placed singly in clean Plexiglas cups (diameter: 40 mm; length: 156 7 mm), using a clean glass vial. They were fed the same diet as adults (see above). Water 157 was provided separately on a cotton wick (Benelli, 2014, Benelli et al., 2015). 158 159 Experiments were conducted in the laboratory $(21 \pm 1 \degree C, 55 \pm 5\%)$ relative humidity) 160 during May–June 2014 in a room illuminated with fluorescent daylight tubes (16:8 h 161 light:dark, lights on at 0600). Neon tubes (Philips 30 W/33) were used; light intensity around the test arena was ca. 1000 lx, estimated over the 300-1100 nm waveband with 162 an LI-1800 spectroradiometer (LI-COR Inc., Lincoln, NE, U.S.A.), equipped with a remote 163 164 cosine receptor. Directional light cues were avoided by using diffuse laboratory lighting to 165 reduce reflection and phototaxis. Experiments were performed in a Plexiglas test arena (diameter: 150 mm; length: 200 mm). A fly entrance hole (diameter: 10 mm) was made on 166 the top, in the central part of the arena. Both ends of the arena were covered with 167 transparent chiffon fabric (mesh size: 0.05 mm). The arena contained a twig of 168 169 apricot, Prunus armeniaca cultivar 'Bella d'Italia', with 10 leaves and two ripe fruits. The twig and the chiffon fabric used at the ends of the arena were changed every 10 170 replicates. The arena was carefully washed for about 30 s with warm water at 35-40 °C 171 172 after each replicate, then cleaned using water plus mild soap for about 5 min, then rinsed 173 with hot water for about 30 s and finally rinsed with distilled water at room temperature 174 (Benelli et al., 2015, Carpita et al., 2012). Virgin flies (age: 12–20 days old; gonad maturation: 4–6 days; Shelly, 2000b) were used in 175

- all experiments. For each replicate, flies were replaced by new ones of the same age.
- 177 Before beginning, each fly was cooled for 3 min at -10 °C, marked with a small dot of

178 nontoxic colour paint (Polycolor, Maimeri, Italy) on the thorax, and weighed. Only flies with

a body mass of 0.005–0.007 g for males and 0.006–0.008 g for females were tested.

- 180 Preliminary observations showed that cooling and colour tagging did not influence the flies'
- 181 behaviour. Experiments were performed over about 60 days, to account for any daily
- 182 variability.

183 All experiments were carried out from 1000 to 1700 hours. In all experiments, the

184 behaviour of medflies was directly recorded by an observer. The interactions in which both

185 contestants immediately abandoned the territory (e.g. a leaf) were discarded; only

186 interactions in which the winning contestant remained on the territory for at least 30 s after

187 the conclusion of the aggressive interaction were considered for data analysis.

188 Experiment 1: Does Prior Residence Affect Fighting Success?

189 We quantified the behaviours displayed by C. capitata during male-male and female-190 female aggressive interactions, evaluating whether prior residence increased the probability of winning following contests. In each replicate, we introduced a male or 191 female *C. capitata* into the test arena using a clean glass vial and waited for 20 min, 192 allowing the fly to establish a territory on a leaf or a fruit. Then, we introduced a second fly 193 194 of the same sex and observed it exploring the arena for 30 min or until an aggressive 195 interaction with the resident occurred. We considered a contest to occur when, during temporary occupation of the same leaf or fruit, either fly approached the other and 196 displayed wing waving, usually followed by escalating aggressive behaviours as reported 197 in Table 1 (Benelli et al., 2015). For each replicate, the behaviours characterizing contests 198 199 in both sexes of C. capitata were noted (see Table 1 for descriptions of behavioural 200 parameters) and we recorded whether the resident or intruder actively attacked the other. At the end of each contest, we noted which fly (resident or intruder) was dislodged from 201 202 the leaf or fruit (Benelli, 2014). One hundred replicates were carried out, for both male-203 male and female-female interactions. To avoid pseudoreplication, only the first aggressive interaction was considered during the observation period for each pair of medflies. If no 204 interaction occurred for 30 min, no data were recorded and the replicate was discarded. 205 206

207 208 Table 1. Escalating level of aggression that characterizes fighting in males and females of the <u>Mediterranean fruit fly</u> (modified from <u>Benelli et al., 2015</u>)

Level	Behaviour	Description
0	Avoidance (both)	Mutual avoidance: nonaggressive interaction
1	Avoidance (one)	Pre-established dominance: one male attacks, the other retreats

Level	Behaviour	Description
2	Wing waving (one)	Attacker faces the opponent and brings both wings forwards perpendicular to the longitudinal axis of its body, while ventral surfaces of wings are turned to face anterior
3	Wing waving (both)	Both males perform wing waving
4	Chasing	Running towards the opponent
5	Fast head rocking	Rapid head twisting movements before pouncing
6	Pouncing	Lunging at the opponent ending with head butting
7	Labellar (one)	The attacker extends mouthparts to touch the opponent
8	Labellar (both)+head pushing	Both flies extend mouthparts and also try push each other away
9	Wing strike	The attacker brings a wing forwards and strikes the opponent
10	Dive	The fly attacks the opponent and quickly retreats
11	Boxing (one)	Attacker raises forelegs, repeatedly and alternately hitting opponent on the head and thorax
12	Boxing (both)	Both flies fight by boxing

209 Experiment 2: the Winner Effect

210 To evaluate the effects of winning we staged aggressive interactions between same-sex

211 pairs of male and female *C. capitata*. We used a random selection procedure, as

suggested by <u>Hsu et al. (2006)</u> in which focal individuals were randomly allocated to

213 experimental groups and pitted against either a much stronger or weaker opponent, to

214 deliver the winning or loser experience. Common predictors of fighting success, such as

size (Garcia et al., 2014; Kasumovic et al., 2010; Lehner et al., 2011), are not applicable to

216 medflies (<u>Benelli, Daane, et al., 2014</u>). To obtain flies that experienced previous victories,

217 we used a random selection method exploiting the residence effect found in experiment 1

- as a predictor of fighting success.
- 219 Training phase

220 For both sexes, three categories of flies were tested in this experiment: winners of a

previous contest, winners of two previous contests (twofold winners) and naïve flies. To

obtain a winner, we used the same experimental apparatus as described in experiment 1.

A naïve (i.e. no previous fighting experience) resident fly was first matched against an

intruder naïve fly, easily achieving a victory (this was true, for both sexes, in more than 224 225 80% of tested flies, Appendix Figs A1 and A2). To obtain a twofold winner, we used the 226 same apparatus described above; a winner was allowed to establish residence again in the arena, then it was newly matched against an intruder naïve fly, easily achieving a 227 228 victory. All naïve flies had no fighting experience; during the training of winners and 229 twofold winners, their naïve opponents were allowed to establish previous residency on leaves or fruits of apricot for the same amount of time in another experimental arena 230 231 without conspecifics.

