
Modeling Web Applications Infrastructure with ASMs

Vincenzo Gervasi, Egon Börger, Antonio Cisternino

Dipartimento di Informatica, Università di Pisa
Largo B. Pontecorvo 3

56123 Pisa, ITALY

Abstract

We describe via Abstract State Machines the major ingredients of contemporary
web applications: a web browser running JavaScript programs and a web server
dispatching requests to one of several modules, each one representing a class of
established web application frameworks.

The web browser model comes in four levels, namely transport, stream, con-
text and browser level, and is focussed on the interaction with possibly multiple
servers (which requires a concurrent computation model) and on script execu-
tion (which requires a dynamic assignment of agents to programs). The server
model is focussed on the Request-Reply pattern, and specifies a delegation strat-
egy where the handling of a request is entrusted to a module. We show how
several major frameworks for web applications can be described as progressive
refinements of a number of basic modules. Three modules are further detailed:
static file transfer, CGI and generic scripting modules.

Keywords: Web applications, Abstract State Machines, JavaScript

1. Introduction

In software engineering the term ‘application’ traditionally refers to a spe-
cific program or process users can invoke on a computer. The emergence of dis-
tributed systems and in particular of web applications has significantly changed
this meaning of the term. Here functionality is provided by a set of indepen-
dent cooperating modules with a distributed state. In web applications, all
these modules are offering a unified interface to their user — namely, as a web
page — to the point that the user may have no way to distinguish whether a
single application or a set of distributed web applications is being used.

There is still no precise general definition or model of what a web appli-
cation is. What is there is a variety of (often vague and partly incompatible)
standards, web service description languages at different levels of abstraction

Email addresses: gervasi@di.unipi.it (Vincenzo Gervasi), boerger@di.unipi.it
(Egon Börger), cisterni@di.unipi.it (Antonio Cisternino)

Preprint submitted to Elsevier November 1, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80256918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(like BPEL, BPMN, workflow patterns, see [13] for a critical evaluation of the
latter two) and difficult to compare techniques, architectures and frameworks
offered for implementations of web applications, ranging from CGI (Common
Gateway Interface [31]) scripts to PHP (Personal Home Page) and ASP (Appli-
cation Server Page) applications and to frameworks such as ASP.NET [26] and
Java Server Faces (JSF [1]). All of them seem to share that a web application
consists of a dynamically changing network of systems that send and receive
data through the HTTP protocol to and from other components and provide
services of all kinds which are subject to continuous change (as services may
become temporarily or permanently unavailable), to dynamic interference with
other services (competing for resources, suffering from overload, etc.) and to all
sorts of failures and attacks.

1.1. Overall goal

The challenge we see is to discover and formulate the pattern underlying
such client-server architectures for (programming and executing concurrent dis-
tributed) web applications. We want to make their common structural aspects
explicit by defining precise high-level (read: code, platform and framework in-
dependent) models for the main components of current web application systems
such that the major currently existing implementations can be described as re-
finements of the abstract models. The goal of such a rational reconstruction is
to make a rigorous mathematical analysis of web applications possible, includ-
ing to precisely state and analyze the similarities and differences among existing
frameworks, e.g. the similarities between PHP and ASP and the differences be-
tween PHP/ASP and JSP/ASP.NET. This has three beneficial consequences:
(a) it helps web application analysts to better understand different technologies
before integrating them to make them cooperate; (b) it builds a foundation for
content-based certifiability of properties one would like to guarantee for web
applications; (c) it supports teachers and book authors to provide an accurate
organic bird’s perspective of a significant area of current computer technology.

For the present state of the art, given the lack of rigorous abstract models of
(at least the core components of) web application frameworks, it is still a theo-
retical challenge to analyze, evaluate and classify web application systems along
the lines of fundamental behavioral model properties which can be accurately
stated and verified and be instantiated and checked for implementations.

1.2. Approach

The modeling concepts one needs to work on the challenge become clear if
we consider the above mentioned feature all web applications have in common,
namely to be an application whose interface is presented to the user via a web
browser, whose state is split between one or more clients and one or more servers
and where the only interaction between client and server is through the HTTP
protocol. This implies that an attempt to abstractly model web application
frameworks must define at least the following two major client-server architec-
ture components with their subcomponents and the communication network
supporting their interaction:

2

the browser with all its subcomponents: launcher, netreader, (html, script,
image) parsers, script interpreter, renderer, etc.
the server with its modules providing runtimes of various programming
languages (e.g. PHP, Python [2], ASP, ASP.NET, JSF),
the asynchronous network which supports the interaction (in particular
the communication) between the components.

This calls for a modeling framework with the following features:

A notion of agents which execute each their (possibly dynamically chang-
ing) program concurrently, possibly at different sites.
A notion of abstract state covering design and analysis at different levels
of abstraction (to cope with heterogeneous data structures of the involved
components) and the distributed character of the state of a web applica-
tion.
A sufficiently general refinement method to controllably link (using vali-
dation and/or verification) the different levels of abstraction, specifically
to formulate different existing systems as instances of one general model.
A flexible mechanism to express forms of non-determinism which can be
restricted by a variety of constraints, e.g. by different degrees of trans-
mission reliability ranging from completely unreliable (over the Internet)
to safe and secure (like for components running on one isolated single
machine).
A flexible environment adaptation mechanism to uniformly describe web
application executions modulo their dependence on run-time contexts.
A smooth support for traceable model change and refinement changes due
to changing requirements in the underlying (often de facto) standards.

Based on previous experiences, we find that Abstract State Machines offer most
of the modeling concepts needed for our goal, and in addition are supported by
a long list of success stories (see [15] for partial list) and by a sizeable amount
of tools that could allow simulating and verifying our models. ASMs are thus
our framework of choice for the present work.

1.3. Outline of the paper

In this paper1, we first present a model of a web browser (Section 2), focus-
ing on the two critical aspects of interaction with one or more servers, and of
execution of scripts. Both of them require a sophisticated handling of concur-
rent execution, which is provided in our model by the notion of agents and by
the dynamic assignments of programs to agents, and a sophisticated notion of
state, sufficient to represent the Document Object Model of a web page as well
as both source code and runtime state for the execution of JavaScript scripts,
which is provided by the ASM notion of abstract state.

1The present paper is an extension and re-elaboration of [21] and [10].

3

For our web browser, we use a layered approach, with functionality organized
across different levels: transport, stream, context and browser. The function-
ality described, while far from being a complete model of all aspects of a web
browser, suffices to model a complete round of the Request-Reply pattern [22, 8]
that characterizes browser/server interactions (see Fig. 1).

Then (Section 3) we present a model of a web server, focusing on the server-
side view of the same Request-Reply pattern. We describe in particular how
requests are dispatched to appropriate modules, and present – as representatives
of their respective classes – three modules: static file transfer, CGI (refined to
FastCGI), and a generic scripting module (that can be refined to ASP, PHP or
JSP scripting, or to the more complex JSF or ASP.NET approaches).

Some conclusions and reflections on future work in Section 5 complete the
paper.

2. Modeling a web browser

Space constraints as well as discourse economy prevent us from presenting
a full formal specification of HTML 5 [32]. Such an effort would probably be
excessive for our purposes: we are more interested in modeling only those aspects
of a browser that render it a suitable thin client for web applications. As such,
we will often skip the more contrived details, ignore the issues with graphics
and layout entirely, and at times describe a specific implementation where the
specification would allow several possibilities2.

Our model consists of several layers. At the basis, we have a transport-
level layer, where we describe (rather abstractly) the TCP/IP communication
according to the HTTP protocol which relates a web server and a web browser3.

On top of the transport layer, we have a stream-level layer, with individ-
ual agents in charge of receiving and interpreting information coming from the
network. These agents are instantiated dynamically, and roughly correspond to
the multiple threads that are often found in real browsers.

Above the stream level, a context-level layer defines the behavior of a brows-
ing context. A browsing context typically corresponds to a single Document
(which in turn has a DOM or Document Object Model) and regulates the user
interaction with the same Document. Most typically, each window, tab, or
frame in a web browser is a different browsing context.

Finally, on top of all this we have a browser-level layer, where we specify (in
part) the behavior of a web browser, seen as an application of the host operating
system. At this level we describe initialization of new browsing contexts and
interaction with the host operating system.

2In particular, several aspects of HTML 5 are unnecessarily complicated by the need to
ensure that the quirks of several different implementations in widespread use are deemed
conformant.

3The transport layer can also be used to model those ECMAScript library functions that
access the network, e.g. methods of the XMLHttpRequest object.

4

2.1. Notation

Providing a complete specification of all the different technologies involved,
from the basics of point-to-point networking to the various protocols, languages,
and frameworks employed by contemporary realistic web applications would be
a herculean task, and moreover would hide in an unnecessary amount of details
the interesting points that we want to highlight. Hence, in the following we
will make somewhat liberal use of descriptions in natural language for clerical
operations, and of text in this style to indicate non-trivial operations that,

however, have found no place in our effort, as being out of scope for the present
work. One could think of such fragments as of undefined macros of which we
even omit the name and signature, relying on the text to describe their purpose.

We will also use at times meta-variables, denoted in this style, to indicate
a family of proper syntactic elements whose identifier is built by replacing the
meta-variable with a value from a given set. So, for example, a family of predi-
cates hasAttrib : Element → Boolean would stand for the whole set of predicates
hasName, hasId , hasStyle, hasSrc etc. Other notation is as popularized by stan-
dard ASM practice, e.g. as used in [15].

2.2. Transport layer

The transport layer models the sending (and receiving) of raw data between
agents residing on different hosts via HTTP over TCP/IP. Here we define the
abstract state and macros needed to model a Request/Response exchange via
HTTP; the interpretation of the data exchanged is then left to the stream layer
in Section 2.3.

