QB50 Space Mission

CHALLENGES AND SOLUTIONS FOR THE QB50 TELECOMMUNICATION NETWORK

Research Master Student at von Karman Institute for Fluid Dynamics, Rhode Saint-Genèse, Belgium.

Supervisors: Thorsten Scholz, Jan Thömel and Salvo Marcuccio.

15 October, 2014 – 6th European CubeSat Symposium, Estavayer-le-Lac, Switzerland.

NR5

Contents

- Introduction
- Objectives & Requirements
- Communication Solutions
- Orbital Inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation Problem
- Conclusions

[CubeSat image courtesy of the University of New South Wales]

Introduction

QB50 Mission:

- Introduction
- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation Problem
- Conclusions

An international network of 50 CubeSats for multi-point, in-situ, longduration measurements and in-orbit demonstration in the lower thermosphere.

 Circular initial orbit: altitude of approx. 380 km, Inclination ~98°.

• Downlink using the QB50 Network of Ground Stations.

The communication challenge:

- New kind of communication analysis (huge number of satellites);
 - Achievement of mission requirements with low technologies.

Objectives & Requirements

Main Objectives:

- Introduction
- Objectives & Requirements
- Communication Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

- Find **number** and **positions** of GSs required to recover data generated.
- Optimize communication link.

Requirements:

- Simple and high qualified technologies.
- 2 Mb Science data per day down to Earth for each CubeSat (4 Mb including Team Payload, extended to 10 Mb for margins)

Analysis Methodology

• <u>One-to-One problem</u> (One CubeSat + One Ground station):

- Communication system selection;
- Orbital inclination investigation;
- GS Latitude analysis.
- Communication overlaps
 Constellation problem

085

Communication Solutions

Communication system selection:

- Introduction
- Objectives & Requirements
- Communication Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation Problem
- Conclusions

UHF/VHF system

S-Band system

• For both strategies were analyzed configurations with or without GS rotator.

- <u>Using STK software</u>:
- Access time - Accumulated data
- Final comparison by Link Budget Analysis (signal quality). **SYSTEM SELECTED!**

Communication Solutions

Communication systems:

- Introduction
- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

UHF/VHF system:

Pro:

- Space qualified for CubeSat applications
- Low power consumption
- Wide beamwidth

Cons:

- Low data rate (9.6 kbps)

STK Simulations:

Sim. 1: GS without rotator Sim. 2: GS with rotator mechanism

S-Band system:

Pro:

- High data rate (1 Mbps)

Cons:

- High power consumption
- Narrow beamwidth

VKI GS: 50.75 lat., 4.38 long. Initial Orbit altitude: 380 km Orbit inclination: 98 deg

Communication Solutions

Sim.1: "No rotating GS"

- Introduction
- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

UHF/VHF system: 4.09 Mb for the whole mission (~ 3 months) S-Band system: 3.91 Mb for the whole mission (~ 3 months)

Sim.2: "GS with rotor"

FEASIBLE

Accumulated data:

UHF/VHF system: ~ 3 Mb per day S-Band system: ~ 316 Mb per day

YAESU G-5500 Rotor

Signal quality investigation:

- A **link budget** is the accounting of gains and losses from the transmitter, through the medium, to the receiver.
- The **system link margin** is the difference between the receiver's sensitivity and the actual received power.

A system with low *link margin* requires increased system complexity.

UHF/VHF System:

Downlink budget:

Parameter	Value	Units	Parameter	Value	Units		
Spacecraft		Ground Station (Eb/No Method)					
S/C Transmitter Power Output:	1,0	Watts	GS Antenna Pointing Loss:	0,2	dB		
S/C Total Transmission Line Losses:	1,4	dB	GS Antenna Gain:	14,1	dBi		
S/C Antenna Gain:	1,5	dBi	GS Total Transmission Line Losses	3.0	dB		
S/C EIRP:	0,6	dBW		0,0	uв		
Downlink Path			System Desired Data Rate:	9600	bps		
S/C Antenna Pointing Loss:	0,0	dB	Demodulation Method Selected:	QPSK			
S/C to GS Antenna Polarization Losses:	0,2	dB	System Allowed or Specified BER:	1,0E	-05		
Path Loss:	144,1	dB	Telemetry System Required Eb/No:	9,6	dB		
Atmospheric Losses:	1,1	dB	Ch (No Threehold		dP		
Ionospheric Losses:	0,4	dB	Eu/No Threshold	9,0	uD dD		
Rain Losses:	0,0	dB	System Link Margin: 18,9		uВ		
	System Link Margin $> 10 dB (Low cost systems)$						