232 Test phase

233 We studied the contests occurring between (1) a twofold winner versus a naïve fly, (2) a winner versus a naïve fly and (3) two naïve flies. In each test, two flies (i.e. twofold winner 234 235 and naïve, winner and naïve or two naïve individuals) were gently transferred and released simultaneously onto the floor of a separate cylindrical arena and observed for 236 30 min. Both flies usually started to explore the apricot twig. When they came close to 237 238 each other, they exhibited aggressive behaviour. We recorded a contest when, during 239 occupation of the same leaf or fruit, a fly approached a conspecific and displayed wingwaving motions, usually followed by escalating aggressive behaviours (Table 1). 240 241 The interfight interval between consecutive fights was 5 min or 15 min. For each replicate, the following parameters were recorded: (1) the intensity of aggression (i.e. the escalating 242 243 level of aggression that characterizes fights in medflies scored from 0 to 12, Table 1; Benelli et al., 2015); (2) the duration of the entire contest; (3) the outcome of 244 the contest (i.e. whether the focal individual or the opponent was dislodged from the 245 leaf/fruit at the end of the contest). The number of replicates for each treatment is shown 246 in Table 2. 247

Experiment		No. of males		No. of females	
1		100		100	
2	IFI (min)	5	15	5	15
	Naïve	100	100	100	100
	Winner	63	63	68	68
	Twofold winner	48	48	62	62
3	IFI (min)	5	15	5	15

Table 2. Number of *Ceratitis capitata* flies observed for each experiment

Experiment		No.	No. of males		No. of females	
	Naïve	100	100	100	100	
	Loser	69	69	64	64	
	Twofold loser	54	56	56	55	
4	Naïve	60		60		
	WF	23		38		
	Wf	25		24		
	LF	32		32		
	Lf	20		24		

249 WF = twofold winners with physical combat; Wf = twofold winners without physical combat;

LF = twofold losers with physical combat; Lf = twofold losers without physical combat;

251 IFI = interfight interval between contests.

252 Experiment 3: the Loser Effect

253 To evaluate the effects of losing we staged contests between same-sex pairs of male and

female *C. capitata*, using a modification of the random selection method described above

255 for the winner effect experiment.

256 Training phase

257 For both sexes, three categories of flies were tested in this experiment: losers of a

258 previous contest, losers of two previous contests (twofold losers) and naïve flies. To obtain

a loser, we used the same apparatus as described in experiment 2. A naïve intruder fly

260 was first matched against a resident naïve fly and was usually defeated (Appendix Figs A1

261 and A2). To obtain a twofold loser, a loser was newly matched against a resident naïve fly,

262 easily suffering a second defeat. During the training of losers and twofold losers, their

263 naïve opponents were allowed to spend a similar time as intruders in another experimental

- arena containing leaves or fruits of apricot, without conspecifics.
- 265 Test phase

266 We studied the contests occurring between (1) a twofold loser versus a naïve fly, (2) a

loser versus a naïve fly and (3) two naïve flies. In each test, two flies (i.e. twofold loser and

268 naïve, loser and naïve or two naïve individuals) were gently transferred and

simultaneously released onto the floor of a separate cylindrical arena and observed for

- 30 min. The interfight interval between consecutive fights was 5 min or 15 min. For each
 replicate, the parameters defined in experiment 1 (see above) were recorded. The number
- of replicates for each treatment is provided in <u>Table 2</u>.

273 Experiment 4: Does Physical Combat Increase Aggression?

274 The aim of this experiment was to test whether the winner and loser effects depend solely

- on experience of physical combat against a contestant (<u>Rillich & Stevenson, 2011</u>). Here
- we staged aggressive interactions using the methods described in experiments 1–3.

277 Training phase

278 For both sexes, five categories of flies were studied in this experiment: (1) flies that won 279 twice in succession with fighting (WF); (2) flies that won twice in succession without 280 fighting (Wf); (3) flies that lost twice in succession with fighting (LF); (4) flies that lost twice in succession without fighting (Lf); (5) naïve flies. Twofold winners were obtained using the 281 282 random selection procedure described in experiment 2. For WF flies, 'with fighting' means 283 that physical contact occurred during the contest. For Wf flies, 'without fighting' means that the contest reached wing waving as a maximum and did not involve physical contact. 284 Twofold losers were obtained using the random selection procedure described in 285 experiment 3. For LF flies, 'with fighting' means that physical contact occurred during the 286 287 contest. For Lf flies, 'without fighting' means that the contest reached wing waving as a 288 maximum and did not involve physical contact. Naïve flies had no previous fighting 289 experience; during the training of losers or twofold losers, their naïve opponents were 290 allowed to spend a similar time as intruders in another experimental arena containing leaves or fruits of apricot, without conspecifics. 291

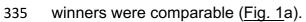
292 Test phase

We studied the contests occurring between (1) a WF fly versus a naïve fly, (2) a Wf fly 293 versus a naïve fly, (3) an LF fly versus a naïve fly, (4) an Lf fly versus a naïve fly and (5) 294 two naïve flies. In each test, the two flies were gently transferred and simultaneously 295 296 released onto the floor of a separate cylindrical arena and observed for 30 min. The 297 interfight interval between consecutive fights was 5 min for all tournaments. Then, after 298 5 min, flies in each the five treatments described above were tested in the same 299 experimental conditions against naïve flies. For each replicate, the parameters defined in 300 experiments 1 and 2 were recorded. The number of replicates for each treatment is 301 provided in Table 2.

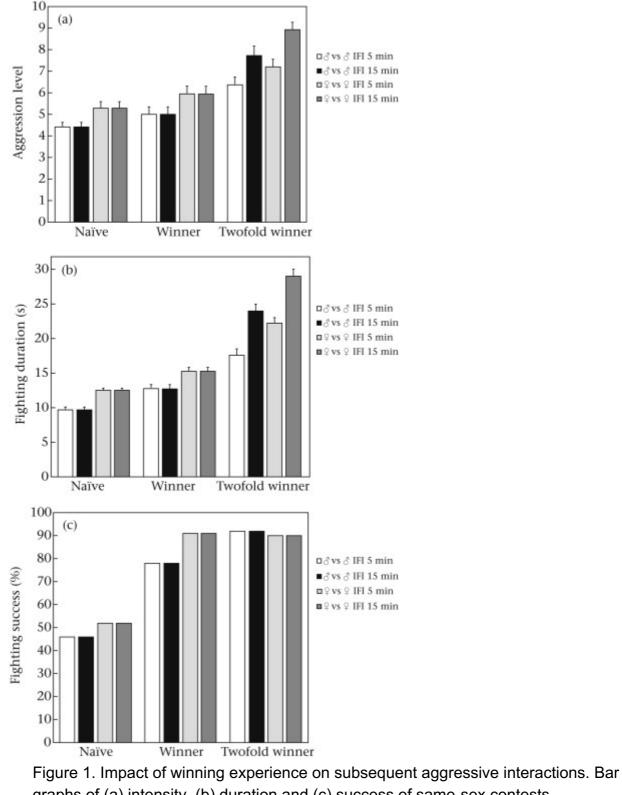
302 Data Analysis

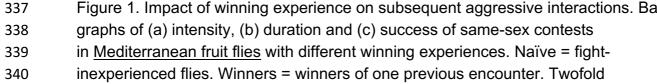
- In experiment 1, differences in fighting success of resident and intruder males and females
 were analysed by likelihood chi-square tests with Yates' correction (alpha = 0.05).
- In experiments 2 and 3, aggression intensity and fighting duration data were analysed by
- 306 JMP 7 by using a weighted generalized linear model (GLZ, Poisson distribution) with three
- fixed factors: y = XB + ε where y is the vector of the observations (e.g. aggression
- intensity), X is the incidence matrix, ß is the vector of fixed effects (i.e. sex, interfight
- 309 interval and previously experienced fighting outcome) and ϵ is the vector of the
- 310 random <u>residual effects</u> (alpha = 0.05). Differences in fighting success were evaluated
- 311 using the GLZ described above with a <u>binomial distribution</u> (to model win/loss outcomes;
- 312 α = 0.05).
- In experiment 4, aggression intensity and fighting duration data were analysed using the
- 314 GLZ described above (Poisson distribution), with two fixed factors (i.e. sex and previously
- experienced fighting outcome; alpha = 0.05). Differences in fighting success were
- evaluated using the GLZ described above with a binomial distribution ($\alpha = 0.05$).

