
Canonical Derivations
with Negative Application Conditions

Andrea Corradini1 and Reiko Heckel2

1 Dipartimento di Informatica, Università di Pisa, Italy
andrea@di.unipi.it

2 University of Leicester, UK
reiko@mcs.le.ac.uk

Abstract. Using graph transformations to specify the dynamics of dis-
tributed systems and networks, we require a precise understanding of
concurrency. Negative application conditions (NACs) are an essential
means for controlling the application of rules, extending our ability to
model complex systems. A classical notion of concurrency in graph trans-
formation is based on shift equivalence and its representation by canon-
ical derivations, i.e., normal forms of the shift operation anticipating
independent steps. These concepts are lifted to graph transformation
systems with NACs and it is shown that canonical derivations exist for
so-called incremental NACs.

Keywords: graph transformation, canonical derivation, incremental
NACs.

1 Introduction

Graph Transformation Systems (GTS) provide a visual formal specification tech-
nique and computational model for concurrent and distributed systems, where
graphs modelling system states evolve through the application of rules with local
effects. A significant body of literature is dedicated to the study of parallelism
and concurrency of graph transformation systems [7,14,5,1,2].

The classical theory includes, among others, the definition of the parallel com-
position of several rules (by coproduct, i.e. disjoint union) and its application
to a graph, and of sequential independence between two consecutive rule ap-
plications [7]. These notions are exploited in the Church-Rosser theorem that
shows that sequentially independent rule applications can be switched obtaining
the same resulting graph. Furthermore, as stated by the Parallelism theorem, the
same effect can be obtained by applying the parallel composition of the two rules
to the start graph. This leads to the definition of a natural equivalence on the
set of parallel derivations, i.e. on sequences of possibly parallel rule applications,
called the shift equivalence: parallel derivations that differ only by the order in
which independent rule applications appear are considered to be equivalent.

Kreowski showed in [14] that shift-equivalence classes of parallel derivations
have canonical representatives, obtained by anticipating as much as possible the

H. Giese and B. König (Eds.): ICGT 2014, LNCS 8571, pp. 207–221, 2014.
© Springer International Publishing Switzerland 2014



208 A. Corradini and R. Heckel

rule applications. Such representatives are called canonical derivations, and they
feature an “early maximal parallelism”: each rule application depends on at least
one rule application in the preceding parallel rule application, if one exists.

Using graph transformations to specify the dynamics of distributed systems
and networks, we require a precise understanding of concurrency. The notions
of shift equivalence and canonical derivation are the original expression of such
an understanding. They have been fundamental to more recent research on con-
currency of graph transformation systems (including graph processes [5] and
unfolding [3]), as well as their generalisation to transformation systems based on
(M-)adhesive categories [6,2].

Negative application conditions (NACs) [9] are an essential means for control-
ling the application of rules, extending our ability to model complex systems.
However, a corresponding notion of concurrency has been missing so far. This
paper addresses the generalisation of the results on canonical derivations to rules
with NACs.

A NAC allows one to describe a “forbidden context”, whose presence around
a match inhibits the application of the rule. NACs introduce new kinds of de-
pendencies among rule applications, as stressed in [11,4], due to the fact that a
forbidden context for a rule can be generated by two sequentially independent
rule applications. As a consequence, unlike the case without NACs, sequential in-
dependence of rule applications with NACs (as defined in [16]) is not stable under
switching independent rule applications: as recalled in Sect. 3 two independent
consecutive rule applications may become dependent if both are switched with a
third rule application, independent of both. As shown in [4], this problem does
not occur if the NACs are incremental, that is, if each morphism embedding
the left-hand side of a rule into a forbidden context can be decomposed in an
essentially unique way.

After presenting basic definitions in Sect. 2, Sect. 3 recalls concepts and results
on independence of rule applications, including the definition of incremental
NACs and some of their properties. The original contribution starts with Sect. 4
where we first introduce an operational semantics for transformation systems.
Given a set of pairwise independent rule matches in a graph, we compose them
via an amalgamation construction obtaining a step, whose application to a graph
has the same effect of the parallel application of the given rules. In the presence of
NACs, such a step is not always serializable. We call it safe if any interleaving of
its constituent rule applications satisfies all the NACs, that is, if it is serializable
in all possible ways. This might be expensive to check, but we show that if NACs
are incremental then safety of a step made of several rules can be checked by a
pairwise analysis of the rules.