2.2.1. Channels and buffers

At the basis of the transport layer we have the concept of Channels. A
Channel consists of a pair of queues called Buffers, each Buffer serving as a
send-queue for the sending machine, and as a receive-queue for the receiving
machine. There is an underlying expectation that what is written in the send-
queue on one end of a channel, will appear, in order, in the receive-queue on
the other end of the channel, and vice versa. However, this is not specified in
our model, and in fact which data is read from a channel is, formally, totally
non-deterministic. This allows us to reason on fringe cases, including commu-
nication errors, dropped connections, man-in-the-middle attacks, transparent
and filtering proxies along the route, browser plug-ins to remove advertisement,
antivirus and anti-scam software, parental filters, etc.

It is interesting to notice that the existence of all those potential intermedi-
aries in practice makes TCP/IP’s guarantee of “a data packet will arrive either
intact and in order, or not arrive at all” [17] inapplicable in our case. In allowing
for non-determinism in data transfer, we explicitly model our renounce to that
guarantee.

Buffers transfer data as sequences of octets (bytes), but to simplify our
models, we will assume that our background contains functions to turn these se-
quences of octets into the corresponding abstract types. So, for example, we will

5

assume the ability to recognize a whole HTML element such as

without going into the details of how the character sequence is transformed into
an HTML element. Similarly for other data types (images, scripts, etc.).

On Buffers, we assume (as part of our background) the following operations:

The macro TCPSend(host , data, buffer) will initiate a network transfer
of the given data to the host (which includes address and port), preparing
to receive a reply, if any, through the buffer . It models the act of creating
a socket, binding it to an address and writing a data packet to the socket,
and eventually reading the reply in a given memory buffer.
xAvailable : Buffer → Boolean a family of predicates that return true if
a full data element of type x is available for reading from the head of a
buffer, or false otherwise.
headX : Buffer → X a family of functions that return the data element of
type X that is available for reading at the head of a buffer, or undef if no
data is available.
The command dequeue e from buffer is used to remove data element e
from the head of the buffer (thus updating the buffer).
isFinished : Buffer → Boolean a predicate that is true if the transfer
associated to a buffer is finished and no more data have to be expected.
This situation corresponds in actual implementation to a close operation
on a TCP socket.

Notice that our transport-level background is fit to describe full TCP or UDP
exchange, whereas the macros and functions defined above are sufficient to de-
scribe typical HTTP interactions (from the browser’s perspective).

2.2.2. HTTP Request/Response

The HTTP protocol specifies that Requests should be sent to compatible
servers in a specific format. First is a compulsory request line including a method
(one of GET, POST, PUT, HEAD, and a handful of others), a resource (most
typically, a pathname with optional query parameters), and protocol versioning
information. The request line is followed by a (possibly empty) sequence of
headers each of which is a pair (key , value), and by an optional body, containing
arbitrary data to be processed by the server. Headers and body are separated
by an empty line.

In the following we associate a unique identifier k to each request/response
pair; we will see later how k can also serve to associate a request/response pair
to higher-level operations and data. Moreover, since network transfers happen
asynchronously, we use a callback pattern, where the response to a given request
will be processed at some future time by a machine proc which is provided with
the request.

The lexical details of how a Request is encoded need not concern us here;
the actual sending of a request is modeled through the following macro, where
host represent the (abstract) network identity of the machine that will receive
the request, head includes the request line and headers, and data is as defined
above:

6

Send(host , head , data, proc, k) =
let buffer =new Buffer , a =new Agent in

ag(k) := a
buf (k) := buffer
TCPSend(host , head · EMPTYLINE · data, buffer)
mode(k) := ExpectStatus
program(a) := Receive(proc, k)

The macro above creates a new buffer to hold the server response, constructs
an HTTP Request by joining head and body, and more importantly creates
a new agent whose task is to (eventually) process the response through the
callback proc (once completed, the agent will terminate):

Receive(proc, k) =
if mode(k) = ExpectStatus then
if lineAvailable(buf (k)) then
let l = headLine(buf (k)) in
dequeue l from buf (k)
mode(k) := ExpectHeader
status(k) := l

if mode(k) = ExpectHeader then
if lineAvailable(buf (k)) then
let l = headLine(buf (k)) in
dequeue l from buf (k)
if isEmptyLine(l) then mode(k) := ExpectData
if isSetCookie(l) then ∀cookie ∈ l , StoreCookie(cookie, rurl(k))

else manage other headers, e.g. for cache control

if mode(k) = ExpectData then
proc(k)

The program for processing the data portion of the response is provided by
the caller of the macro (and hence, eventually, by the initiator of the transfer).
All elements are bound together through the unique key k , that serves as the
unique identifier for this particular HTTP interaction. Notice how Receive
stores any cookie sent by the server in a global (not described here) storage,
whence they will be retrieved by the cookiesFor() function used in the next
macro.

A full HTTP transfer is initiated by invoking the Transfer macro below:

Transfer(method , url , data, proc, k) =
rmethod(k) := method
rurl(k) := url
rdata(k) := data
if protocol(url) = http then
let cookies = cookiesFor(url),
hheader = makeHeader(method , url , cookies),

7

hdata = makeData(data),
host = addressFor(url) in
Send(host , hheader , hdata, proc, k)

else
other forms of transfer, e.g. file, ftp, etc.

The macro first saves the parameters that characterize the request into state
location indexed by the unique key k (for possible later reference, e.g. in error
messages), then obtains the set of stored cookies that match the given URL;
finally it builds the HTTP header by combining the method, the URL, and the
cookies via the makeHeader function, and analogously builds the body of the
request via the makeData function (which in real implementations performs,
among other processing, the base-64 encoding of the binary data provided with
the request). The destination host is identified by parsing the provided URL
via the addressFor function, then the full HTTP request is sent to the network
as described above.

Notice that our Transfer is a simplified version of the fetching algorithm
described in full in [32, §2.7].

We hide here the details of how cookies are stored and retrieved by the
browser (e.g., in a file on the user’s home directory) into abstract functions and
macros, yet it might be noticed that we are assuming a locking mechanism for the
cookie storage, provided by the underlying file system or operating system, since
multiple transfers can be occurring at the same time. In practice, most browsers
in widespread use would rely on file system locks to ensure that multiple threads
concurrently trying to write and retrieve cookies from a common storage would
not interfere with each other in unexpected ways.

2.3. Stream layer

The transport layer described how HTTP requests are sent out, and how
responses are streamed into a Buffer. Here we describe how these streams
are interpreted upon reception by showing a number of stream processor sub-
machines. These machines receive incoming data in a buffer, in a streaming
fashion (that is, the data is made available piecemeal, as soon as it is obtained
from the network), and they incrementally process it in a variety of ways.

We split each stream processor in two sub-layers: the processor proper dis-
criminates between the various return codes returned in the response, and –
depending on whether the request was successful, or an error was returned, or
other special actions need to be taken – executes the appropriate rule. In case
of a successful request, the actual processing of the data returned is delegated
to a specialized parser.

2.3.1. HTML streams

The most important stream processor is the HTML one, whose main task
is to parse an HTML document and build the corresponding DOM (Document
Object Model).

8

HTML processor. The HTML processor dispatches the handling of successful
transfers to an HTML parser (described in the next section), whereas error codes
are handled by an abstract macro that we will not further detail (typically, a
synthetic “error page” is presented to the user; this would be simply modeled
by replacing the current Document with a prepared one), and redirections are
processed by restarting the transfer with a new URL (which is provided as part
of the response itself).

HTMLProc(k) =
if isSuccessCode(status(k)) then
HTMLParser(k)

elseif isErrorCode(status(k)) then
HandleHTMLError(k)

elseif isRedirectCode(status(k)) then
RestartTransfer(k)

else
handling of other return codes

HTML parser. In the following, we will assume the existence of a DOM Tree,
whose elements are Nodes. An exact specification of the contents of this tree,
and of how the various nodes are build, is outside the scope of this document;
the interested reader can however refer to [32, §1.8] and [32, §2.1.3] for a quick
introduction. Here, we assume that navigation functions (dynamic functions
such as parent(), firstChild(), nextSibling(); derived functions such as root(),
lastChild(), etc.) are always available and describe the intended structure of
the tree. We also assume that there is a current tree and a current node while
the tree is being built; the abstract macros AddText, AddChild etc. modify
the node data and navigation functions of the current tree as expected (these
macros are detailed later).

Finally, we assume a range of functions over nodes to access their attributes
and embedded content (e.g., the text contained in a CTEXT node); their usage
in the following will be clear from context.

The machine below highlights three aspects of the HTML parsing process
(which are among the most relevant ones for web applications): building the
DOM tree, loading further resources, and executing scripts. These aspects will
be illustrated in the following subsections. We will instead glide over other issues
such as handling of malformed content, converting different character encodings,
and applying style sheets, since these do not normally4 affect the execution of
well-behaved web applications.

We define the following macro for parsing HTML contents; its operations
are explained immediately after the definition:

4Notice that techniques such as using a style sheet to hide a certain UI component, thus
preventing the normal user from issuing certain UI commands to the application, are not to be
considered among the best practices. In fact, user agents (such as web browsers) can ignore or
allow the user to override such style specifications, regaining control of the hidden elements,
to unforeseen effects.