317 Results


318 Experiment 1: Does Prior Residence Affect Fighting Success?

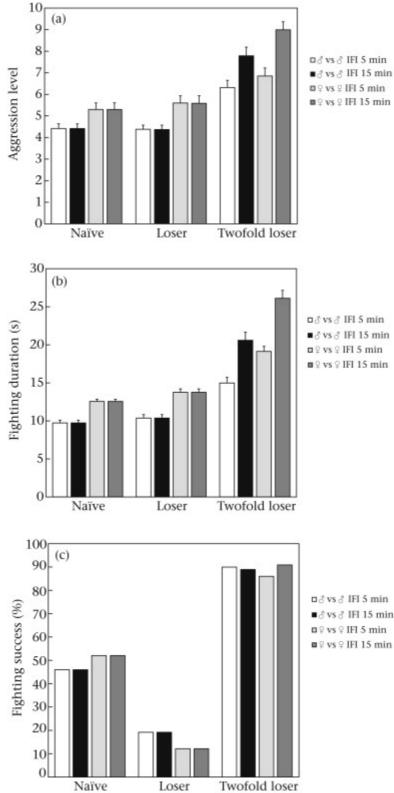
- In male and female contests, when an intruder landed on a leaf or a fruit occupied by a
 resident fly, the aggressive interaction was initiated by the resident or the intruder in equal
 proportions (<u>Appendix Figs A1 and A2</u>). The resident fly was more successful than the
- intruder (resident male: 83% success versus 17% displacement; χ^2_1 = 42.25, *P* < 0.001;
- resident female: 81% success versus 19% displacement; χ^2_1 = 37.21, *P* < 0.001). No main
- 324 differences between the sexes were detected in the escalating aggression sequence
- displayed during fighting (<u>Table 1</u>; <u>Appendix Figs A1 and A2</u>). Male and female aggressive
- interactions started with wing waving, escalated to chasing, followed by fast head rocking
- and pouncing at the opponent. Then, fighters started labellar displays and wing strikes.
- 328 The most aggressive behaviours were diving and boxing (<u>Table 1</u>).


329 Experiment 2: the Winner Effect


- Intensity of aggression was affected by experience (χ^2_2 = 166.933, *P* < 0.001), sex
- 331 $(\chi^2_1 = 32.354, P < 0.001)$, interfight interval $(\chi^2_1 = 5.556, P = 0.018)$ and the interaction of
- experience and interfight interval (χ^2_2 = 11.130, *P* = 0.004), while effects of other

- 333 interactions were not significant. In male and female contests, intensity of aggression was
- higher in twofold winners than in naïve flies, while performances of twofold winners and

336



- winners = winners of two previous encounters. Interfight interval (IFI) was 5 min and
 15 min. Vertical lines are SEs.
- Fight duration was affected by experience (χ^2_2 = 126.531, *P* < 0.001), sex
- 344 $(\chi^2_1 = 148.552, P < 0.001)$, interfight interval $(\chi^2_1 = 29.102, P < 0.001)$ and the
- experience*interval interaction (χ^2_2 = 62.421, *P* < 0.001); other interactions were not
- 346 significant. As a general trend, females had longer aggressive interactions than males.
- 347 Contest duration was longer in twofold winners than in winners or naïve flies, while there
- were no duration differences between the latter two at fight intervals of either 5 or 15 min
 (Fig. 1b).
- Fighting success was affected only by experience (χ^2_2 = 216.602, *P* < 0.001), sex
- 351 $(\chi^2_1 = 4.289, P = 0.038)$ and the interaction of sex and experience $(\chi^2_2 = 8.919, P = 0.012)$.
- 352 It was lower in naïve flies than in winners and twofold winners, regardless of sex and
- interval. No differences were detected between fighting success of winners and twofold
- 354 winners (<u>Fig. 1</u>c).

355 Experiment 3: the Loser Effect

- Aggression intensity was affected by experience (χ^2_2 = 158.876, *P* < 0.001), sex
- 357 $(\chi^2_1 = 179.984, P < 0.001)$, interfight interval $(\chi^2_1 = 7.563, P < 0.001)$ and the
- experience*interval interaction (χ^2_2 = 15.563, *P* < 0.001), while other interactions were not
- 359 significant. Intensity of aggression was higher in twofold losers than in naïve flies, while
- 360 performances of twofold losers and losers were comparable. In females, twofold losers
- 361 showed higher aggression levels after an interfight interval of 15 min than an interval of
- 362 5 min (<u>Fig. 2</u>a).

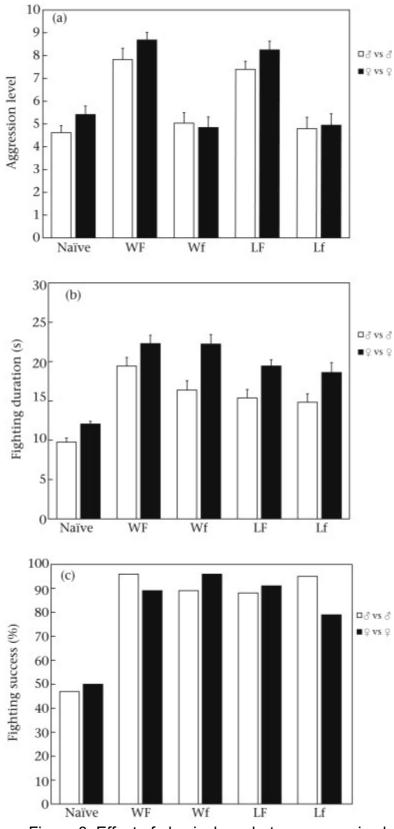

363 364

Figure 2. Impact of losing experience on subsequent aggressive interactions. Bar graphs of (a) intensity, (b) duration and (c) success of same-sex contests 365 in Mediterranean fruit flies with different losing experiences. Naïve = fight-366 inexperienced males. Losers = losers of one previous encounter. Twofold 367 losers = losers of two previous encounters. Interfight interval (IFI) was 5 min and 368 15 min. Vertical lines are SEs. 369

- Fighting duration was affected by experience (χ^2_2 = 790.485, *P* < 0.001), sex
- 371 $(\chi^2_1 = 196.956, P < 0.001)$, interfight interval $(\chi^2_1 = 34.423, P < 0.001)$ and the
- experience*interval interaction (χ^2_2 = 69.281, *P* < 0.001); other interactions were not
- 373 significant. Fighting duration was longer in twofold losers than naïve flies, while duration of
- 374 contests in naïve flies and losers was comparable. Generally, females fought longer than
- 375 males. Contests were longer with the 15 min interfight interval only in twofold losers
- 376 (<u>Fig. 2</u>b).
- Fighting success was affected only by experience (χ^2_2 = 493.241, *P* < 0.001). It was lower
- in naïve flies than twofold losers, while losers achieved less success than naïve flies
- 379 (<u>Fig. 2</u>c).