Next in Sect. 5 we discuss existence of canonical derivations made of steps.
We show that they do not exist in general for rules with arbitrary NACs, but
are guaranteed to exist if all NACs are incremental. Finally, Sect. 6 provides a
conclusion and sketches future developments.



Canonical Derivations with Negative Application Conditions 209

2 Basic Definitions

In this paper we use the double-pushout approach [7] to graph transformation
with negative application conditions [9]. However, we will state all definitions
and results at the level of adhesive categories [15]. We recall that a category
is adhesive if (1) it has pullbacks, (2) it has pushouts along monomorphisms
(hereafter monos), and (3) all pushouts along a mono are Van Kampen squares.
That means, when such a pushout is the bottom face
of a commutative cube such as in the diagram to the
right, whose rear faces are pullbacks, the top face is
a pushout if and only if the front faces are pullbacks.
In any adhesive category pushouts along monos are
also pullbacks, and if a pushout complement of two
composable arrows K

l−→ L
m−→ G with l mono

exists, then it is unique (up to iso).

A′
�����

�
��������

�����

��

B′
�����

�

��

C′

��

��������
����

D′

��

A
����B

�����
�� C

��������
�����

D

As an example, the category of typed graphs for a fixed type graph TG, defined
as the slice category (Graph ↓ TG), is adhesive. In the rest of the paper, all
objects and arrows live in an arbitrary but fixed adhesive category C.
A rule p = (L

l←− K
r−→ R) consists of a span

of two monos l and r. A redex in a graph G is
a pair (p,m), where p is a rule and m : L → G
is a mono, called a match. Given a redex (p,m), a
transformation G

p,m
=⇒ H from G to H exists if the

double-pushout (DPO) diagram to the right can be
constructed, where (1) and (2) are both pushouts.1

L

m

��
(1)

K

(2)

l�� r ��

��

R

m∗

��
G D

l∗�� r∗ �� H

The applicability of rules can be restricted by imposing some negative con-
straints, defined as follows. A (negative) constraint over an object L is a mono
n : L → N . A mono m : L → G satisfies n (written m |= n) iff there is no mono
q : N → G such that n; q = m. A negative application condition (NAC) is a set
of constraints. A mono m : L → G satisfies a NAC φ over L (written m |= φ)
if and only if m satisfies every constraint, i.e., ∀n ∈ φ,m |= n. In this paper we
shall consider only monic matches and monic constraints.

A graph transformation system (GTS) G = (P, π) consists of a set of rule
names P and a function π assigning to each name p a rule π(p) = L

l←− K
r−→ R.

A conditional GTS (P, π, Φ) consists of an underlying GTS (P, π) and a function
Φ providing for each p ∈ P a NAC Φ(p) over π(p)’s left-hand side. A derivation
in a GTS G = (P, π) is a finite sequence of transformations s = (G0

p1,m1
=⇒

G1
p2,m2
=⇒ · · · pn,mn

=⇒ Gn) with pi ∈ P . A conditional derivation in a conditional
GTS (P, π, Φ) is a derivation in its underlying GTS such that each Gi−1

pi,mi
=⇒ Gi

is a conditional transformation, that is, it is a DPO diagram where match mi

satisfies the NAC Φ(pi).
We write s : G0

∗
=⇒ Gn for a generic derivation and, given s′ : Gk

∗
=⇒ Gm

with Gn = Gk, denote their sequential composition by s; s′ : G0
∗

=⇒ Gm.
1 Note that we stick to DPO rewriting with monic matches only (see [10]).



210 A. Corradini and R. Heckel

3 Independence and Switch Equivalence

This section recalls the notions of parallel and sequential independence and
switch equivalence, and illustrates the problem that sequential independence
with NACs is not stable under switching. In the DPO approach, two trans-
formations from the same graph G1

p1,m1⇐= G0
p2,m2
=⇒ G2 as in the left of the

diagram below are parallel independent iff there exist morphisms i : L1 → D2

and j : L2 → D1 such that j; l∗1 = m2 and i; l∗2 = m1.