9

HTMLParser(k) =
if ¬paused(k) then
if textAvailable(buf (k)) then
let t = headText(buf (k)) in
dequeue t from buf (k)
AddText(t , curNode(k))

if tagAvailable(buf (k)) then
let e = headTag(buf (k)) in
dequeue e from buf (k)
if isOpeningTag(e) then
let n = newNodeFor(e) in
AddChild(n, curNode(k))
if ¬isClosingTag(e) then curNode(k) := n
match e
case <SCRIPT src=url> :
Transfer(GET , url , 〈〉,ScriptProc,n)

case :
Transfer(GET , url , 〈〉, ImageProc,n)

case <LINK rel=rel src=url> :
if "stylesheet" ∈ rel then
Transfer(GET , url , 〈〉,StylesheetProc,n)

case similar nodes that require a background transfer

if isClosingTag(e) then
if ¬isOpeningTag(e) then curNode(k) := parent(curNode(k))
match e
case </SCRIPT> :
if isAsync(curNode(k)) then StartAsync(curNode(k), k)
elseif isDeferred(curNode(k)) then AddDeferred(curNode(k), k)
else RunImmediate(curNode(k), k)

case similar nodes which require post-processing

if isFinished(buf (k)) then
if hasDeferred(k) then
RunDeferred(k)

else
FinalizeLoading(k)
program(self) :=undef

Building the DOM tree. In building the DOM tree, the HTMLParser assumes
that, at every instant, there is a current node curNode(k) (where k is the unique
instance token of the parser) which is the parent of the content that is currently
being parsed. For example, in the following stream of HTML code, we have
marked below each element the corresponding curNode at the time of parsing
the element:

<DIV> ︸ ︷︷ ︸
<DIV>

Sample ︸ ︷︷ ︸

text︸ ︷︷ ︸

here︸ ︷︷ ︸

</DIV>︸ ︷︷ ︸
<DIV>

10

For a new transfer, curNode(k) is initialized at the root element of an empty
DOM (this is performed by the browser when, for example, opening a new tab:
see macro PageLoad in Section 2.4.2).

The HTML parser uses a number of predicates and functions which are
informally defined in the following.

AddText(text ,node) appends a section of text to the contents of a node.

AddText(text ,node) =
if ctext(node) =undef then

ctext(node) := text
else

ctext(node) := ctext(node) · text

This is most commonly the case for the content text of web pages. Notice
that the text will be appended, in order, in chunks as it arrives from the
network. Also, we assume that headText takes care of converting named
entities (such as é) into the corresponding symbol (é) and of other
encoding conventions, including tokenization as documented in [32, §8.2.4].
isOpeningTag : Element → Boolean and isClosingTag : Element →
Boolean are two predicates that indicate if a given tag is an opening tag
(e.g.,) or a closing tag (e.g.,); notice that both could be
true of the same tag (e.g., or empty elements such as
),
whereas at least one of the two must be true for any given tag.
newNodeFor : Element → DOMNode builds a fresh node, setting appro-
priate dynamic functions based on the supplied element, so that later it
will be possible to retrieve the tag name, the value of its attributes, etc.
AddChild(child , parent) add the child node to the DOM tree, as the last
child of parent .

AddChild(c, p) =
if firstChild(p) =undef then firstChild(p) := c
else let last = lastChild(p) in

nextSibling(last) := c
parent(c) := p

The match construct we use is intended as a short-hand for compare &
bind sequences. For example,

match e
case <SCRIPT src=url> : . . .

is a shorthand for

if tagName(e) = SCRIPT ∧ hasAttribute(e, src) then
let url = valueOfAttribute(e, src) in . . .

The process we described in HTMLParser suffices for our purposes, but the
reader should keep in mind that the full specification for building the DOM tree
in [32, §8.2.5] includes a large number of other special cases (which, however,
are not peculiar to the execution of web applications, and hence are out of scope
for the present work).

11

Loading of external resources. While most HTML elements include references
to external resources, only a few of the latter are automatically loaded at the
same time as the page itself is. This is in particular the case of images, scripts,
and style sheets, and also of less-used resources such as audio, video, embedded
objects, etc.

These cases are handled by the match construct in HTMLParser. When
a tag that requires background loading of further resources is encountered, the
Transfer macro is invoked, retrieving the given URL and processing the re-
trieved contents through the appropriate parser.

It is important to stress that these transfers happen concurrently, without
pausing or interrupting the transfer of the main HTML page that is being per-
formed. In fact, after the HTTP request to retrieve them has been sent out,
the processing of the results is delegated to a new agent, different from the one
that is processing the page. These agents receive as their context (through the
unique transfer key) the DOM node that caused the transfer, n. Based on our
model, n is not yet added to the DOM tree when the Transfer macro is called
(since its execution happens in the same step as the execution of AddChild),
but it will be properly installed by the time the response for the transfer is
parsed, since that will happen in subsequent steps5.

Script execution. The last element in the HTML parser concerns the execution
of scripts encountered in the page, either as embedded scripts, or referenced
through an external URL.

Traditionally, script execution in HTML pages was strictly serialized, and
neither the JavaScript language, nor any interpreter in common use, supported
any form of multi-threading. Moreover, execution was blocking: since a script
could generate parts of the document on-the-fly, which were to be textually
inserted immediately after the script itself, and before any other contexts, or
even cause a redirection – thus halting the loading of the page entirely –, it was
not possible to overlap execution and page loading.

The current HTML standards however, allows three different modes of script
execution: synchronous or immediate, deferred and asynchronous. We describe
each mode in turn in the following.

Immediate execution. The first mode of execution (and the default one, un-
less the async or deferred attributes of the <SCRIPT> tag are given) is the
synchronous or immediate execution.

RunImmediate(node, k) =
paused(k) := true
match type(node)
case text/javascript :
ECMAScriptInterpret(contents(node),node,RunCompleted, k)

5In particular, it cannot happen in the current step since the agent having the parser as
its program will not exist yet.

12

case specific versions and other languages handled similarly

There is a need to pause the HTML parser while executing a script in imme-
diate mode. In fact, due mostly to historical legacy from the initial implemen-
tations of JavaScript, it is possible to write from a script parts of the document
to be parsed, i.e. generate dynamically the page itself (including, possibly, fur-
ther <SCRIPT> tags that would then be executed in turn). While this technique
offers significant flexibility, at the same time it clearly impedes continuing the
parsing of the page till the execution of the script is complete. This is obtained
in our model by pausing the parser via the paused(k) function.

Along the same lines, there is a need to restart the parser once the execution
is complete. This is obtained by passing to the interpreter a callback macro and
a token parameter k (this is the same technique that we used in Receive). In
this case, the callback will be

RunCompleted(k) =
buf (k) := documentWriteBuffer(k) · buf (k)
paused(k) := false

The typical method for generating HTML contents to be injected into the
page from a script is through the document.write() method (see [32, §3.5.3]).
While the specification more accurately describes the processing to be performed
in this case, we will be satisfied by postulating that all output generated by
document.write() and document.writeln() during the executing of a given
script is collected, in order, in documentWriteBuffer(k) and prepended to buf (k)
at the end of the execution of the script, but prior to resuming parsing the HTML
source.

It is worth remarking that the ECMAScriptInterpret might have to wait
till the script has finished loading prior to actually starting the execution, in
case its source text is obtained by a Transfer (this will be better illustrated
in 2.3.2).

Deferred execution. Deferred execution consists in postponing the execution of
a script until the page is fully loaded. This is accomplished by storing in a set
of pending scripts the information needed for later execution:

AddDeferred(node, k) =
enqueue node to deferred(k)

The predicate hasDeferred() tells whether a certain document has pending
scripts:

hasDeferred(k) = deferred(k) 6= ∅
In that case, the scripts are executed, sequentially and in-order, at the end of
page loading and parsing:

RunDeferred(k) =
let node = head(deferred(k)) in
dequeue node from deferred(k)
RunImmediate(node, k)

13

Given our previous definitions, this is sufficient to pause the parser (and, with it,
the initiation of further executions from the deferred set), and properly serialize
the execution of all pending scripts until the deferred(k) queue is empty.

Asynchronous execution. For asynchronous scripts, we need not pause the HTML
parser; script execution and further parsing of the HTML document can pro-
ceed concurrently, subject to proper mutual exclusion when accessing shared
data (mostly, the DOM tree itself). In our model, the locking protocol is ab-
stracted into the AddText and AddChild macros used by the parser.

As a result, starting an asynchronous script execution is remarkably similar
to the immediate execution, with the proviso that the parser is not paused.
Notice that, since ECMAScriptInterpret provides its own agent to execute
the interpreter, no agent creation is needed here.

StartAsync(node, k) =
match type(node)
case text/javascript :
ECMAScriptInterpret(contents(node),node, skip, k)

case specific versions and other languages handled similarly

Final processing. When the entire DOM tree has been created and all deferred
scripts have finished execution, the parser fires a number of events, namely:
DOMContentLoaded, load, pageshow6. This processing is abstracted in the
FinalizeLoading macro that we do not detail here7.

2.3.2. Script streams

Script streams are used whenever the browser needs to load the source code
for a script from a remote URL, which typically happens when a <SCRIPT src=url>
element is processed while parsing HTML data.

Script processor. Processing scripts is similar to other forms of stream process-
ing, in that the data is accumulated in case of a successful transfer, whereas
errors (e.g., attempts to load a script from a non-existing URL) will simply
result in an empty content. This is different from the behavior of the HTML
processor, which would notify the user in case of a failure in loading a page.

ScriptProc(k) =
if isSuccessCode(status(k)) then
ScriptParser(k)

elseif isErrorCode(status(k)) then

6For malformed documents, that we do not consider here, further processing is performed
to close all unclosed tags, firing corresponding popstate events.

7These events would be enqueued in the main event queue of the browsing context (Sec-
tion 2.4), and retrieved and processed in the EventLoop macro (Section 2.4.2). Full details
are in [32, §8.2.6].

14

programText(k) := “”
elseif isRedirectCode(status(k)) then
RestartTransfer(k)

else
handling of other return codes

Script parser. The script parser is invoked to process the source text of a
script, while it is being received from the network following an occurrence of a
<SCRIPT src=url> tag in the page.