380 Experiment 4: Does Physical Combat Increase Aggression?

- Intensity of aggression was affected by experience (χ^2_4 = 114.211, *P* < 0.001), while
- 382 effects of sex and the interaction of sex and experience were not significant. Intensity of
- aggression was higher in flies that experienced physical combat than those that had not,
- and this was true for winners and losers, with no differences due to sex. Aggression
- intensity in naïve flies was similar to Wf and Lf, but lower than in WF and LF (Fig. 3a).

Naïve WF Wf LF Lf
Figure 3. Effect of physical combat on aggressive behaviour. Bar graphs of (a)
intensity, (b) duration and (c) success of same-sex contests in <u>Mediterranean fruit</u>
<u>flies</u> with different winning and losing experiences. Naïve = fight-inexperienced flies.
WF = winners with physical combat. Wf = winners without physical combat.
LF = losers with physical combat. Lf = losers without physical combat. Interfight
interval (IFI) was 5 min and 15 min. Vertical lines are SEs.

- Fighting duration was affected by both experience (χ^2_4 = 330.878, *P* < 0.001) and sex
- 394 $(\chi^2_1 = 64.302, P < 0.001)$, while the interaction of sex and experience was not significant.
- For both males and females, fighting duration was lower in naïve flies than in WF, Wf, LF
- and Lf. Duration of contests was comparable among WF, Wf, LF and Lf, and was longer in
- female–female aggressive interactions than those involving males (<u>Fig. 3</u>b).
- Fighting success was affected by both experience (χ^2_4 = 169.516, *P* < 0.001) and the
- interaction of sex and experience (χ^2_4 = 20.241, *P* < 0.001), while the effect of sex itself
- 400 was not significant. Fighting success was lower in naïve flies than in other treatments. No
- 401 differences in fighting success were detected among WF, Wf, LF and Lf flies (Fig. 3c).

402 Discussion

403 Does Prior Residence Affect Fighting Success?

404 The ownership advantage in contests occurs throughout the animal kingdom (Kemp & Wiklund, 2004). In the present study, the effect of prior residence on fighting success was 405 406 observed in both sexes (experiment 1), while we found no differences in the escalating 407 aggression sequence displayed in male-male versus female-female contests. Ramos (1991) also found that prior residence increases fighting success in C. capitata, at variance 408 with previous studies conducted on other strains (Shelly, 2000a, Whittier et al., 1994), and 409 this may be due to behavioural modifications induced by mass rearing (see Benelli et al., 410 411 2014a, Benelli et al., 2014b for recent reviews). More generally, prior residency is known to affect fighting success in several other true Tephritidae species (Benelli, 2014, Benelli, 412 2015a, Benelli et al., 2014a, Benelli et al., 2014b), although no studies have been carried 413 414 out to shed light on physiological and ecological mechanisms underlying the residence effect in these flies. 415

416 Winner and Loser Effects

417 In fighting C. capitata flies, we observed both a winner and a loser effect after one contest 418 experience. However, while the winner effect remained after two consecutive victories, the 419 loser effect disappeared and reversed after two defeats. Results from experiment 2 showed that winners of two previous encounters displayed a higher intensity of 420 421 aggression, fought for longer and achieved greater fighting success (i.e. hyperaggressive 422 performances, hereafter) in subsequent contests than naïve males. These findings are 423 consistent with those of previous studies on several invertebrate species (Hsu et al., 2006; Stevenson & Schildberger, 2013), in which aggression intensity, fighting duration 424 and/or probability of winning were higher in previous contest winners than in naïve 425

426 contestants (i.e. cricket, Adamo & Hoy, 1995; crayfish, Bergman et al., 2003). The winner

427 effect is recognized in a number of <u>vertebrates</u>, including fishes, birds and mammals
428 (see Rutte et al., 2006 and Hsu et al., 2006 for reviews).

429 Experiment 3 showed reduced fighting success in males and females that experienced a 430 single defeat, while losers of two previous encounters displayed a higher intensity of aggression, fought longer and achieved greater fighting success in subsequent contests 431 432 than naïve males. This effect lasted at least 15 min. Similar effects have rarely been observed, in either invertebrates (Moore, Ciccone, & Breed, 1988) or vertebrates (Kim and 433 Zuk, 2000, Stamps and Krishnan, 1998). Previous studies in other invertebrate species 434 435 mostly report decreased intensity of aggression and/or shorter fighting duration in individuals that experienced a defeat in previous contests, compared to naïve individuals 436 437 or winners (e.g. crickets and Drosophila flies; Adamo and Hoy, 1995, Hsu et al., 438 2006, Iwasaki et al., 2006, Khazraie and Campan, 1999, Yurkovic et al., 2010). Similar findings have been reported for vertebrates, such as fish, reptiles, birds and mammals 439 440 (Hsu et al., 2006, Lan and Hsu, 2011). In *C. capitata*, the higher aggressive level and 441 fighting success observed in twofold losers could be because after two consecutive defeats the flies placed a much higher value on the defended resource. We hypothesize 442 443 that they would be willing to pay higher costs to get access to the resource during further 444 contests. Further studies are needed to quantify the fighting performances of naïve and 445 winner/loser males at the individual level. Why medflies show such a divergent response to prior social experience compared to other invertebrate and vertebrate species is still 446 447 unclear. Additional research is required to understand whether previous fighting 448 experience can modify the contestants' subjective value of a given resource (i.e. male courtship territory or female oviposition site) in flies. 449

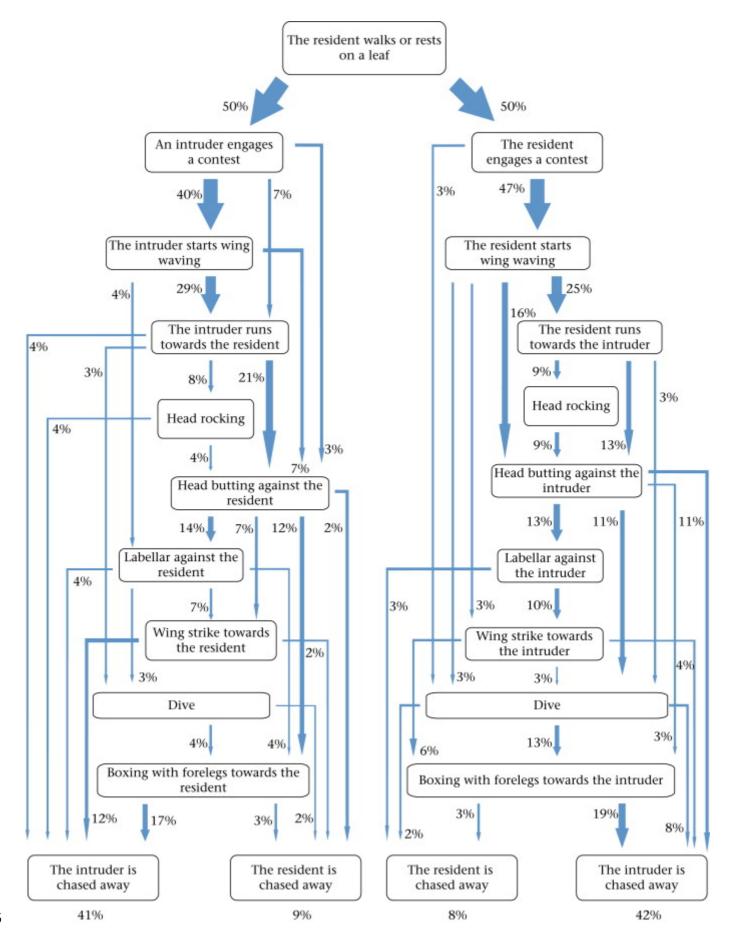
450 Effect of Aggression Experience on Males and Females