System Link Margin > 10 dB (Low cost systems) System Link Margin > 6 dB (Professional Systems)

Link Budget Analysis

S-Band System:

Downlink budget:

Parameter	Value	Units	Parameter	Value	Units		
Spacecraft			Ground Station (Eb/No Method)				
S/C Transmitter Power Output:	1,0	Watts	GS Antenna Pointing Loss:	0,6	dB		
S/C Total Transmission Line Losses:	2,4	dB	GS Antenna Gain:	31,8	dBi		
S/C Antenna Gain:	6,0	dBi	GS Total Transmission Line Losses	2.0	dB		
S/C EIRP:	3,6	dBW		2,0			
Downlink Path			System Desired Data Rate:	1	Mbps		
S/C Antenna Pointing Loss:	0,0	dB	Demodulation Method Selected:	QP	QPSK		
S/C to GS Antenna Polarization Losses:	0,2	dB	System Allowed or Specified BER:	1,0E-05			
Path Loss:	158,9	dB	Telemetry System Required Eb/No:	9,6	dB		
Atmospheric Losses:	1,1	dB		0.0	ЧD		
Ionospheric Losses:	0,1	dB	Eb/No Threshold	9,6	0B		
Rain Losses:	0,5	dB	System Link Margin: 6,8 d		aB		
System Link Margin > 10 dB (Low cost systems)							

System Link Margin > 6 dB (Professional Systems)

Communication Solutions

Solution Selected:

- Introduction
- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

YAESU G-5500 Rotor Max El rate: 2.68 deg/s Max Az rate: 6.2 deg/s

UHF/VHF Yagi Antenna (14.1 dBi)

- <u>UHF/VHF system</u> (Data rate: 9.6 kbps)
- <u>Space segment</u>

Omnidirectional Antenna (1.5 dBi) *UHF/VHF Transceiver*

Orbital Inclination Analysis

Importance of orbit inclinations:

Inclination changes in function of (and/or) launcher orbital inclination Variations in inclination could be due to mission modifications. Earth's rotation It is useful have an overview of satellite orbit possible performances for different inclinations! Analysis range for orbit inclinations: 60° < i < 100° Using

- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

11:56:24.400 Time Step: 5.00 sec

Orbital Inclination Analysis

- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

Therefore lower inclinations ensure more transmitted data.

There is a maximum increase of transmitted data above 70% for low inclinations.

GS Latitude Analysis

Ground station position investigation:

- Introduction
- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

Why should we study it?

GS positions strongly influence collected data. Few stations at high latitudes could cover data like a great number of GSs at lower latitudes.

It is extremely useful have an overview of GSs performance in function of their latitudes.

Facility_70
Facility_60
Facility_50

•Facility_30 Facility_20 Facility_10

VKI_GS

Hity 90

GS Latitude Analysis

Therefore higher latitudes ensure more transmitted data.

Transmitted data can be 7 times more for higher latitudes.

Communication Overlaps

The Overlap Problem:

- Introduction
- Objectives & Requirements
- Communication Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

Access Constrain:

One access per time. ONE GS for ONE CubeSat per time.

Simulation Idea:

- Two CubeSats with a difference in the *True Anomaly angles* of: 2.5°, 5°, 7.5° and 10°.
- One GS (VKI Ground Station)

Access permitted

Communication Overlaps

STK results:

Communication Overlaps

Constellation Problem

- Introduction
- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

Constellation Issues:

- Only one CS can communicate with one GS per time and vice versa;
- Constellation geometry varies with time.

After deployment (up), after 1 month (down)

Constellation Problem

Analyzed CubeSat configurations:

- Introduction
- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

- 5 CSs with large angular distance (Group 1) (72 deg of difference in True Anomaly angles)
- First 5 CSs of distributed configuration (Group 2) (7.2 deg of difference in True Anomaly angles)

Constellation Problem

1 to 25 GS combinations analysis:

Analyze some possible combinations with ground segments including from 1 to 25 GSs.

Introduction

- Objectives & Requirements
- Communication Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation Problem
- Conclusions

Constellation Problem

- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

Constellation Problem

Constellation Problem

Constellation Problem

1 to 25 GS combinations analysis:

Results comparison between CS Group 1 and 2.

Introduction

- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

Min. data collected per day for different number of GSs

Constellation Problem

ynamics —

Constellation Problem

Use of a single GS at high latitude:

- Introduction
- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

Three different GSs, characterized by 3 different latitudes:

- GS 29: 0° long., 90° lat.
- GS 30: 0° long., 85° lat.
- GS 31: 0° long., 80° lat.

The orbital characteristics and mission requirements are the same.