Although the precise rules for the encoding of script source text are subtly
different than those for general text, as specified in [32, §4.3.1.2], we will simplify
the matter here8 and use the same functions we already use for general text, as
follows:

ScriptParser(k) =
if textAvailable(buf (k)) then
let t = headText(buf (k)) in
dequeue t from buf (k)
programText(k) := programText(k) · t

if isFinished(buf (k)) then
complete(k) := true
program(self) :=undef

Notice that in our model the execution of a script can start while the script
is still loading, but will certainly not finish, and may not progress at all, until
complete() signals that loading has finished and the full text of the program
is available. This means that in the case of asynchronous execution, the agent
created by ECMAScriptInterpret will idly execute skip steps as long as
complete(k) is false, and only upon complete(k) becoming true, will it execute
the actual interpretation machinery. The specification allows for varied behav-
ior in this respect (e.g., an implementation could start building the parse tree
incrementally while the loading is still in progress, or postpone any processing to
after the full program has been received). Our model provides the information
needed to implement the different variants, but hides the actual choice inside
the ECMAScriptInterpret macro.

2.3.3. Image streams

Image streams are used when receiving images from the server, as part of
a web page, or via instantiation of the corresponding classes in the JavaScript
library.

8Notice that we already applied the same principle in loading in-line script source as text
for <SCRIPT> nodes without the src attribute.

15

Image processor. The behavior in case of a successful transfer is analogous to
that of previous stream processors (i.e., the Image parser is run). Erroneous
cases are handled differently, typically by substituting a pre-defined error image
(e.g., a large red X or an icon depicting a broken link) for the missing image.

ImageProc(k) =
if isSuccessCode(status(k)) then
ImageParser(k)

elseif isErrorCode(status(k)) then
imgData(k) := errorImgData

elseif isRedirectCode(status(k)) then
RestartTransfer(k)

else
handling of other return codes

Image parser. The parsing of image data is often done incrementally, in order
to properly implement so-called progressive image formats (i.e., when data are
arranged in such a way that it is possible to construct a low-quality version of
an image early in the loading stage, and then refine that to a better resolution
or color depth as more data arrives) or to show load progress (i.e., by updating
the rendered image on a scan-line basis as soon as data is available). We ab-
stract from all the details of various image formats, and from how the browser
distinguishes them based on their MIME types. The only aspect that we want
to highlight is the progressive nature of the loading, since it expresses the fact
that the graphical user interface of the web application may be not fully loaded
when the application code starts executing.

The general process of loading an image is thus described as follows:

ImageParser(k) =
if dataAvailable(buf (k)) then
let d = headData(buf (k)) in
dequeue d from buf (k)
imgData(k) := imgData(k) · data

if isFinished(buf (k)) then
program(self) :=undef

UpdateImage(k)

Here, we assume that UpdateImage(k) will perform any needed update to
the internal data structures holding the actual image, based on imgData(k).
Notice that the macro is invoked at each step even if no new data has been
received; this allows the implementation to perform any timed decoding or an-
imation (e.g., a hourglass or spinning circle or progress bar) to indicate loading
progress.

16

2.4. Context layer

A browsing context is an environment in which documents are shown to the
user, and where interaction with the user occurs. In web browsers, browsing
contexts are usually associated with windows or tabs, but certain deprecated
HTML structures (namely, frames) also introduce separate browsing contexts.

In our model, a browsing context is characterized primarily by five elements:

a document (i.e. a DOM as described in Section 2.3.1), which is the cur-
rently active document presented to the user;
a session history, which is a navigable stack of documents the user has
visited in this browsing context;
a window, which is a designated operating system-dependent area where
the Document is presented and where any user interaction takes place;
a renderer, which is a component that produces a user-visible graphical
rendering of the current Document (Section 2.4.1) in the corresponding
window;
an event loop, which is a component that receives and processes in an
ordered way the various operating system-supplied events (such as user
interaction or timer expiration) that serve as local input to the browser
(Section 2.4.2).

We keep the window abstract, as its behavior can be conveniently hidden
by keeping the actual rendering abstract as well and by assuming that user
interaction with the window is handled by the operating system. Thus we deal
with events that have been already pre-processed by a window manager. Due
to space limits, we also omit the rather straightforward modeling of the session
history.

When starting a newly created Browsing Context k , DOM (k) is initialized
by a pre-defined implementation-dependent initial document initialDOM ; it is
usually referred to through the URL about:blank and may represent an empty
page or a “welcome page” of some sort. Two agents are equipped with programs
to execute the Renderer and the EventLoop for k .

StartBC(k) =
let a =new Agent , b =new Agent in

program(a) := Renderer(k)
program(b) := EventLoop(k)
DOM (k) := initialDOM
agents(k) := {a, b}

To stop a running browsing context, the dual steps have to be taken:

StopBC(k) =
forall agent in agents(k) do

program(agent) :=undef
DOM (k) :=undef
agents(k) := {}

17

It is also understood that stopping a browsing context will also close the
associated window/tab provided by the OS windowing system, if any.

The Renderer and EventLoop macros used in StartBC are specified
below.

2.4.1. Renderer

The Renderer produces the user interface of the current DOM in the
(implicit) corresponding window. It is kept abstract by specifying only that it
works when it is (a) supposed to perform (at system dependent RenderingTime)
and (b) allowed to perform because no other agent has a lock on the DOM (e.g.,
not blocked because the HTMLParser is adding new nodes to the DOM during
the stream-level loading of an HTML page).

Renderer(k) =
if renderingTime(k) and ¬locked(DOM (k)) then
GenerateUi(DOM (k), k)

2.4.2. Event Loop

We assume that events are communicated by the host environment (i.e., the
specific operating system and UI toolkit of the client machine where the browser
is executed) to the browser by means of an event queue. These UI events are
merged and put in sequential order with other events that are generated in the
course of the computation, e.g. DOM manipulation events (fired whenever an
operation on the DOM, caused by user actions or by JavaScript operations,
leads to the execution of a JavaScript handler or similar processing) or His-
tory traversal events (fired whenever a user operates on the Back and Forward
buttons offered by most browsers to navigate through the page stack).

Here we detail the basic mechanism used in (the simplest form of) web ap-
plications to prepare a Request to be sent to the server (with the understanding
that when a Response is received, it will replace the current page in the same
browsing context). HTML forms are used to collect related data items, usually
entered by the user, and to package them in a single Request. Figure 1 shows
when the different macros we defined are invoked; lifelines represent agents
executing a rule. Remember that ASM agents can change their program dy-
namically (e.g., when Receive becomes HTMLProc) and that operations by
an agent in the same activation, albeit shown in sequence, happen in parallel.

An HTML form is introduced by a <FORM> element in the page. All the
input elements9 that appear in the subtree of the DOM rooted at the <FORM>

are said to belong to that form. Among the various input elements, there is
normally a designated one (whose UI representation is often an appropriately
labeled button) tasked with the function of submitting a form. This involves
collecting all the data elements in the form, encoding them in an appropriate
format, and sending them to a destination server through various means. This

9These include elements such as <INPUT>, <SELECT>, <OPTION> etc.

18

User

Browser

CreateBC
new window

EventLoop

Renderer

<<create>>

<<create>>

new url from user PageLoad

Transfer

Send

Receive
TCPSend

<<create>>

HTMLProc

receives and
parses HTTP
header

checks that we
had a "200 OK"
response

sends request

HTMLParser

Builds the DOM
tree

displays rendered DOM

form submit
one of MutateURL, SubmitBody etc.

PageLoad

Transfer

Send

TCPSend

<<create>>

HTMLProc

receives and
parses HTTP
header

checks that we
had a "200 OK"
response

sends request

HTMLParser

Builds the DOM
tree

Receive

displays rendered DOM

Visual updates
happen as the
DOM is built

Figure 1: A diagram depicting the behavior of our browser model for a user who opens a
new window in a browser, manually loads the first page of a web application, interacts locally
with a form, and then sends the data back to the server, receiving a new or updated page in
response.

19

may include sending the data by email or initiating an FTP transfer, although
these possibilities are seldom, if ever, used in contemporary web applications.

It is also of interest to note that submission of a form may be initiated
from a script, by invoking the submit() method of the form object, and hence
happen independently from user behavior. In the following, we will not concern
ourselves with the details of how a submit operation has been initiated, but only
with the emergence of the submit event in the event queue, whatever its origin
may be.

We model the existence of a separate event queue for each browsing context,
which is processed by a dedicated agent created in the StartBC macro above.
When an event is extracted from the event queue that indicates that the user
has provided a new URL to load (e.g., by typing it in a browser’s address bar,
or by selecting an entry from a bookmarks list, etc.), the browsing context is
navigated to the provided URL by starting an asynchronous transfer (in the
normal case, the HTTP Request will be sent to the host mentioned in the URL,
and later processing of the Response will replace the DOM displayed in the
page).

When an event is extracted from the event queue that indicates a form
submission, the form and related parameters are extracted from the event, ap-
propriate encoding of the data is performed based on the action and method
attributes as specified in the <FORM> node, and finally either the data is sent
out (e.g., in the case of a mailto: action) or the browsing context is populated
with the results returned from a web server identified by the form’s action. In
normal usage, that will be the same web server hosting the web application that
originally sent out the page with the form, thus completing the loop between
server and client and realizing the well-known page-navigation paradigm of web
applications10.

Similar to Renderer, our EventLoop receives a parameter, k , which iden-
tifies the particular instance. The macros MutateUrl, SubmitBody and
PageLoad used in EventLoop are defined below; other macros used here are
left abstract, as discussed later.

EventLoop(k) =
if eventAvailable(eventQueue(k)) then
let e = headEvent(eventQueue(k)) in
dequeue e from eventQueue(k)
if isNewUrlFromUser(e) then
PageLoad(GET , url(e), 〈〉, k)

elseif isFormSubmit(e) then
let f = formElement(e), data = encodeFormData(f),

a = action(f),m = method(f), u = resolveUrl(f , a) in

10Notice that we are not considering here AJAX applications, where a Request is sent out
directly from JavaScript code, and the results are returned as raw data to the same script,
instead of being used to replace the contents of the page. The general processing for this case
is, however, similar to the one we describe here.