R1

m∗
1��

K1

r1�� l1��

��

L1

m1

��

���
� i

		

L2

j




m2
��

����

K2

l2�� r2��

��

R2

m∗
2 ��

G1 D1
r∗1
��

l∗1
�� G D2

l∗2
��

r∗2
�� G2

L1

m1
��

K1

l1�� r1��

��

R1

m∗
1

��

����
i



L2

m2
		

��		
j

��

K2

l2�� r2��

��

R2

m∗
2 ��

G0 D1
l∗1
��

r∗1
�� G1 D2

l∗2
��

r∗2
�� G2

Two consecutive transformations G0
p1,m1
=⇒ G1

p2,m2
=⇒ G2 as in the right of the

diagram above are sequentially independent iff there exist morphisms i : R1 →
D2 and j : L2 → D1 such that j; r∗1 = m2 and i; l∗2 = m∗

1.
The Local Church-Rosser theorem (Thm. 3.20 of [6], called “LCR” in the

following) states that (1) given the two parallel independent transformations,

there are transformations G1
p2,m

′
2=⇒ X

p1,m
′
1⇐= G2 such that G0

p1,m1
=⇒ G1

p2,m
′
2=⇒ X

(and G0
p2,m2
=⇒ G2

p1,m
′
1=⇒ X) are sequentially independent and that (2) given se-

quentially independent transformations σ = G0
p1,m1
=⇒ G1

p2,m2
=⇒ G2, there exists

σ′ = G0
p2,m

′
2=⇒ G′

2

p1,m
′
1=⇒ G2 such that G1

p1,m1⇐= G0
p2,m

′
2=⇒ G′

2 are parallel indepen-
dent. In the last case we write σ ∼sw σ′ to denote that derivations σ and σ′ are in
the switch relation. This relation extends to an equivalence on derivations of ar-
bitrary finite length, called switch equivalence, by setting s ; s1 ; s

′ ∼sw s ; s2 ; s
′

if s1 ∼sw s2, for arbitrary derivations s, s′, and closing under transitivity.
The definition of parallel independence carries over to conditional transforma-

tions [17] by requiring that the matches j; r∗1 for p2 in G1 and i; r∗2 for p1 in G2

satisfy their respective NACs. Similarly, for sequential independence, the match
for p2 in G0 given by m′

2 = j; l∗1 must satisfy the NAC of p2 and the induced

match of p1 into graph G′
1 obtained by G0

p2,m
′
2=⇒ G′

1 must satisfy the NAC of
p1. With these definitions, the statements of LCR carry over verbatim to the
conditional case.

However, as mentioned in the introduction and as shown in the next exam-
ple, in the conditional case the sequential independence of two transformations
is not preserved by switch equivalence, a property that is known to hold for
derivations without NACs by the results in [14]. The same problem also holds if
the coarser permutation equivalence is considered on conditional derivations, as
defined in [12].

Example 1 (independence with NACs). Along the paper we use the rules of Fig. 1
to show the problems that arise using rules with arbitrary NACs. Rule p1 has a
negative constraint n1 : L1 → N1: it creates a new node only if the node it is



Canonical Derivations with Negative Application Conditions 211

Fig. 1. Three simple graph transformation rules

applied to does not have both a loop and an edge to another node; p2 adds a
loop to a node; p3 adds to a node an edge connecting a new node. Recall that
rules are spans: the mid graph is omitted as it coincides with the left-hand side.

Fig. 2. Independence of p1 and p2 is not preserved by switching with p3

Fig. 2 shows three conditional derivations from G0 applying p1, p2 and p3 in
different orders. All rules are applied to node labeled 1. In the first derivation
s = G0 =

p1
=⇒ G1 =

p2
=⇒ G2 =

p3
=⇒ G3 = (s1; s2; s3) (top), s1 and s2 are sequentially

independent, and so are s2 and s3. After switching s2 and s3 by point (2) of LCR
we obtain s′ = (s1; s

′
3; s

′
2) (middle of Fig. 2), thus we have s ∼sw s′. Since s1, s

′
3

are independent, we can perform a further switch obtaining s′′ = (s′′3 ; s
′
1; s

′
2)

(bottom). However, s′1 and s′2 are sequentially dependent in s′′, because the
match for p1 into G′′

2 , obtained as G′
1 =

p2
=⇒ G′′

2 , does not satisfy its NAC. Hence,
sequential independence may not be preserved in equivalent derivations.

Essentially, the problem identified in Ex. 1 is due to the fact that the NAC of
rule p1 is made of two parts that can be created, in any order and independently,
by p2 and p3. In fact, as shown in [4], the problem disappears if all NACs are
incremental in the following sense.