451 A comparative approach between the sexes when studying aggression is hard to find, and 452 mostly concerns behavioural lateralization of aggressive displays (see Ariyomo and Watt, 2013, Benelli et al., 2015, Bianki and Filippova, 2001, Reddon and Hurd, 2008). In 453 454 experiments 2, 3 and 4, experiencing previous aggression led to some behavioural 455 differences between the sexes in *C. capitata*. As a general trend, females fought longer 456 than males. Aggressive interactions are of pivotal importance for males and females in the 457 medfly, as well as in a number of other tephritids relying on both male 458 dominance polygyny and resource defence polygyny as mating systems (Benelli, 2015a). However, the amplified effect of experience on consecutive contests we found in females 459 460 relative to males (e.g. longer fighting duration) may be connected with the fact that female

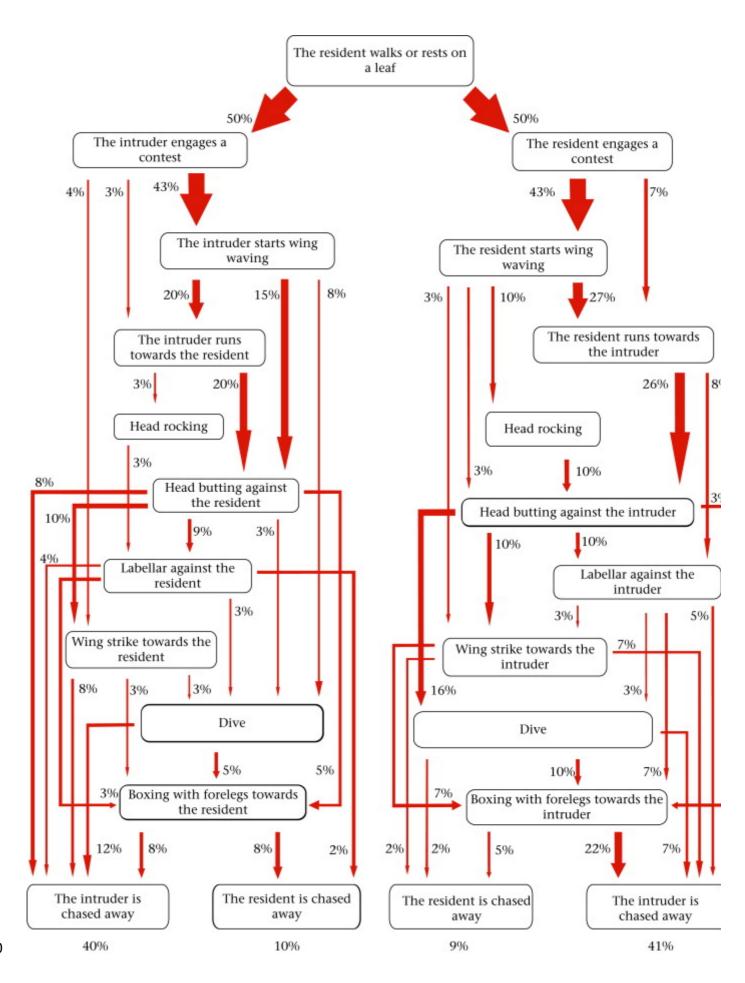
flies rely on aggression for more than one purpose in their life, while this has not been
ascertained for males. Indeed, it has been reported that *C. capitata* females express
aggression against siblings when competing for mates (<u>Papadopoulos et al., 2009</u>) and for
oviposition sites (<u>Benelli, Daane, et al., 2014</u>). Conversely, calling males fight only when
searching for mates, to defend territories in leks (<u>Benelli, 2015a</u>, <u>Shelly, 2000a</u>, <u>Shelly</u>,
<u>2000b</u>).

467 Does Physical Combat Increase Aggression?

Experiment 4 showed that longer fighting duration and higher success of winning and 468 469 losing males relative to naïve ones were mainly due to experience in a previous contest, 470 while the outcome and the experience of physical combat did not affect subsequent 471 aggressiveness level any more than an aggressive interaction without physical contact. In 472 contrast, we found that aggression intensity was increased only in winning or losing 473 experiences that had physical contact during contests; in Wf and Lf treatments the aggression level was similar to that of naïve individuals. Concerning fighting duration, 474 in *C. capitata* the experience of winning without physical combat led to a behavioural effect 475 similar to that shown in crickets; in both taxa this experience alone is sufficient to prolong 476 477 fight duration in subsequent male-male contests (Rillich and Stevenson 2011). In some 478 vertebrates (e.g. East African cichlids), it has been proved that fighting experience itself 479 (coupled with an androgen response) increases the subsequent likelihood of winning, even in the absence of a prior winning experience (Dijkstra, Schaafsma, Hofmann, & 480 481 Groothuis, 2012). We showed that experiencing two consecutive defeats without physical 482 contact induced a similar effect in both sexes of C. capitata (Lf), which achieved higher 483 fighting success in subsequent combat to a level comparable to flies that had experienced two consecutive defeats with physical interaction (LF). Fighting success in LF and Lf flies 484 485 was also comparable to that of WF and Wf individuals, demonstrating that experiencing 486 either consecutive victories or defeats, with or without physical contests, led to 487 hyperaggression in this fly and increased fighting success in subsequent contests.