20

match (schema(u),m) :
case (http, GET) : MutateUrl(u, data, k)
case (http, POST) : SubmitBody(u, data, k)
case (ftp, GET) : GetAction(u, data, k)
case (ftp, POST) : GetAction(u, data, k)
case (javascript, GET) : GetAction(u, data, k)
case (javascript, POST) : GetAction(u, data, k)
case (data, GET) : GetAction(u, data, k)
case (data, POST) : PostAction(u, data, k)
case (mailto, GET) : MailHead(a, data)
case (mailto, POST) : MailBody(a, data)

else
handle other events

We do not further specify here the mail-related variants MailHead and
MailBody (although it is interesting to remark that they do not need further
access to the browsing context k , contrary to most other methods, since no
reply is expected from them – and thus their applicability in web applications is
close to nil). We also glide over the possibility of using a https schema, which
however implies the same processing as http, with the only additional step of
properly encrypting the communication. Given the purposes of this paper we
omit a definition of GetAction and PostAction, since they involve URL
schemas (namely: ftp, javascript and data) that have not been addressed
in our transport layer model. Thus, below we only refine MutateUrl and
SubmitBody together with PageLoad.

The macro MutateUrl consists in synthesizing a new URL from the action
and the form data (which are encoded as query parameters in the URL) and in
causing the browsing context to navigate to the new URL:

MutateUrl(u, data, k) =
let u ′ = u · “?” · data in

PageLoad(GET , u ′, 〈〉, k)

The macro SubmitBody differs only in the way the data is encoded in the
request, namely not as part of the URL, as above, but as body of the request:

SubmitBody(u, data, k) = PageLoad(POST , u, data, k)

The macro PageLoad starts an asynchronous Transfer and (re-)initializes
the browsing context and the HTMLProcessor which will handle the Response:

PageLoad(m, u, data, k) =
Transfer(m, u, data,HTMLProc, k)
htmlParserMode(k) := Parsing
let d =new Dom in

DOM (k) := d
curNode(k) := root(d)

21

Notice that while for the sake of brevity we have modeled navigation to
the response provided by the server as a direct Transfer here, in reality it
would require a few additional steps, including storing the previous document
and associated data in the session history and releasing resources used in the
original page (e.g., freeing memory for images, or stopping plug-ins that were
running). While resource management can be conveniently abstracted, handling
of history navigation (i.e., the Back, Forward and Reload commands available
in most browsers) is a critical component in proving robustness, safety and
correctness properties of web applications, and needs to be considered in any
verification effort.

2.5. Browser layer

The browser layer is concerned with initiating the overall execution of the
browser, and of interacting with the user for application-wide operations (such
as opening a new window).

It is interesting to remark that, differently from the previous layers, the
browser layer is not standardized in any way. Browser developers are free to
design their applications the way they see fit, as long as each browsing context
inside the application behaves in the expected way.

In practice, the most common design of a browser allows one or more in-
dependent browsing contexts (visually rendered as tabs inside a single window
and/or as different windows). We will thus abstractly model this common be-
havior as follows:

Browser =
if userIntention = startupBrowser then

let newContext =new Context in
contexts := {newContext}
StartBC(newContext)

if userIntention = addContext then
let newContext =new Context in
add newContext to contexts
StartBC(newContext)

if userIntention = closeContext(context) then
remove context from contexts
StopBC(context)

if userIntention = shutdownBrowser then
forall context in contexts do
remove context from contexts
StopBC(context)

In the macro above, a monitored location userIntention conveys, in abstract
form, user commands to start or shut down the browser, and to open or close
browsing contexts (i.e., windows or tabs). This location can be thought of, a bit
less abstractly, as the foremost event in an event queue provided by the window

22

manager / GUI toolkit / operating system that the browser utilizes for its user
interface.

More complex commands (e.g., saving or restoring the current session) can
also be modeled in the same way (e.g., by saving contexts in a serialized form
in permanent storage).

It may be noticed that Browser, alone of all our macros, does not expect
any parameter. Indeed, the act of launching a browser does not require further
specifications (and in fact, is usually performed by a mouse click on an icon, or
analogous means).

3. Modeling a web server

The next part of our modeling effort focuses on defining a high-level model
of a web server (Sect. 3.2) with typical refinements for the underlying handler
modules, namely for file transfer (Sect. 3.3), CGI (Sect. 3.4) and scripting mod-
ules (Sect. 3.5).

3.1. Server-side transport layer

On the server, we need to model what is called a server socket in TCP/IP
terminology. A server socket is essentially an unique contact point for a server;
multiple clients can connect to a server socket (identified by host and port num-
ber, as given by the host parameter of our macro TCPSend from Section 2.2.2),
and for each connection a new channel between server and client is created.

In our model we will slightly abstract from these details (which, however,
could be modeled in the same spirit as the Send mechanism defined in Sec-
tion 2.2.2), and assume instead that a dedicated channel (from Section 2.2)
exists between each client and our server, but that the input (from the point of
view of the server) buffers of all such channels are merged into a single buffer
called requestQueue. Each request read from the requestQueue will then carry
sufficient background information to allow the various modules in Sections 3.3,
3.4, 3.5 to retrieve, via requestOutput(req), the output buffer associated to the
original request sender, and thus send them the corresponding response.

3.2. Functional Request-Reply web server view

In the high-level view the server appears as a dispatcher which to handle a
request finds and triggers the code (a ‘module’) whose execution will provide a
response to the request11. Thus a high-level web server model can be formulated
as an ASM WebServer which in a reactive manner, upon any request in its
requestQueue, will delegate the request to a new agent (read: a thread we call
request handler) to handle the Execution of the request—if the request passes

11The ASM model for the Virtual Provider (VP) defined in [7] has a similar structure: it
receives requests, forwards them to appropriate providers and collects the replies from the
providers to return them to the original requestor.

23

the Security check and the requestedModule is Available and can be loaded by
the server.

We succinctly describe checking various kinds of Property (here access se-
curity, module availability and loadability) by functions (here checkSecurity ,
findModule, loadModule) whose values are

either three-digit-values v in an interval [n00,n99], for some n ∈ [0, 9] as
defined for each Property of interest in [4, Sect.4.1] to indicate that the
Property holds or fails to hold (in the latter case of PropertyFailure(v) the
value v also indicates the reason for the failure), or
some different value, like a found requested module, which implicitly also
indicates that the checked Property holds, e.g. that the requested module
is available or could be successfully loaded.

Since in case PropertyFailure(v) is true, the function value v is assumed to
indicate the reason for the failure, the value appears in the failureReport that
the WebServer will Send to the client. The function failureReport abstracts
from the details of formatting the response message out of the parameters.

The requestedModule depends on the server env ironment, the resourceName
that appears as part of the request and the header(req). For a loaded module
StartHandler creates a new thread and puts it into its init ial state from
where the thread will start its program, which is obtained from a function exec
on the basis of the module itself, and parametrized by the module12, the request
and the env ironment.

A loaded module is of one of finitely many kinds. We will devote the rest
of this section to specify the different machines that implement behavior for
file transfer, CGI that is then refined to FastCGI, generic scripting that is then
refined for ASP/PHP/JSP and JSF/ASP.NET.

To reflect the functional client/server request/reply view StartHandler
appears as atomic action of the WebServer which goes together with removing
the request from the requestQueue. This atomicity reflects the fact that once a
request has been handled, the server is ready to handle the next one.

WebServer =
if requestAvailable(requestQueue) then

let req = headRequest(requestQueue) in
dequeue req from requestQueue
let env = environment(server , req), s = checkSecurity(req , env) in
if SecurityFailure(s) then
Send(failureReport(req , s))

else
let requestedModule =

findModule(env , resourceName(req), header(req)) in

12Although most of our specifications do not appear to use the module, for practical purposes
it is useful to provide to the executable module a reference to itself, e.g. to side-load further
resources that might be stored in the same directory as the executable.

24

if ResourceAvailabilityFailure(requestedModule) then
Send(failureReport(req , requestedModule))

else
let module = loadModule(requestedModule, env) in
if ModuleLoadabilityFailure(module) then
Send(failureReport(req ,module))

else
StartHandler(module, req , env)

where
SecurityFailure(s) iff s = 403,
ResourceAvailabilityFailure(m) iff m = 503,
ModuleLoadabilityFailure(module) iff module = 500,
StartHandler(module, req , env) =

let a = new Agent in
program(a) := EXECmodule

params(a) := (module, req , env)
mode(a) := init

Each EXECi machine has the structure

Execi =
let module, req , env = params(self) in
Modulei(module, req , env)

where Modulei is refined as follows.

3.3. Refinement for file transfer

To start with a simple case we illustrate how the machine Modulei can be
refined to a machine ModuleFileTransfer which handles file transfer modules,
the earliest form of server module. Such a module simply buffers the requested
file in an output buffer if the file is present at the location determined by
the path from the root(env) to the resourceName(request). We use a machine
TransferDataFromTo which abstracts from the details of the (not at all
atomic, but durative) transfer action of the requested file data to the output.

We leave it open what the scheduler does with the request handler when
the latter is Deactivated once the file transfer isFinished , i.e. when it has
been detected (here via TransferDataFromTo) that no more data are to
be expected for the transfer (this can be refined, for example, to model thread
pooling).

ModuleFileTransfer (module, req , env) =
let file = makePath(root(env), resourceName(req)) in
if mode(self) = init then
if UndefinedFile(file) then
Send(failureReport(req ,ErrorCode(UndefinedFile)))
Deactivate(self)

25

else
Send(successReport(req ,OkResponseCode))
mode(self) := transferData

if mode(self) = transferData then
TransferDataFromTo(file, requestOutput(req))

if isFinished(file) then
Deactivate(self)

where
ErrorCode(UndefinedFile) = 404,
OkResponseCode = 200,
Deactivate(self) = (mode(self) := final)

3.4. Refinement for Common Gateway Interface

A Common Gateway Interface (CGI) [31] module allows the request handler
to pass requests from a client web browser to an (agent which executes an)
external application and to return application output to the web browser. There
are two main forms of CGI modules, the historically first one (called CGI) and
an optimized one called FastCGI [16]. They differ in the way they introduce
agents for external process execution: CGI creates one agent for each request,
whereas FastCGI creates one agent and re-uses it for subsequent requests to the
same application (though with different parameters).