Two different CS groups (CS Group 1 and CS Group 2).

Constellation Problem

Conclusions

Results:

- Introduction
- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

- <u>UHF-VHF System</u>, which ensures better signal quality;
- In-depth study of *overlaps*, <u>GS position</u> and *orbital inclination* influence;
- The use of a <u>single GS</u> could be an effective alternative, but there are relevant downsides as the *strong overlaps effects*, *difficult accessibility* and *maintenance*, which requires high costs to guarantee a high reliability.
- By <u>Combination Analysis</u> the minimum number of GSs turns out to be 3 (between GSs of QB50 partners).

Thanks to: VKI QB50 Team and ESA for sponsorship

European Space Agency

Thank you for your attention

THE VON KARMAN INSTITUTE FOR FLUID DYNAMICS An International Center for Advanced Training in Research through Research

Günther March

Postgraduate Research Master Student Von Karman Institute for Fluid Dynamics Rhode Saint-Genèse, Belgium. VON KARMAN INSTITUTE FOR FLUID DYNAMICS

Contacts: gunther.march@vki.ac.be g.march@hotmail.it

Appendix

Force Model for STK:

OK

Cancel

Help

entral Body Gra	avity			Drag	
ravity	WG	S84_EGM96.grv		Model Spherical	•
laximum Degree	21			CD:	2.300000
laximum Order: olid Tides:	21 Perr	nanent tide only	•	Area/Mass Ratio:	0.005 m^2/kg
Use Ocean Ti	des			Atm. Density Model:	NRLMSISE 2000 -
olar Radiation P	ressure	2		SolarFlux/GeoMag	
Use Model					Enter Manually
Cr:	Sphe	rical	•	Average F10.7:	133.0000000
Area/Mass	Ratio:	0.005 m^2/kg		Geomagnetic Index (Kp):	4.8500000
Shadow Mode	el: dary Mi ty	Dual Cone tigation	•	Eclipsin	ng Bodies
Name U	se	Source		Gravity Value	
Sun	/	Cb file	1.327122	000000e+011 km^3/sec^2	
Moon	/	Cb file	4.902801	076000e+003 km^3/sec^2	
Jupiter		Cb file	1.267127	648383e+008 km^3/sec^2	
Venus		Cb file	3.248585	920790e+005 km^3/sec^2	
Saturn		Cb file	3.794058	536168e+007 km^3/sec^2	

CubeSat force model for STK scenarios

Communication Link Losses:

Free-Space Path Loss:

Attenuation of an electromagnetic wave as it propagates through space, is also the major component in the link budget analysis.

$$FSPL(dB) = 10 \log_{10} \left(\left(\frac{4\pi}{c} df \right)^2 \right)$$

Rain Loss:

Attenuation due to the rain presence. This loss varies much with frequency.

$$A_p = a R_p^b L_S r_p$$
 , [dB]

Ionospheric Loss:

Clouds of electrons may travel through the ionosphere and give rise to fluctuations in the signal.

Atmospheric Loss:

Energy absorption by the atmospheric gases. The atmospheric absorption loss varies with frequency.

<u>UHF/VHF System:</u>

Uplink budget:

Parameter Value Ur		Units	Parameter	Value	Units
Ground Station	Vuruc	Spacecraft (Eb/No Method)			
GS Transmitter Power Output:	10,0	Watts	S/C Antenna Pointing Loss:	0,0	dB
GS Total Transmission Line Losses:	4,0	dB	S/C Antenna Gain:	2,0	dBi
Antenna Gain:	16,3	dBi	S/C Total Transmission Line	1,9	dB
GS EIRP:	22,3	dBW	System Desired Data Rate:	1200	bos
Uplink Path					
GS Antenna Pointing Loss:	0,3	dB	Demodulation Method Selected:	AFSK/FM	
GS-to-S/C Antenna Polarization	0,2	dB	System Allowed or Specified BER:	1,0E-05	
Losses:			Telemetry System Required	23,2	dB
Path Loss:	134,6	dB	Eb/No:		
Atmospheric Losses:	1,1	dB	Eb/No Threshold	24,2	dB
Ionospheric Losses:	0,7	dB	System Link Margin:	33,6	dB
Rain Losses:	0,0	dB			

System Link Margin > 10 dB (Low cost systems) System Link Margin > 6 dB (Professional Systems)

S-Band System:

Uplink budget:

Parameter	er Value Units		Parameter	Value	Units	
Ground Station	Spacecraft (Eb/No Method)					
GS Transmitter Power Output:	35,0	Watts	S/C Antenna Pointing Loss:	0,0	dB	
GS Total Transmission Line Losses:	4,0	dB	S/C Antenna Gain:	6,0	dBi	
Antenna Gain:	30,6	dBi	S/C Total Transmission Line	0,4	dB	
GS EIRP:	42,1	dBW	Losses:			
Uplink Path			System Desired Data Rate:	1	Mbps	
GS Antenna Pointing Loss:	0,5	dB	Demodulation Method Selected:		QPSK	
GS-to-S/C Antenna Polarization Losses:	0,2	dB	System Allowed or Specified BER:	ecified BER: 1,0E-0		
Path Loss:	157,3	dB	Telemetry System Required	9,6	dB	
Atmospheric Losses:	1,1	dB	Eb/No:			
Ionospheric Losses:	0,4	dB	Eb/No Threshold	9,6	dB	
Rain Losses:	0,5	dB	System Link Margin:	20,4	dB	
			·		·	

System Link Margin > 10 dB (Low cost systems) System Link Margin > 6 dB (Professional Systems)

Link Budget Analysis

Link Budget Results:

For low cost systems there is a *Minimum Required Link Margin* of 10 dB.

UHF/VHF system:

Uplink : System Link Margin = 33,6 dB *Downlink* : System Link Margin = 18,9 dB

S-Band system:

Uplink : System Link Margin = 20,4 dB *Downlink* : System Link Margin = 6,8 dB

GS Latitude Analysis

GS Latitude [deg]

Higher GS latitudes lead to greater longitude range angles. Latitude range angle is nearly constant.

Constellation Problem

Ground segments analysis:

- Introduction
- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication
 overlaps
- Constellation
 Problem
- Conclusions

- <u>Group 1</u>: Asia N/S
- Group 2: Northern hemisphere W/E
- Group 3: America N/S
- Group 4: Europe

- CS Orbit inclinations: 98°
 - Data rate: 9.6 kbps
 - 28 GSs in 4 groups
- Min. contact time for calculations: 20 s

Constellation Problem

Daily data results:

Asia N/S Ground Segment

- Introduction
- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

CS1 CS2 CS3 CS4 CS5 4 Mb/d 10 Mb/d Minimum data per day Data per day [Mb/day] 20 40 60 80 100 120 Mission time [d]

Requirements are not reached. In the starting phase low amount of data collected.

Requirements reached.

amount of data collected.

Since the starting phase good

Constellation Problem

Since the starting phase good amount of data collected.

Requirements reached.

In the starting phase low amount of data collected.

Constellation Problem

Ground segment summary results:

- Introduction
- Objectives & Requirements
- Communication Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem
- Conclusions

1) ASIA N/S:

GS Group1: max >40 Mb/d, min: ~16 Mb/d GS Group2: max >40 Mb/d, min: ~9 Mb/d

2) Northern hemisphere W/E:

GS Group 1: max ~90 Mb/d, min > 20 Mb/d GS Group 2: max ~90 Mb/d, min ~18 Mb/d

3) America N/S:

GS Group 1: max ~60 Mb/d, min ~18 Mb/d GS Group 2: max ~60 Mb/d, min ~13 Mb/d

4) Europe:

GS Group 1: max ~30 Mb/d, min ~15 Mb/d GS Group 2: max ~30 Mb/d, min ~14 Mb/d

(

Constellation Problem

1 to 25 GS combinations analysis:

Introduction

- Objectives & Requirements
- Communication
 Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem

GSs	used	for	the	com	bina	tions:

Liniversided de Ruenes Aires	1	Anno I Iniversity	15
Universidad de Duenos Aires	I	Anna University	15
The University of Adelaide	2	University of Rome "LA SAPIENZA"	16
University of Syndey	3	Korea Advanced Institute of Science and Technology	17
University of Applied Science Technikum Wien	4	Delft University of Technology	18
University of Liège	5	PERUVIAN CONSORTIUM	19
von Karman Institute	6	University of Porto	20
York University – Toronto	7	Samara State Aerospace University	21
Beihang University	8	Universidad Politécnica de Madrid	22
Nanjing University of Science and Technology	9	National Cheng Kung University	23
Zhejiang University	10	Istanbul Technical University / Air Force Academy	24
Czech Technical University in Prague	11	National Technical University of Ukraine	25
Aalborg University	12	MSSL University College London	26
Aalto University	13	University of Surrey	27
Institut Supérieur de l'Aéronautique et de l'Espace ISAE	14	QB50 US Consortium	28

Constellation Problem

- Introduction
- Objectives & Requirements
- Communication Solutions
- Orbital inclination Analysis
- GS Latitude Analysis
- Communication overlaps
- Constellation
 Problem