Definition 1 (incremental monos and NACs). A
mono f : A → B is called incremental, if for any pair of
decompositions g1; g2 = f = h1;h2 as in the diagram to
the right where all morphisms are monos, there is either
a mediating morphism o : O → O′ or o′ : O′ → O, such
that the resulting triangles commute. A monic NAC φ
over L is incremental if each constraint (n : L → N) ∈ φ
is incremental.

O
g2

��









o

��

A f ��

g1
�������

h1 ���
��

��
B

O′ h2

�������
o′

��



212 A. Corradini and R. Heckel

Equivalently, f above is incremental if the pullback of arrows g2 and h2 has a
projection that is an iso.2

Example 2 (Incremental NACs). The diagram to the
right shows that the negative constraint n1 : L1 → N1 of
rule p1 of Ex. 1 is not incremental, because N1 extends
L1 in two independent ways: by the loop on 1 in O1, and
by the outgoing edge with an additional node 2 in O′

1.
Indeed, there is no mediating arrow from O1 to O′

1 or
vice versa relating these two decompositions.

Incremental monos in the category of directed graphs can only represent for-
bidden contexts made of a single edge or of a single node (possibly with an
incident edge). Indeed, every incremental mono between graphs can be decom-
posed in at most two non-isomorphic monos: for example, {•} → {•→•} =
{•} → {• •} ; {• •} → {•→•}. Despite that, as discussed in [4] incremental
NACs are sufficiently expressive for several applications of GTSs. For example,
[13] describes a significant model transformation problem addressed with a graph
transformation system made of almost 500 rules. NACs are used extensively, and
only a few rules have non-incremental NACs, but could be converted to rules
with incremental NAC only with a small increase in execution time.

The next result shows that independence is stable under switching in the
case of incremental NACs. It follows easily from Thm. 1 of [4], where only the
sequential case was considered.

Theorem 1 (indep. stable under switch). In the
cube on the right, edges represent conditional transfor-
mations tji = (pi,m

j
i ) for 1 ≤ i, j ≤ 3, where all rules

have incremental NACs only. Furthermore, each face
A Ba�� Cb�� c �� D d �� A is a switch operation iff
either b and c are parallel independent and a, d are
obtained by point (1) of LCR, or b ; a (resp. c ; d) are
sequentially independent, and c ; d (resp. b ; a) are ob-
tained by point (2) of LCR. Then we have:

• t21
��

t22

��

•

t32

��

• t1 ��

t2

��

t3

��

•
t12

��

t13

��

• t31
�� •

• t11
��

t23

��

•
t33

��

1. If the top and right faces are switch operations, the front face is a switch
operation iff the back face is.

2. If the top and front faces are switch operations, the right face is a switch
operation iff the left face is.

Another way of reading item 1 above is that t1; t
1
2; t

3
3 ∼sw t3; t

2
1; t

3
2 implies

that t1 and t12 are sequentially independent iff t21 and t32 are, i.e., as shown in [4]
sequential independence is stable under switching (the property that did not hold
for Ex. 1 because of the non-incremental NAC of p1). By symmetry, this implies
analogous statements assuming that the faces in the top and back, front and
bottom, front and right, left and back, left and bottom, respectively, represent
switch operations.
2 We are grateful to an anonymous referee for this observation.



Canonical Derivations with Negative Application Conditions 213

Item 2 states stability of parallel independence under switch, so statements
symmetrical to 2 hold by assuming that the faces in the front and left, left and
top, respectively, represent switch operations. This can be shown by exploiting
the duality between parallel and sequential independency, i.e., t1 and t2 are
sequentially independent iff the inverse t−1

1 of t1 and t2 are parallel independent.

4 Conditional Step Derivations

We investigate conditional step derivations as a computational model where,
in each state, a number of rules with NACs can be applied in parallel as long
as they are not in conflict, i.e., the same effect can be obtained by applying
them sequentially. We face two challenges. First, to define a notion of parallel
transformation the traditional approach is to construct a parallel rule as the
disjoint union of all the rules to be applied. If the matches of these rules are
not disjoint, this results in a non-monic match for the parallel rule. However, we
have restricted our matches to monos because they work more naturally with
the notion of satisfaction employed by NACs. That means, rather than parallel
rules based on disjoint union, we consider amalgamated rules which merge indi-
vidual rules wherever their matches overlap. We will call the application of such
amalgamated rules to a graph a step.