3.4.1. CGI module

A CGI module sends an error message if the executable for the requested
process is not defined at the indicated location. Otherwise the requested pro-
cess execution (by an independent newly created agent a, not by the request
handler)13 is triggered for the appropriate requestVariables (also called environ-
ment variables containing the request data), like Auth(entication)-Type, Query-
String, Path-Info, RemoteAddr (of the requesting browser) and Remote-Host
(of the browser’s machine), etc. (see [31, Sect. 5]) and a positive response is
sent to the requesting client. Once the new agent a has been Connected, the
request handler

transfers data from requestInput (coming from the client browser) to the
module’s stdin stream (as input for the execution of the process by a),
and
transfers data from the module’s stdout stream (generated by a running
the executable) to requestOutput (from where it will be sent to the client
browser)

It is usually assumed that the executable program(a) agent a gets equipped
with eventually disconnects a (from the request handler self) so that the predi-
cate Connected(a, self) becomes false. Then ModuleCGI terminates wherefore

13Therefore each request triggers a fresh instance of the associated external application
program to be executed. This is a possible source for exceeding the workload capacity of the
machine where the server runs.

26

the request handler is Deactivated. Nevertheless the agent a even after hav-
ing been disconnected may continue the execution of the associated executable
and may not terminate at all, but such a further execution would be unre-
lated to the computation of the request handler and from the WebServer’s
point of view yields a garbage process. Even more, no guarantee is given that
program(a) does disconnect a. In these cases the operating system has to close
the connection and/or to kill the process by descheduling its executing agent
(e.g. via a timeout). The CGI standard [31] leaves this issue open, but it has
to be investigated if one wants to provide some behavioral guarantees for the
execution of CGI modules.

ModuleCGI (module, req , env) =
let exe = makePath(root(env), resourceName(req), env) in
if mode(self) = init then
if UndefinedProcess(exe) then

Send(failureReport(req ,ErrorCode(UndefinedProcess)))
Deactivate(self)

else
let a = new Agent in

program(a) := exe(processEnv(env , requestVariables(req))))
Connect(a, self)
Send(req ,OkResponseCode)
mode(self) := transferData

if mode(self) = transferData then
if DataAvailable(stdout) then

TransferDataFromTo(stdout , requestOutput(req))
if verb(req) = POST and DataAvailable(requestInput(req)) then
TransferDataFromTo(requestInput(req), stdin)

if isDisconnected(a) then
Deactivate(self)

where
ErrorCode(UndefinedProcess) = 404,
OkResponseCode = 200,
isDisconnected(a) = not Connected(a, self)

We remark that the server env ironment is needed as argument to compute
the path information in makePath. This is particularly important for the opti-
mized FastCGI version we describe now.

3.4.2. FastCGI module

Concerning the execution of external processes a FastCGI module has the
same function as a CGI module. There are two behavioral differences:

A FastCGI module creates a new agent for the execution of a process
only upon the first invocation of the latter by the request handler. An
agent a which has been created to process an executable is kept alive
once this processing isFinished so that the agent can become active again

27

for the next invocation of that executable — with the new values for
the requestVariables. To Connect(a, self) now means to link its (lo-
cal variables for) input (resp. output) locations, denoted below by in(a)
(resp. out(a)), to corresponding locations of the request handler self ex-
ecuting the module from where (resp. to which) the data transfer from
requestInput (resp. to requestOutput) is operated. In particular in(a) is
used to pass the parameters requestVariables(req) of the process to initial-
ize the executable.
It is assumed that the program program(a) agent a gets equipped with
eventually sets a location EndOfRequest for the current req to false, namely
by updating this location during the TransferDataFromCgi action.
This makes the request handler terminate.

Thus the CGI structure is refined to the FastCGI module structure as follows:

ModuleFastCGI (module, req , env) =
let exe = makePath(root(env), resourceName(req), env) in
if mode(self) = init then
if UndefinedProcess(exe) then
Send(failureReport(req ,ErrorCode(UndefinedProcess)))
Deactivate(self)

else
if 6 ∃a ∈ Agent with program(a) = exe(processEnv(env)) then
let a = new Agent in

program(a) := exe(processEnv(env))
else
skip

mode(self) := connect
if mode(self) = connect then
let a = ιx .(x ∈ Agent ∧ program(a) = exe(processEnv(env))) in
Connect(a, self)
Initialize(a)
mode(self) := transferData

if mode(self) = transferData then
let reqin = requestInput(req), reqout = requestOutput(req) in
if DataAvailable(out(a)) then
TransferDataFromCgi(out(a), reqout ,EndOfRequest(request))

if verb(request) = POST and DataAvailable(reqin) then
TransferDataToCgi(reqin, in(a))

if EndOfRequest(req) then
Deactivate(self)

where
ErrorCode(UndefinedProcess) = 404,
Initialize(a) =
PassParams(requestVariables(req), in(a))
EndOfRequest(req) := false

28

Notice that TransferDataToCgi implies an encapsulation of the content
to be transmitted into messages which carry either data or control information;
inversely TransferDataFromCgi implies a decoding of this encapsulation.

3.5. Refinement for scripting

Scripting modules like ASP, PHP, JSP all provide dynamic web page facilities
by allowing the server to run (directly through its request handler) dynamically
provided code. We define here a scheme which makes the common structure of
such scripting modules explicit.

As for CGI modules, first the server searches the file containing the page
to be interpreted, at the place indicated by the resourceName of the request ,
starting at the root of the server env ironment. If the file is defined, the code is
executed not by an independent agent as for CGI modules, but directly by the
request handler which uses as program the ScriptInterpreter. For the state
management across different server invocations by a series of requests from the
same client the uniquely determined sessionID (associated to the request under
the given env ironment) and the corresponding session and application (if any)
have to be computed. The computation of session (resp. application) comprises
that a new session (resp. application) is created in case none is defined yet in the
server env ironment for the sessionID (resp. applicationName) of the request .14

Furthermore the syntax conversion of the script file from quotation to full script
code (denoted here by a machine QuoteToScript which is refined below for
ASP, PHP and JSP) has to be performed and the corresponding host objects
have to be created to be passed as parameters to the ScriptInterpreter call.

The functions involved to ComputeSession and to ComputeApplication,
which allow the server to track state information between different requests of a
same client, depend on the module, namely sessionID , makeSession (and there-
fore session), applicationName, makeApplication (and therefore application).
Similarly for the functions involved to ComputeInterpreterObjects. We
express this using the amb notation as defined in [14].

Modulescript(module, req , env) =
amb module in

let script = makePath(root(env), resourceName(req)),
id = sessionID(req , env),
applName = applicationName(resourceName(req)) in

if mode(self) = init then
if script = ErrorCode(UndefinedScript) then

Send(failureReport(req ,ErrorCode(UndefinedScript)))
Deactivate(self)

else
ComputeSession(id , req , env)

14Typical refinements of the sessionID function also contain specific security policies we
necessarily have to abstract from in this high-level description.

29

ComputeApplication(applName, req , env)
scriptCode(request)← QuoteToScript(script , env)15

mode(self) := compInterprObjs
if mode(self) = compInterprObjs then
ComputeInterpreterObjects(req , id , applName)
program(self) :=
ScriptInterpreter(scriptCode(req), InterpreterObjects))

where
ErrorCode(UndefinedScript) = 404,
ComputeSession(id , req , env) =
if session(id) =undef then

session(id) := makeSession(req , env , id),
ComputeApplication(applName, req , env) =
if application(applName) = undef then

application(applName) := makeApplication(req , env , applName),
ComputeInterpreterObjects(req , id , applName) =

reqObj (req) := makeRequestHostObj (req)
responseObj (req) := makeResponseHostObj (req)
sessionObj (req) := makeSessionHostObj (session(id))
applObj (req) := makeApplicationHostObj (application(applName))
serverObj (req) := makeServerHostObj (req , env),

InterpreterObjects =
[reqObj (req), responseObj (req), sessionObj (req), applObj (req),

serverObj (req)]

3.5.1. ASP/PHP/JSP modules

ASP, PHP and JSP modules are instances of the scripting module scheme
described above. In fact their Modulei is defined as for the scripting scheme
but each with a specific way to produce dynamic web pages, in particular with
a specific computation of QuoteToScript, as we are going to describe below.

Also the following auxiliary functions and the called ScriptInterpreter
are specific (as indicated by an index ASP, PHP, JSP) though not furthermore
detailed here:

The make . . .HostObj functions are specialized to make . . .HostObjindex
functions for each index ∈ {ASP ,PHP , JSP}.
ScriptInterpreter becomes ScriptInterpreterindex for any index
out of ASP, PHP, JSP.

See [19] for explanations how to construct an ASM model of the JavaScript
interpreter as described in [3].

A PHP module acts as a filter: it takes input from a file or stream contain-
ing text or special PHP instructions and via their ScriptInterpreterPHP

interpretation outputs another data stream for display.

15The definition of ASMs with return value supporting the notation l ← M (x) is taken
from [15, Def. 4.1.7.].

30

ASP modules choose the appropriate interpreter for the computed scriptCode
(so-called active scripting). Examples of the type of script code are JavaScript,
Visual Basic and Perl.