488 Conclusions

Our research highlighted that male and female *C. capitata* experiencing a single defeat suffered lower fighting success in the following contest, while flies that experienced two previous victories or defeats had higher aggression rates and more wins in further combats. This effect was due to merely experiencing a contest, while the actual outcomes of previous fights did not affect the aggressiveness level. To the best of our knowledge, this is the first evidence that consecutive defeats can reverse the loser effect, leading to


- higher fighting success. Although extensive research has been conducted to understand
- the role of social experience in affecting the outcomes of aggression, the ultimate and
- 497 proximate causes for the existence of the winner and loser effects are unknown (<u>Hsu</u>
- 498 et al., 2006, Rutte et al., 2006, Stevenson and Schildberger, 2013). Rutte et al.
- 499 (2006) formulated two adaptive hypotheses to explain these effects, namely the 'social-
- 500 cue hypothesis' (i.e. victory and defeat leave traces that affect the decisions of subsequent
- 501 opponents) and the 'self-assessment hypothesis' (i.e. winners and losers gain information
- about their own relative fighting ability in the population). In this latter scenario, it appears
- 503 conceivable that *C. capitata* males and females are able to gain information from previous
- 504 fighting experience to refine their future performances, regardless of previous outcomes
- 505 (see also <u>Fawcett & Johnstone, 2010</u>).
- 506 Can this knowledge help to improve pest management strategies against fruit fly pests? To
- 507 our mind there are some connections. The <u>sterile insect technique</u> is one of the most 508 reliable nondisruptive control tools against tephritids. However, sterile males have
- 509 lower mating competitiveness than wild ones, owing to mass-rearing procedures as well as
- 510 to damage/stress occurring during sterilization, shipping and release (Hendrichs,
- 511 Robinson, Cayol, & Enkerlin, 2002). Our findings outline the possibility of inducing
- 512 hyperaggression in sterile males by manipulating the flies' density in cages, thus
- 513 increasing the number of contests, and providing small potted <u>host plants</u> to create a
- semifield environment during the prerelease phase. This may help sterile males to refine
- 515 their fighting skills and achieve better subsequent contest outcomes against wild ones
- 516 (<u>Benelli, 2015a</u>, <u>Benelli, 2015b</u>).

517 Acknowledgments

- 518 We are grateful to Marie Herberstein, Marlène Goubault and an anonymous referee for
- 519 helpful comments on the manuscript. We thank Augusto Loni and Giulia Giunti for helping
- 520 in medfly mass rearing. G.B. is supported by the MIS. 124 MODOLIVI Grant. R.H.M. is
- 521 supported by the USDA <u>National Institute of Food and Agriculture</u>, Hatch project <u>9023R</u>.
- 522 Funds were also provided by the Italian Ministry of Education, University and
- 523 Research (MIUR). Funders had no role in study design, data collection and analysis,
- 524 decision to publish or preparation of the manuscript.
- 525 Appendix

- 527 Figure A1. Effect of previous residence on male–male contests of <u>Mediterranean</u>
- 528 <u>fruit flies</u>. The thickness of the arrows indicates the percentage of individuals
- 529 displaying different behavioural phases; 100 males were observed.

- Figure A2. Effect of previous residence on female-female contests of 531
- 532 Mediterranean fruit flies. The thickness of the arrows indicates the percentage of
- 533 individuals displaying different behavioural phases; 100 females were observed.

References 534

- Adamo and Hoy, 1995 535
- S.A. Adamo, R.R. Hoy 536
- Agonistic behaviour in male and female field crickets, *Gryllus bimaculatus*, 537 and how behavioural context influences its expression 538
- Animal Behaviour, 49 (1995), pp. 1491-1501 539
- ArticleDownload PDFView Record in ScopusGoogle Scholar 540
- Ariyomo and Watt, 2013 541
- T.O. Ariyomo, P.J. Watt 542

Aggression and sex differences in lateralization in the zebrafish 543

- Animal Behaviour, 86 (2013), pp. 617-622 544
- ArticleDownload PDFView Record in ScopusGoogle Scholar 545
- ASAB/ABS, 2014 546
- ASAB/ABS 547

548 Guidelines for the treatment of animals in behavioural research and teaching Animal Behaviour, 99 (2014), pp. I-IX 549

- View Record in ScopusGoogle Scholar Benelli, 2014
- G. Benelli 552

550 551

553 Aggressive behavior and territoriality in the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae): role of residence and time of day 554 555 Journal of Insect Behavior, 27 (2014), pp. 145-161

CrossRefView Record in ScopusGoogle Scholar 556 557

Benelli, 2015a

G. Benelli 558

559 Aggression in Tephritidae flies: where, when, why? Future directions for research in Integrated Pest Management 560

- Insects, 6 (2015), pp. 38-53 561
- View Record in ScopusGoogle Scholar 562 Benelli, 2015b 563
- G. Benelli 564

Should I fight or should I flight? How studying insect aggression can help 565 **Integrated Pest Management** 566

- Pest Management Science (2015), 10.1002/ps.3974 567
- Google Scholar 568 569
- Benelli et al., 2014a G. Benelli, K.M. Daane, A. Canale, C.Y. Niu, R.H. Messing, R.I. Vargas 570

Sexual communication and related behaviours in Tephritidae: current 571 knowledge and potential applications for Integrated Pest Management 572 Journal of Pest Science, 87 (2014), pp. 385-405 573

574 575	<u>CrossRefView Record in ScopusGoogle Scholar</u> Benelli et al, 2015	
576	G. Benelli, N. Desneux, D. Romano, G. Conte, R.H. Messing, A. Canale	
577 578 579 580 581 582	Contest experience enhances aggressive behaviour in a fly: when losers learn to win Scientific Reports (2015), <u>10.1038/srep09347</u> Google Scholar G. Benelli et al., <u>2015</u> G. Benelli, E. Donati, D. Romano, C. Stefanini, R.H. Messing, A. Canale	
583 584 585 586 587	Lateralisation of aggressive displays in a tephritid fly Science of Nature, 102 (2015), pp. 1-9, <u>10.1007/s00114-014-1251-6</u> <u>View Record in ScopusGoogle Scholar</u> <u>Benelli et al., 2014b</u> G. Benelli, G. Giunti, A. Canale, R.H. Messing	
588 589 590 591 592 593	Lek dynamics and cues evoking mating behavior in tephritid flies infesting soft fruits: implications for behavior-based control tools Applied Entomology and Zoology, 49 (2014), pp. 363-373 CrossRefView Record in ScopusGoogle Scholar D.A. Bergman, C.P. Kozlowski, J.C. McIntyre, R. Huber, A.G. Daws, P.A. Moore	<u>)3</u>
594 595 596 597 598 599 600	Temporal dynamics and communication of the winner-effects in the crayfish, Orconectes rusticus Behaviour, 140 (2003), pp. 805-825 View Record in ScopusGoogle ScholarBianki and Filippova, 20V.L. Bianki, E.B. Filippova	<u>)01</u>
601 602 603 604 605 606 607	Sex differences in lateralization in the animal brain Harwood Academic, Amsterdam, The Netherlands (2001) Google Scholar Bricer et al., 1999 R.D. Briceño, D. Ramos, W.G. Eberhard	
608 609 610 611 612 613 614 615 616 617 618 619	Aggressive behavior in medflies (<i>Ceratitis capitata</i>) and its modification by mass-rearing (Diptera: Tephritidae) Journal of the Kansas Entomological Society, 72 (1999), pp. 17-27 <u>View Record in ScopusGoogle Scholar</u>	C <u>an</u> al e an d B en