The notion of amalgamated transformation and derivation has been intro-
duced for graphs and HLR systems [18], and it is adapted here to adhesive
categories and extended by NACs. A similar construction is also presented in
[10], but for two rules only. Paper [8] considers amalgamation of several rules
with nested application conditions, which generalize negative ones, in arbitrary
(M-)adhesive categories. However, rules are amalgamated along a single com-
mon subrule, thus this approach is not applicable to our setting.

The second challenge lies in ensuring that conditional steps do not contain
conflicting application conditions. We call these conditional steps safe in the
sense that they can be serialised in any order with the same effect, so that con-
ditional derivations and conditional step derivations induce the same reachability
relation on graphs. While for the unconditional case this follows from the Par-
allelism theorem [7,6], in the conditional case checking serializability of a step
requires to check that the negative constraints of a rule cannot be produced by
applying an arbitrary subset of the remaining rules, which is computationally
very costly. We show that if all NACs are incremental, in order to check that a
conditional step is safe a pairwise analysis of the involved rules is sufficient.

A different approach is taken in [17], where to ensure serialisation binary
parallel rules are equipped with additional NACs, besides those of the component
rules. The process can be iterated, but the high number of constraints generated
would make the approach difficult to apply.

We will define steps with a two-level construction. For a multiset of redexes
enabled individually, first an amalgamated rule is constructed, then it is applied
at a match obtained by combining the individual matches. The amalgamated
rule is obtained using a colimit construction called pushout star.



214 A. Corradini and R. Heckel

Proposition 1 (existence of pushout stars). Given a family of spans (Oi ←
Oij → Oj)i<j∈I connecting a finite collection of objects (Oi)i∈I , its colimit,
denoted POS (Oi → O ← Oj)i<j∈I , is called a pushout star (see [7,18]).

Let I = {1, . . . , n}, {mi : Ki → G}i∈I be a set of monos, and (Ki ← Kij →
Kj)i<j∈I be a family of spans in an adhesive category, where KijKiKjG is a
pullback for each i < j ∈ I. Then the colimit of this family, i.e. POS(Ki →
K ← Kj)i<j∈I , exists.

Definition 2 ((conditional) steps and step derivations). Given a graph
transformation system (P, π), assume a graph G and a finite multiset of redexes
S = [(pi,mi)]i∈I with pi ∈ P , π(pi) = Li

li←− Ki
ri−→ Ri, and mi : Li → G for

i ∈ I = {1, . . . , n}.3 The multiset of redexes S is enabled in G if

(1) there exist transformations G
pi,mi
=⇒ Hi for all i ∈ I;

(2) for all i �= j ∈ I, transformations G
pi,mi
=⇒ Hi and G

pj ,mj
=⇒ Hj are parallel

independent.

Then a step G
S

=⇒ H in (P, π) is obtained as shown in the left of Fig. 3 by

1. constructing pullbacks Ki ← Kij → Kj of Ki
li−→ Li

mi−→ G
mj←− Lj

lj−→ Kj

for all i < j ∈ I;
2. building (thanks to Prop. 1) the amalgamated rule pS with π(pS) = L

l←−
K

r−→ R by
– L = POS(Li → L ← Lj)i<j∈I of (Li

li←− Ki ← Kij → Kj
lj−→ Lj)i<j∈I

– K = POS(Ki → K ← Kj)i<j∈I of (Ki ← Kij → Kj)i<j∈I

– R = POS(Ri → R ← Rj)i<j∈I of (Ri
ri←− Ki ← Kij → Kj

rj−→
Rj)i<j∈I

with l, r induced by the universal property of the POS forming K;
3. applying pS at the match mS : L → G induced by the universal property of

the POS forming L. This is possible because it can be shown that under the
above hypotheses the pushout complement of l and mS exists.

A conditional step in a conditional GTS (P, π, Φ) is a step G
S

=⇒ H in (P, π)
such that for each i ∈ I, match mi satisfies Φ(pi). (Conditional) step derivations4
are sequences of (conditional) steps, defined as expected.

If S is a singleton, step G
S

=⇒ H specialises to a transformation. If S is
empty, the amalgamated rule is empty and we assume G = H . Note that steps
are based on multisets of redexes. This allows auto-concurrency, i.e., applying a
redex twice in the same step is possible if it is not in conflict with itself. In the
3 We denote a finite multiset over a set X as [x1, . . . , xn], where xi ∈ X for all
0 < i ≤ n and the order is irrelevant. Multiset union is denoted by juxtaposition,
and a singleton multiset [x] is sometimes represented simply as x.