Thus for ASP the definition of ScriptInterpreterASP has the following
form:

ScriptInterpreterASP (scriptCode, InterprObjs) =
let scriptType = type(scriptCode) in
ScriptInterpreterscriptType(scriptCode, InterprObjs)

The value of scriptCode(request) is defined as the result computed by a ma-
chine QuoteToScript for a script argument. For the original version of PHP,
to mention one early example, this machine simply computed a syntax transfor-
mation transform(script). Later versions introduced some optimization. At the
first invocation of QuoteToScript(script)—i.e. when the syntactical trans-
formation of (the code text recorded at) script has not yet been compiled—or
upon later invocations for a script (with code text) changed since the last compi-
lation of transform(script), due to some code text replacement stored at script
that is out of the control of the web server, the target bytecode is compiled
and timeStamped, using a compiler which can be specified using the techniques
explained for Java2JVM compilation in [30]. At later invocations of the same
script the already available compiled(transform(script)) bytecode is taken as
scriptCode instead of recompiling again. Since the value of the code text located
at script is not controlled by the web server, the function timeStamp(script) ap-
pears in this model as a monitored function.

scriptCode(request)← QuoteToScript(script , env)
where
QuoteToScript(script) =
let s = transform(script) in

if compiled(s) = undef or
timeStamp(lastCompiled(script)) ≤ timeStamp(script) then
compiled(s) := compile(s)
result:= compile(s)
timeStamp(lastCompiled(script)) := now
type(compile(s)) := typeOf (script , env)

else result:= compiled(s)

For ASP and PHP the QuoteToScript machine describes an optional
optimization16 that cannot be observed from outside. For ASP the machine
has the additional update for the type of the computed result (namely the
scriptCode) that uses a syntax function typeOf which typically yields a directive,
e.g.

< %@Language = “JScript ′′% >

16It is an ASM refinement of the non-optimized original PHP version.

31

or a default value.
The type of the scriptCode depends on the script and on the env ironment;

for example the env ironment typically defines a default type for the case that
nothing else is specified.

For JSP no syntax translation is required (formally the transform function
is the identity function) because scriptCode is a class file (Servlet which comes
with a certain number of fixed interfaces like doPost(), doGet(), etc.) so
that the operations are performed by a JVM. This permits to embed prede-
fined actions (implemented by Java code which can also be included from some
predefined file via appropriate JSP directives) into static content. Here the
machine QuoteToScript is mandatory because different invocations of the
same scriptCode can communicate with each other via the values of static class
variables.

3.5.2. JSF/ASP.NET modules

It seems that a detailed high-level description of Modulei for the modules as
offered by the Java Server Faces (JSF [1]) and Active Server Pages (ASP.NET [26])
frameworks can be obtained as a refinement of the ASM defined above for the
execution of scripting modules. As mentioned above PHP, ASP and JSP use
a character based approach in which the script outputs characters (either ex-
plicitly through the Response object or implicitly by using the special nota-
tion converted by QuoteToScript). The JSF and ASP.NET frameworks use
their virtual-machine based environment (respectively, JVM and CLR) to pro-
vide more flexible ways for the ScriptInterpreter to write on the response
stream (e.g. in ASP.NET based on the Windows environment) and to define
a server-side event and state management model that relieves the programmer
from having to explicitly deal with the state of a web page made up by several
components. The programming model offered by these environments provides
a sort of DOM tree where each node upon being visited is asked for the data to
be sent as part of the response so that the programmer has the impression of
manipulating objects rather than generating text of a web page. For example,
a request handled by the ASP.NET module triggers a complex lifecycle17 which
allows the programmer to manipulate a tree of components each of which has
its own state, in part stored inside the web page (in the form of a hidden field)
and in part put by the application into the session state. We are currently work-
ing on modeling these features as refinements of the ASM model for scripting
module execution.

4. Discussion

4.1. Threats to validity

A major concern for each modeling effort is the correctness issue: does the
abstract (typically formal) description truly capture the (required intended)

17See http://msdn.microsoft.com/en-us/library/ms178472.aspx.

32

http://msdn.microsoft.com/en-us/library/ms178472.aspx

behavior of the described system? If the system to be modeled is given by a
mathematically precise description (e.g. code with a well-defined semantics) one
way to show the correctness of the model is to accurately state the correctness
condition and then prove it (in the usual mathematical sense or by using me-
chanically supported theorem provers) to hold for the system description and
the abstract model. See Sections 4.2 and 5.2 for some concrete correctness con-
ditions of interest for web applications. If the system to be modeled has no
such accurate description to be taken as a definition of its behavior — this is
the case of the major current web application systems analyzed in this paper —
the correctness problem is what in [12] is called ground model problem. Two
things can be done to solve this problem: one is a model inspection process,
similar to code inspection, where the model elements are compared with the
informal descriptions of their intended behavior in the given system (descrip-
tion); the other is to run the model on well defined characteristic test suites
and to compare the outcome of these executions with what the system does (if
it is executable, as is the case here for web applications). The inspection of
our models can be performed — and we invite the reader to check this — since
we have tried to produce our ASMs conceptually as close as possible to their
informal descriptions in the documentations we refer to. As to an experimental
test-based validation what has to be done as future work is to refine our models
using provably correct ASM refinements [11] to (e.g. CoreAsm [20]) executable
ones one can validate.

4.2. Related work and comparison

Ours is not the first attempt at building a formal model of the infrastruc-
ture underpinning web applications. Most previous proposals, though, have
focused especially on security properties, rather than on the expository value
of such models. Moreover, these models often concentrate on specifying events
at certain interfaces, rather than full behavior, and are thus partially different
in spirit from our endeavor. Here we will compare our approach to some recent
contribution in the field.

A couple of recent examples of this line of approach are [24] and [6]. The
former specifies in Coq [9] the kernel of a contemporary web browser (inspired
by the Chrome architecture), in terms of the interactions of unverified but sand-
boxed components (e.g.: renderer, network module, script interpreter). By using
theorem proving techniques, and the assumption that the unverified components
can interact exclusively with the kernel, the authors can verify that a number of
interesting security properties hold (e.g.: that different browser contexts do not
interfere with each other, that cookies are only sent back to their correspond-
ing domain, etc.). It is interesting to observe that these properties are similar
to those that we can verify by direct inspection of our models — although we
have not used sandboxes for our machines (which, however, could be added by
judicious use of the amb construct).

While [24] only present a model of the browser, their approach based on
shim verification could be extended to the server, by considering the module
dispatching machinery as a kernel, and each server module as an unverified,

33

sandboxed component. Indeed, that would be very similar to the approach
we presented in Section 3. It should be noted that while the theorem proving
approach provides a stronger guarantee than the mere inspection (assuming
both the model and the properties are correctly specified), in our work we have
modeled to a certain level of abstraction many components that in [24] are
considered pure black-boxes.

The latter work, namely [6], is closer to our own in scope, in that it considers
both browser and server, and moreover they aim to describe the full life cycle of
realistic web applications, including browser history navigation (which we have
modeled, but not detailed in this paper due to space considerations), client-side
scripting, and various server modules (e.g.: PHP, ASP, Java Servlets). Their
approach abstracts all the features of both browser and server except for a
small set of keypoints in the respective computations, the most important of
which are conditionals on simple expressions, getting and setting a sessionID
and cookies, and reading or writing data in a database (the latter is aimed at
typical three-tier architectures). A web application is then modeled as a series
of steps, moving from page to page, where each transition entails a number of
these operations. The transitions are then expressed in a variant of LTL, and
model checking techniques are used to prove properties of specific applications.

Their view of the problem is thus complementary to our own: whereas in
this paper we have provided a model of the infrastructure of web applications
(namely: browser, server, communication), and abstracted the specific appli-
cations by assuming instead the availability of interpreters, in [6] the authors
abstract away the infrastructure, and focus instead on a specific application
(of which a model in their scripting language must be produced). Again, the
correctness guarantees that can be obtained by model checking are stronger
than those that we can obtain by inspection; yet their technique can prove the
correctness of the model of a web application, whereas proving that the model
faithfully reflect the actual application is left as an open problem.

A similar model checking approach is presented in [23], where a web applica-
tion is modeled as a pair of automata (one for page navigation, another for inter-
nal state transitions), and properties about reachability of pages etc. are proved
(the general spirit being close to the earlier [18] and [25]). Again, these models
totally abstract from the infrastructure, focusing instead on the internal logic
of each specific web application. It should also be noted that the older works all
describe a single-browser, single-server, purely sequential scenario (all simplify-
ing assumptions that make model checking feasible), whereas we have focused
specifically on modeling the concurrency aspects in multi-browser, multi-server
scenarios.

A model of a special-purpose web server, equipped with a fixed set of Java
servlets, is presented in [27]. As for the browser model in [24] that we discussed
above, the server is specified in Coq, and a few application-specific properties are
formally proved by using the Coq interactive theorem prover. Compared to our
approach, the work reported in [27] focuses on a single specific web application,
rather than on general web server architecture.

34

5. Conclusions

The goal of our work was to provide abstract models of the infrastructure
running modern web applications. We have shown models of the relevant parts
of a web browser and a web server, and in doing so we have also highlighted
their internal architecture, both in terms of interacting layers (as in our browser
model) and in terms of refinement (as in our server model).

5.1. Contribution

The models we have developed are sufficiently detailed for expository pur-
poses, thus fulfilling one of our goals (point (c) in Section 1.1).

As for proving properties (point (b) in Section 1.1), we have indeed provided
the foundations for doing so, but further work is needed before being able to
reach a meaningful form of verification. The reader should not think that this
is simply a matter of adding further detail. On the contrary, unnecessary de-
tail can make any proof exceedingly (and unnecessarily) hard, whereas the lack
of sufficient detail can make it impossible to prove the desired property. The
hard task is thus to find the right level of abstraction. For an illustrative exam-
ple we can refer to [30] where in terms of rigorous models for Java, the JVM
and a compiler Java2JVM the mere mathematically precise formulation of the
compiler correctness property stated in Theorem 14.1.1. (p.177-178) needs 10
pages, the entire section 14.1.18 A formulation in terms of some logic language
understood by a theorem prover (e.g. in the language of KIV which has been
used for various mechanical verifications of properties of ASMs [28, 29] or in
Event-B [5]) is still harder and will be considerably longer, as characteristic for
formalizations.