620	el
621	el i, 20 12
622	<u>20</u>
623	12
624	A. Canale, G. Benelli
625	Impact of mass-rearing on the host-seeking behaviour and parasitism by the
626	fruit fly parasitoid <i>Psyttalia concolor</i> (Szépligeti) (Hymenoptera: Braconidae)
627	Journal of Pest Science, 85 (2012), pp. 65-74
628	CrossRefView Record in ScopusGoogle Scholar
629	
630	
631	
632	
633	
634	
635	
636	
637	
638	
639	
640	
641 642	
642 642	
643	
644	
645	
646	
647	A Carrita A Canala A Daffaalli A Caha C Danalli A Daani
648	A. Carpita, A. Canale, A. Raffaelli, A. Saba, G. Benelli, A. Raspi
649	(Z)-9-tricosene identified in rectal gland extracts of <i>Bactrocera oleae</i> males:
650	first evidence of a male-produced female attractant in olive fruit fly
651	Naturwissenschaften, 99 (2012), pp. 77-81
652	CrossRefView Record in ScopusGoogle Scholar
653	
654	
655	
656	
657	
658	
659	
660	
661	
662	
663	
664	
665	C. Darwin
666	The origin of species by means of natural selection on the preservation of
667	favoured races in the struggle for life
668	John Murray, London, U.K. (1859)

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 690 691 692 693 624	<u>Google Scholar</u>
694 695 696	H.A. Dierick, R.J. Greenspan Molecular analysis of flies selected for aggressive behavior
697 698 699 700 701 702 703 704 705 706 707	Nature Genetics, 38 (2006), pp. 1023-1031 CrossRefView Record in ScopusGoogle Scholar
707 708 709 710 711	
712 713 714 715 716 717	
718	

719	P.D. Dijkstra, S.M. Schaafsma, H.A. Hofmann, T.G. Groothuis
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734	'Winner effect' without winning: unresolved social conflicts increase the probability of winning a subsequent contest in a cichlid fish Physiology and Behavior, 105 (2012), pp. 489-492 <u>Article</u> Download PDF <u>View Record in ScopusGoogle Scholar</u>
735	R. Dukas
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 750 751 752 753 754 755 756 757 758 759	Evolutionary biology of insect learning Annual Review of Entomology, 53 (2008), pp. 145-160 <u>CrossRefView Record in ScopusGoogle Scholar</u>
760	
761 762	
762 763	European Commission
764 765 766 767	Commission recommendations of 18 June 2007 on guidelines for the accommodation and care of animals used for experimental and other scientific purposes Annex II to European Council Directive 86/609. See 2007/526/EC

768	(2007)
769	http://eurex.europa.eu/LexUriServ/LexUriServ.do?uri1/4OJ:L:2007:197:0001:0089:E
770	N:PDF
771	Google Scholar
772	
773	
774	
775	
776	
777	
778	
779	
780	
781	
782	
783	
784	
785	
786	
787	
788	
789	
790	
791	
792	
793	
794	
795	
796	
797	T.W. Fawcett, R.A. Johnstone
798	Learning your own strength: winner and loser effects should change with age
799	and experience
800	Proceedings of the Royal Society Biological Sciences, 277 (2010), pp. 1427-1434
801	CrossRefView Record in ScopusGoogle Scholar
802	
803	
804	
805	
806	
807	
808	
808	
810	
810	
812 812	
813	
814	
815	
816	

817 818 819	M.J. Garcia, J. Murphree, J. Wilson, E.L. Earley
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 833 834 835 836 837 838 839 840 841	Mechanisms of decision making during contests in green anole lizards: prior experience and assessment Animal Behaviour, 92 (2014), pp. 45-54 <u>Article</u> Download PDF <u>View Record in ScopusGoogle Scholar</u>
842	T. Gaskin, P. Futermann, T. Chapman
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 855 856 857 858 859 860 861 862 863 864 865 866	Increased density and male-male interactions reduce male longevity in the medfly, <i>Ceratitis capitata</i> Animal Behaviour, 63 (2002), pp. 121-129 <u>Article</u> Download PDF <u>View Record in ScopusGoogle Scholar</u>

867 868 869 870 871 872 873 874 875	M. Goubault, M. Decuignière
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 891 892 893 894 895 894 895 896 897 898 899 900 901	J. Hendrichs, A.S. Robinson, J.P. Cayol, W. Enkerlin
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916	Medfly areawide sterile insect technique programmes for prevention, suppression or eradication: the importance of mating behaviour studies Florida Entomologist, 85 (2002), pp. 1-13 <u>CrossRefGoogle Scholar</u>

917 918 919 920 921	Y. Hsu, R.L. Earley, L.L. Wolf
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 939 940 941 942 943	Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes Biological Reviews of the Cambridge Philosophical Society, 81 (2006), pp. 33-74 View Record in ScopusGoogle Scholar
944 945	M. Iwasaki, A. Delago, H. Nishino, H. Aonuma
946 947 948 949 950 951 952 953 954 955 956 957 958 957 958 959 960 961 962 963 964 965 966	Effects of previous experience on the agonistic behaviour of male crickets, <i>Gryllus bimaculatus</i> Zoological Science, 23 (2006), pp. 863-872 <u>View Record in ScopusGoogle Scholar</u>

967 968 969 970 971	M.M. Kasumovic, D.O. Elias, S. Sivalinghem, A.C. Mason, M.C.B. Andrade
972 973 974	Examination of prior contest experience and the retention of winner and loser effects
974 975 976 977 978 979 980 981 982 983 984 985 986 985 986 987 988 989 989 989 990 991 992 993	Behavioural Ecology, 21 (2010), pp. 404-409, <u>10.1093/beheco/arp204</u> CrossRefView Record in ScopusGoogle Scholar
994 995 996	D.J. Kemp, C. Wiklund
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016	Residency effects in animal contests Proceedings of the Royal Society Biological Sciences, 271 (2004), pp. 1707-1711 View Record in ScopusGoogle Scholar

L017	
1018	
L010	
L015 L020	
L021	
L022	
L 023	K. Khazraie, M. Campan
L 02 4	The role of prior agonistic experience in dominance relationships in male
L025	crickets Gryllus bimaculatus (Orthoptera: Gryllidae)
1026	Behavioural Processes, 44 (1999), pp. 341-348
L027	ArticleDownload PDFView Record in ScopusGoogle Scholar
L028	
1029	
1020	
L030	
L032	
L032	
L033 L034	
L035	
1036	
L037	
L038	
L039	
L040	
1041	
1042	
1043	T. Kim, M. Zuk
L044	The effects of age and previous experience on social rank in female red
L045	junglefowl, Gallus gallus spadiceus
1046	Animal Behaviour, 60 (2000), pp. 239-244
L047	ArticleDownload PDFView Record in ScopusGoogle Scholar
L048	
L049	
L050	
1051	
1052	
1053	
1054	
1055	
1056	
L057	
1058	
L059	
1060	
L060	
L061 L062	
L062 L063	Y.T. Lan, Y. Hsu
1003	1.1. Lan, 1.1130
1064	Prior contest experience exerts a long-term influence on subsequent winner
L065	and loser effects

L066 L067 L068 L069 L070 L071 L072 L073 L074 L075 L076 L076 L077 L078 L079 L080 L081 L082 L083 L084 L085	Frontiers in Zoology, 8 (2011), p. 28 CrossRefView Record in ScopusGoogle Scholar
L086 L087 L088 L089 L090 L091 L092 L093 L094 L095 L096 L097 L098 L099 L100 L101	Rats benefit from winner and loser effects Ethology, 117 (2011), pp. 1-12 CrossRefView Record in ScopusGoogle Scholar
L101 L102 L103 L104 L105 L106 L107 L108 L109 L109 L110 L111 L112 L113 L114 L115	N.Z. LOIENZ On aggression Harcourt, Brace and World, New York, NY (1966) Google Scholar