4 Based on this, the title of this paper should really refer to Canonical Step Derivations
with NACs. We stick to the more traditional title for consistency with the literature.



Canonical Derivations with Negative Application Conditions 215

Kij

����
�

��
��

���
��
�

Kij
�� ��

����
�

��
��

���
��
�

Kij

�����
�

���
��
��

��
�

Li

mi

��

���
��

��
��

� Kili�� ri ��

���
��

��
��

� Ri

���
��

��
��

�

Lj

mj

��

����
��

Kjlj�� rj ��

�����
�

Rj

�����
�

L
mS��

Kl�� r ��

��
R

��
G Dl∗�� �� H

Li

mi��

�� m′
i

��

Ki
�� ��

��

��

Ri

��

��

Lj
��
mj ��

��L− m− �� G Di
�� �� Gi

Kj

��

��

�� ��K−

��

��

�� D−

��

��

D

��

��

��

�� D′
−

��

��
Rj

�� ��R− �� H− D′
i

���� H

Fig. 3. A step G
S

=⇒ H and a serialisation

unconditional case, a step is a special case of amalgamated transformation with
constant interface rules [18].

A step is called safe if it can be serialised in any order.

Definition 3 (serialisation, parallelisation, safe step, residual). A (con-

ditional) step G
S

=⇒ H has a serialisation G
S−
=⇒ H−

s′i=⇒ H or G
si=⇒ Gi

S′
−

=⇒ H
if such derivations follow the diagram on the right of Fig. 3, where

– si = (pi,mi) and S = [si]S−.
– Li → D− exists such that Li → D− → G = mi, allowing to define m′

i as the
residual match of mi by Li → D− → H−, and s′i = (pi,m

′
i)

– for all (pj ,mj) ∈ S−, an Lj → Di exists such that Lj → Di → G = mj

allowing to define m′
j = Lj → Di → Gi as the residual match of mj, and

S′− from S− by replacing, in each (pj ,mj), match mj by its residual m′
j.

Vice versa, G S
=⇒ H is a parallelisation of either of the two derivations. A step

G
S

=⇒ H is safe if either S is empty or a singleton, or for all si ∈ S it has

serialisations G
S−
=⇒ H−

s′i=⇒ H and G
si=⇒ Gi

S′
−

=⇒ H where G
S−
=⇒ H− and

Gi

S′
−

=⇒ H are safe.

In the unconditional case, due to pairwise parallel independence of the redexes
all steps are safe (see also [18]). Instead, spelling out the definition, a conditional
step G

S
=⇒ H is safe if for all i ∈ I, the residual match m′

i : Li → H− satisfies
Φ(pi) and for all j ∈ I \ {i} the residual match m′

j : Lj → Gi satisfies Φ(pj).
That means, to decide if the step is safe each individual transformation has to be
checked for parallel independence against the amalgamation of the rest of the re-
dexes in the step. Because this applies recursively, there are O(n!) independence
checks. Each of these requires the construction of the individual or amalgamated
transformations in order to check if NACs are satisfied in the resulting graphs.
That means, even if we assume an efficient implementation of individual trans-
formations, an operational semantics of conditional GTSs based on conditional
step derivations would not be efficient, as it requires to check safety of each step.



216 A. Corradini and R. Heckel

Example 3 (unsafe steps with general NACs). Consider the rules of Fig. 1 and
their matches in graph G0 below. Clearly all rules are applicable, and the three
transformations below to the left are pairwise parallel independent. Therefore
the conditional step [p1, p2, p3] depicted on the right is well-defined. However, it
is not safe: the serialisation p2 ; p3 ; p1 is not possible because if the (sub)step
[p2, p3] is fired first the NAC of p1 is not satisfied in the resulting graph. Other
serialisations are possible, though, including those depicted in Fig. 2.

Instead, using incremental NACs only, the situation is comparable to the un-
conditional case. In fact, as shown in Thm. 2, it is sufficient to consider pairwise
parallel independence.

Theorem 2 (safety with incremental NACs). A conditional step G
S

=⇒ H
with incremental NACs only is safe if for all redexes s �= t ∈ S, the corresponding
conditional transformations are parallel independent.