Finally, point (a) from Section 1.1, about our desire of helping other ana-
lysts understand, compare and assess the various technologies involved in web
applications, cannot be judged based on the models alone. Whether our goal
has been met, will be revealed in time by the usage fellow analysts will make
of our models. We are however confident that the mere structure we gave our
models will be found to be helpful in isolating component technologies, and that
we have at least simplified the work of understanding those parts that we have
explored in greater detail in this work.

5.2. Future work

The next logical step, beside investing in the further refinement of our mod-
els, with a view of making them more complete and precise for those parts we
have so far handled informally, concerns proving properties of applications build
on top of the infrastructure we have described.

We list here some properties of web applications we suggest to precisely
formulate and prove or disprove in terms of abstract web application models.

18In comparison the proof occupies 24 pages, the rest of chapter 14.

35

A first group consists of correctness properties for the crucial session and
state management:

Session management refers to the ability of an application to maintain
the status of the interaction with a particular browser. A typical prop-
erty is that session state is not corrupted by user actions like hitting the
Back/Forward buttons or navigating away from the page and then coming
back.
State management is about the virtual state of the application, which is
usually distributed among multiple components on both client and server
side, with parts of the state ‘embedded’ into the local state of several
programs, and often also replicated entirely or partially. Typical desirable
properties are that at significant time instants replicated parts of the state

– are consistent, that is they are allowed to be out-of-sync at times and
consistence is considered up to appropriate abstraction functions,

– are equivalent between the client-side and the server-side of the state,
– can be reconstructed, e.g. when the client can change and its state

must be persisted to another client (for example from desktop to
mobile).

A second group concerns robustness (e.g. upon loss of a session or client and
server state going out-of-sync), security (e.g. confidential information is not
compromised) and liveness (e.g. the web application will eventually respond
to valid user actions). While security of web applications has been explored in
depth, and indeed constitutes a fully developed research area of itself, robustness
and liveness have received much less attention, and we believe the foundation
we laid with our model can contribute to their analysis.

A third group consists of what we consider to be the most challenging prop-
erties which are also of greatest interest to the users, namely application cor-
rectness properties. These properties are about the dependence of the intended
application-focussed behavior of web applications on the programming and exe-
cution infrastructure—on the used browser, web server, net infrastructure (e.g.
firewall, router, DNS), connection, plug-ins, etc. Such components are based on
their own (not necessarily compatible) standards and therefore may influence
the desired application behavior in unexpected ways. This makes their rigorous
high-level description mandatory for a precise analysis. An outstanding class of
such application-group-specific properties is about application integration where
common services are offered on an application-independent basis (e.g. authen-
tication or electronic payment services). We see such investigations as a first
step towards defining objective content-based criteria for the reliability of web
application software and for building reliable web applications, read: web appli-
cations whose properties of interest can be certifiably guaranteed—by theorem
proving or model checking or testing or combinations of these activities—to hold
under precisely formulated boundary conditions.

36

References

[1] Java Server Faces. http://www.jcp.org/en/jsr/detail?id=314.

[2] Python. http://www.python.org/.

[3] ECMAScript language specification. Standard ECMA-262, Edition
5.1, June 2011. http://www.ecma-international.org/publications/

standards/Ecma-262.htm.

[4] HTTP1.1 part 2 message semantics. www.ietf.org, cosulted February 2012.

[5] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cam-
bridge University Press, Cambridge, 2010.

[6] M. Alpuente, D. Ballis, and D. Romero. A rewriting logic approach to
the formal specification and verification of web applications. Science of
Computer Programming, 2013. (in press).

[7] M. Altenhofen, E. Börger, A. Friesen, and J. Lemcke. A high-level specifi-
cation for virtual providers. IJBPIM, 1(4):267–278, 2006.

[8] A. Barros and E. Börger. A compositional framework for service interaction
patterns and communication flows. In K.-K. Lau and R. Banach, editors,
Proc. ICFEM 2005, volume 3785 of LNCS, pages 5–35. Springer, 2005.

[9] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions. Springer-
Verlag, 2004.

[10] E. Boerger, A. Cisternino, and V. Gervasi. Contribution to a rigorous
analysis of web applications frameworks. In Proceedings of ABZ 2012,
LNCS. Springer-Verlag, June 2012.

[11] E. Börger. The ASM refinement method. Formal Aspects of Computing,
15:237–257, 2003.

[12] E. Börger. Construction and analysis of ground models and their refine-
ments as a foundation for validating computer based systems. Formal As-
pects of Computing, 19:225–241, 2007.

[13] E. Börger. Approaches to modeling business processes. A critical analysis
of BPMN, workflow patterns and YAWL. JSSM, pages 1–14, 2011. DOI:
10.1007/s10270-011-0214-z.

[14] E. Börger, A. Cisternino, and V. Gervasi. Ambient Abstract State Machines
with applications. JCSS, 78(3):939–959, 2012.

[15] E. Börger and R. Stärk. Abstract state machines: a method for high-level
system design and analysis. Springer, 2003.

37

http://www.jcp.org/en/jsr/detail?id=314
http://www.python.org/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

[16] M. R. Brown. Fast CGI specification. http://www.fastcgi.com/, April
1996.

[17] V. G. Cerf, Y. Dalal, and C. Sunshine. RFC675: Specification of Internet
Transmission Control Program, Dec. 1974.

[18] J. Chen and X. Zhao. Formal models for web navigations with session
control and browser cache. In Formal Methods and Software Engineer-
ing: Proceedings of the 6th International Conference on Formal Engineer-
ing Methods, volume 3308 of LNCS, pages 46–60. Springer-Verlag, Nov.
2004.

[19] C. Dittamo, V. Gervasi, E. Börger, and A. Cisternino. A formal specifi-
cation of the semantics of ECMAScript. In VSTTE-10, Edinburgh, 2010.
Poster session.

[20] R. Farahbod, V. Gervasi, and U. Glaesser. CoreASM: An extensible ASM
execution engine. Fundamenta Informaticae, 77:71–103, Mar./Apr. 2007.

[21] V. Gervasi. An ASM model of concurrency in a web browser. In Proceedings
of ABZ 2012, number 7316 in LNCS, pages 79–93. Springer-Verlag, June
2012.

[22] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Build-
ing and Deploying Messaging Solutions. Addison-Wesley Longman Publish-
ing, 2003.

[23] K. Homma, S. Izumi, K. Takahashi, and A. Togashi. Modeling, verification
and testing of web applications using model checker. IEICE Transactions
on Information and Systems, E94.D(5):989–999, 2011.

[24] D. Jang, Z. Tatlock, and S. Lerner. Establishing browser security guaran-
tees through formal shim verification. In Proceedings of the 21st USENIX
Conference on Security Symposium, Security’12, pages 1–16, Berkeley, CA,
USA, 2012. USENIX Association.

[25] S. Krishnamurthi, R. Findler, P. Graunke, and M. Felleisen. Modeling web
interactions and errors. In D. Goldin, S. Smolka, and P. Wegner, editors,
Interactive Computation: The New Paradigm, pages 255–276. Springer-
Verlag, 2006.

[26] Microsoft. ASP.NET. http://www.asp.net.

[27] P. Neron and Q.-H. Nguyen. A formal security model of a smart card web
server. In E. Prouff, editor, Smart Card Research and Advanced Appli-
cations, volume 7079 of LNCS, pages 34–49. Springer Berlin Heidelberg,
2011.

38

http://www.fastcgi.com/
http://www.asp.net

[28] G. Schellhorn and W. Ahrendt. The WAM case study: Verifying compiler
correctness for Prolog with KIV. In W. Bibel and P. Schmitt, editors,
Automated Deduction – A Basis for Applications, volume III, pages 165–
194. Kluwer Academic Publishers, 1998.

[29] G. Schellhorn, H. Grandy, D. Haneberg, and W. Reif. The Mondex Chal-
lenge: Machine Checked Proofs for an Electronic Purse. In J. Misra, T. Nip-
kow, and E. Sekerinski, editors, FM 2006, volume 4085 of LNCS, pages
16–31. Springer, 2006.

[30] R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine:
Definition, Verification, Validation. Springer-Verlag, 2001.

[31] W3C. CGI: Common Gateway Interface. http://www.w3.org/CGI/.

[32] World Wide Web Consortium. HTML 5: A vocabulary and associated APIs
for HTML and XHTML. http://www.w3.org/TR/html5. W3C Working
Draft 19 October 2010.

39

http://www.w3.org/CGI/
http://www.w3.org/TR/html5

Contents

1 Introduction 1
1.1 Overall goal . 2
1.2 Approach . 2
1.3 Outline of the paper . 3

2 Modeling a web browser 4
2.1 Notation . 5
2.2 Transport layer . 5

2.2.1 Channels and buffers . 5
2.2.2 HTTP Request/Response 6

2.3 Stream layer . 8
2.3.1 HTML streams . 8
2.3.2 Script streams . 14
2.3.3 Image streams . 15

2.4 Context layer . 17
2.4.1 Renderer . 18
2.4.2 Event Loop . 18

2.5 Browser layer . 22

3 Modeling a web server 23
3.1 Server-side transport layer . 23
3.2 Functional Request-Reply web server view 23
3.3 Refinement for file transfer . 25
3.4 Refinement for Common Gateway Interface 26

3.4.1 CGI module . 26
3.4.2 FastCGI module . 27

3.5 Refinement for scripting . 29
3.5.1 ASP/PHP/JSP modules 30
3.5.2 JSF/ASP.NET modules 32

4 Discussion 32
4.1 Threats to validity . 32
4.2 Related work and comparison . 33

5 Conclusions 35
5.1 Contribution . 35
5.2 Future work . 35

40