L116 L117 L118 L119 L120 L121 L122 L123 L124 L125 L126 L127 L128 L129 L130 L131	J. Maynard Smith, G.R. Price
122	The legis of animal conflict
132	The logic of animal conflict
1133	Nature, 246 (1973), pp. 15-18
134	View Record in ScopusGoogle Scholar
135	
136	
L137	
L138	
L139 L140	
L140 L141	
L141 L142	
L142 L143	
143	
145	
146	
140	
148	
149	
1150	
151	
152	
153	
154	
155	
1156	
157	
158	M. Mesterton-Gibbons
150	On the evolution of numeric and locar offectors a name the surficer state
159	On the evolution of pure winner and loser effects: a game-theoretic model
160	Bulletin of Mathematical Biology, 61 (1999), pp. 1151-1186
161	ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar
162	
163	
164	
L165	

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179	A.J. Moore, W.J. Ciccone, M.D. Breed
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208	N.T. Papadopoulos, J.R. Carey, P. Liedo, G. Muller, D. Senturk
L209 L210 L211 L212 L213 L214 L215	Virgin females compete for mates in the male lekking species <i>Ceratitis</i> <i>capitata</i> Physiological Entomology, 34 (2009), pp. 238-245 <u>CrossRefView Record in ScopusGoogle Scholar</u>

L216 L217 L218 L219 L220 L221 L222 L223 L224 L225	G.A. Parker
L226 L227 L228 L229 L230 L231 L232 L233 L234 L235 L236 L235 L236 L237 L238 L239	Assessment strategy and the evolution of fighting behaviour Journal of Theoretical Biology, 47 (1974), pp. 223-243 ArticleDownload PDF <u>View Record in ScopusGoogle Scholar</u>
L240	D. Ramos
L241 L242 L243 L244 L245 L246 L247 L248 L249 L250 L251 L252 L253 L254 L255 L256 L255 L256 L257 L258 L259 L260 L261	Seleccion y comportamiento de apareamiento de la mosca Mediterranea de la fruta (<i>Ceratitis capitata</i>) en laboratorio y la comparacion con una cepa silvestre bajo condiciones seminaturales (MS thesis) Costa Rica University (1991) Google Scholar

1266	A.R. Reddon, P.L. Hurd
L267 L268 L269	Aggression, sex and individual differences in cerebral lateralization in a cichlid fish Biology Letters, 4 (2008), pp. 338-340
L 270 L 271	CrossRefView Record in ScopusGoogle Scholar
L272 L273	
L274 L275 L276	
L277 L278	
L279 L280	
L281 L282 L283	
L284 L285	
L286 L287 L288	
L288 L289 L290	
L291 L292	
L293 L294 L295	
L 296	J. Rillich, P.A. Stevenson
L297 L298 L299	Winning fights induces hyperaggression via the action of the biogenic amine octopamine in crickets PLoS ONE, 6 (2011), p. e28891, <u>10.1371/journal.pone.0028891</u>
L300 L301	CrossRefView Record in ScopusGoogle Scholar
L302 L303 L304	
L305 L306	
L307 L308 L309	
L310 L311	
L312 L313	
L314 L315	

L316 L317 L318	C. Rutte, M. Taborsky, M.W.G. Brinkhof
L319 L320 L321 L322 L323 L324 L325 L326 L327 L328 L329 L330 L331 L332 L333 L334	What sets the odd of winning and losing? Trends in Ecology and Evolution, 21 (2006), pp. 16-21 ArticleDownload PDFView Record in ScopusGoogle Scholar
L335 L336 L337 L338 L339 L340 L341 L342 L343 L344 L345 L346 L345 L346 L347 L348 L349 L350 L351 L352 L353	T.E. Shelly Aggression between wild and laboratory-reared sterile males of the Mediterranean fruit fly in a natural habitat (Diptera: Tephritidae) Florida Entomologist, 83 (2000), pp. 105-108 CrossRefView Record in ScopusGoogle Scholar T.E. Shelly
L354 L355 L356 L357 L358 L359 L360 L361 L362 L363 L364	Male signalling and lek attractiveness in the Mediterranean fruit fly Animal Behaviour, 60 (2000), pp. 245-251 <u>Article</u> Download PDF <u>View Record in ScopusGoogle Scholar</u>

L365	
L366	
L367	
L368	
L369	
L370	
L 371	
1372	
L373	
L374	
L375	
L376	
1377	
L378	
L379	
L380	J.A. Stamps, V.V. Krishnan
L381	Territory acquisition in lizards. IV. Obtaining high status and exclusive home
L382	ranges
L383	Animal Behaviour, 55 (1998), pp. 461-472
L384	<u>Article</u> Download PDF <u>View Record in ScopusGoogle Scholar</u>
L385	
1386	P.A. Stevenson, J. Rillich
L387	The decision to fight or flee–insights into underlying mechanism in crickets
1388	Frontiers in Neuroscience, 6 (2012), pp. 1-10
L389	View Record in ScopusGoogle Scholar
L390	
1391	P.A. Stevenson, K. Schildberger
1392	Mechanisms of experience dependent control of aggression in crickets
L393	Current Opinion in Neurobiology, 23 (2013), pp. 318-323
L394	ArticleDownload PDFView Record in ScopusGoogle Scholar
	<u>A filole</u> Download 1 D1 <u>view Record in CoopaseCoogle Contolar</u>
L395	
L396	G.S. Van Doorn, G.M. Hengeveld, F.J. Weissing
L397	The evolution of social dominance I: two-player models
L398	Behaviour, 140 (2003), pp. 1305-1332
L 399	View Record in ScopusGoogle Scholar
L400	
	0.0 Mar Dears 0.M. Han revealed E. I. Weissing
L401	G.S. Van Doorn, G.M. Hengeveld, F.J. Weissing
L402	The evolution of social dominance II: multi-player models
L403	Behaviour, 140 (2003), pp. 1333-1358
L404	View Record in ScopusGoogle Scholar
L405	
	E Van Wildonburg I Clámonat N.D. Tautaui
L406	E. Van Wilgenburg, J. Clémencet, N.D. Tsutsui
407	
L 407	Experience influences aggressive behaviour in the Argentine ant
L408	Biology Letters, 6 (2010), pp. 152-155
L409	CrossRefView Record in ScopusGoogle Scholar
L410	

- L411 T.S. Whittier, F.Y. Nam, T.E. Shelly, K.Y. Kaneshiro
- Male courtship success and female discrimination in the Mediterranean fruit
 fly (Diptera: Tephritidae)
 Journal of Insect Behavior, 7 (1994), pp. 159-170
- 1415 View Record in ScopusGoogle Scholar
- L417 A. Yurkovic, O. Wang, A.C. Basu, E.A. Kravitz

Learning and memory associated with aggression in Drosophila L418 melanogaster L419 Proceedings of the National Academy of Science of the United States of L420 America, 103 (2010), pp. 17519-17524 L421 **Google Scholar** L422 L423 L. Zwarts, M. Versteven, P. Callaerts L424 Genetics and neurobiology of aggression in Drosophila L425 Fly, 6 (2012), pp. 35-48 L426

- L427 CrossRefView Record in ScopusGoogle Scholar
- L428

1416