Proof. Following Def. 3 we work by induction. For steps based on 1 or 0 redexes,
the statement holds by definition. Assume that all conditional steps are safe if
they are based on no more than n redexes, and consider G

S
=⇒ H with S =

[t1, . . . , tn, tn+1]. Since tn+1 is parallel independent of each of the t1, . . . , tn we
can use the Local Church-Rosser theorem to form a derivation tn+1; [t

′
1, . . . , t

′
n]

such that tn+1 is sequentially independent of each ti, 1 ≤ i ≤ n. This provides
one of the two sequentialisations required, since item 2 of Thm. 1 implies that
the t′1 . . . t

′
n are still pairwise parallel independent.

Vice versa, we can transform [t1, . . . , tn, tn+1] into t1; . . . ; t
′
n; t

′
n+1 by succes-

sively delaying independent steps and using Local Church Rosser and item 2
of Thm. 1 to show that this operation preserves independence of the remaining
steps. Finally, the resulting conditional derivation t1; . . . ; t

′
n; tn+1 can be trans-

formed into the conditional step derivation [t1, . . . , t
′′
n]; tn+1 again preserving

pairwise independence due to Local Church Rosser and Thm. 1. �
Given conditional transformations G0

p1,m1
=⇒ G1 and G0

p2,m2
=⇒ G2, as recalled

in Sect. 3, they are parallel independent if the underlying unconditional trans-
formations are, and the residual match j; r∗1 for rule p2 in G1 satisfies the NACs
Φ(p2) (and symmetrically for match i; r∗2). The next result shows that if NACs are
incremental, then it is sufficient to check for each negative constraint n : L2 → N
of p2, if the negative part N \ n(L2) of n already occurs in the right-hand side
of p1. More abstractly, this negative part of N is characterised by the initial
pushout over constraint n, defined as follows.



Canonical Derivations with Negative Application Conditions 217

Definition 4 (initial pushout). The rectangle with
vertices ABNM to the right is an initial pushout over
f : M → N if it is a pushout and for every pushout
IJNM there exist unique morphisms A → I and B → J
such that the triangles commute and ABJI is a pushout.

A ��

��

���
��

� B

���
��

�

��

I ��

��


J

��


M
f �� N

Theorem 3 (satisfaction of incremental NACs by residual match). In
an adhesive category C with initial pushouts, assume a GTS (P, π, Φ) with in-
cremental NACs, and conditional transformations si = (G0

pi,mi
=⇒ Gi) for i = 1, 2

as in the left of Fig. 4, such that there exists j : L2 → D1 with j; l∗1 = m2.
Furthermore, let (n2 : L2 → N2) ∈ Φ(p2) be a negative constraint of p2, and let
L0
2N

0
2L2N2 be an initial pushout over n2. Then match j; r∗1 satisfies n2 if and

only if there exists no monic k : N0
2 → R1 such that L0

2N
0
2G1L2 is a pullback.

N0
2

����
��
�

k





N2 L0
2

n0
2

������

i2

����
��

R1

m∗
1 ��

K1

r1�� l1 ��

k1 ��

L1

m1

��

 ���

L2

n2
�������

m2
��

! ��
j

"!

K2

l2�� r2 ��

k2��

R2

m∗
2��

G1 D1
r∗1
��

l∗1
�� G0 D2

l∗2
��

r∗2
�� G2

K1

��

r1 ��
#"������

����� R1

��

M

��

���������

N

��

$#

#"�����
������

L0
2

��

��
���������

N0
2

��

%$

D1 r∗1 ������
#"����

G1

D1 ∪N2

��
����

D1 ∩N2

%$�����

#"������
���

L2 n2 ��
������

j
���

&%���

N2

&%�������

%$�����

Fig. 4. Satisfaction of incremental NACs (left) and Proof of Thm. 3 (right)

Proof. “⇒”: We show that, if k as above exists, then match j; r∗1 does not sat-
isfy constraint n2. Indeed, given k and j as in the left diagram of Fig. 4, since
L0
2N

0
2L2N2 is a pushout there exists a morphism i : N2 → G1 commuting with

n2 and j; r∗1 . Since C is adhesive, C ↓ G1 has effective unions [15], that is,
the coproduct of two objects (arrows of C with target G1) is computed as the
pushout over their pullback. Since L0

2N
0
2G1L2 is a pullback, i is the coproduct

of k;m∗
1 and j; r∗1 in C ↓ G1, and thus i is monic. Therefore constraint n2 is

violated.
“⇐”: We show that, if mono N2 → G1 exists commuting with n2 and j; r∗1 , we

can find k as required such that L0
2N

0
2G1L2 is a pullback. The back and bottom

faces of the diagram in the right of Fig. 4 represent the second pushout of s1
and the non-satisfaction of the constraint by the match j; r∗1 . The initial pushout
over n2 is shown in the front of the diagram.

Let D1 ← D1 ∩ N2 → N2 be a pullback of D1 → G1 ← N2 and D1 →
D1∪N2 ← N2 a pushout over D1 ← D1∩N2 → N2, with L2 → D1∩N2 and D1∪
N2 → G1 given by universality. Both arrows are monic, the second one because
C ↓ G1 has effective unions. All other arrows in the front, bottom, and back
faces are also monic, so in particular the front initial pushout is also a pullback.



218 A. Corradini and R. Heckel

We can thus decompose it into pullbacks L0
2NL2(D1∩N2) and NN0

2 (D1∩N2)N2

and then infer by pushout-pullback decomposition [15] that both diagrams are
pushouts, too. It can be shown, by a general result about decomposition of initial
pushouts, that NN0

2 (D1∩N2)N2 is an initial pushout over arrow D1∩N2 → N2.
In particular, D1 ∩N2 → N2 is not iso because otherwise we would find N2 →
D1 → G0, i.e., m2 would not satisfy n2, contradicting the existence of s2.

Like the front face, also the pushout in the back decomposes into pushouts
along D1 → D1 ∪ N2 → G1, in particular K1MD1(D1 ∪ N2). It is easy to
check that the composition of an initial pushout and a pushout is again initial
if the second is all monic. Hence, since NN0

2 (D1 ∩ N2)N2 is initial pushout
over D1 ∩ N2 → N2 and (D1 ∩ N2)N2D1(D1 ∪ N2) is a pushout, this implies
that NN0

2D1(D1 ∪ N2) is initial pushout over D1 → D1 ∪ N2. Therefore there
exists a pushout NN0

2K1M , providing us with the desired N0
2 → M → R1.

Finally, L0
2N

0
2G1L2 is a pullback because L0

2N
0
2L2N2 is a pushout over monos

and therefore a pullback also, and N2 → G1 is mono. �

5 Canonical Derivations with Incremental NACs

As recalled in the Introduction, Kreowski showed in [14] that shift -equivalence
classes of parallel derivations of a GTS have unique representatives (up to iso),
called canonical derivations. Parallel derivations are sequences of parallel trans-
formations, defined as follows. Given a multiset of redexes S = [(pi,mi)]i∈I

enabled in a graph G (see Def. 2), a parallel transformation G
Σ S
=⇒ H is defined

as a transformation G
p,m
=⇒ H , where rule p = L

l←− K
r−→ R is obtained as the

coproduct of rules [pi]i∈I , and match m : L → G (which is not mono, in gen-
eral) is induced by the universal property of the coproduct forming L. The shift
equivalence is the generalization of the switch equivalence on sequential deriva-
tions (see Sect. 3): two parallel derivations are shift equivalent if any of their
serializations, which exist by the Parallelism theorem [6], are switch equivalent.

Existence of canonical representatives is shown by Kreowski by defining a
shift operation on parallel derivations, that anticipates a redex from a parallel
transformation to the previous one, if it is sequentially independent. This op-
eration transforms a derivation into an equivalent one, and it is shown to be
confluent and terminating, from which uniqueness of normal forms follows (up
to iso, because so is the shift operation). The canonical derivations obtained this
way feature maximal parallelism by applying each redex as early as possible.

We generalize here definitions and constructions by Kreowski to conditional
step derivations, showing that canonical derivations exist if NACs are incremen-
tal. First we formalise sequential independence of redexes in steps and introduce
the shift operation.

Definition 5 (sequential independence of redexes). Given two consecutive
safe steps σ = (G0

S1=⇒ G1
S2=⇒ G2) in a (conditional) GTS, redexes s1 ∈ S1

and s2 ∈ S2 are sequentially independent if for a serialisation (G0
S−
1=⇒ G′

1

s′1=⇒



Canonical Derivations with Negative Application Conditions 219

G1
s2=⇒ G′

2

S−
2=⇒ G2) of σ, transformations G′

1

s′1=⇒ G1
s2=⇒ G′

2 are independent.
Steps G0

S1=⇒ G1
S2=⇒ G2 are sequentially independent if for all s1 ∈ S1 and

s2 ∈ S2, s1 and s2 are.

Definition 6 (shift operation). Given two consecutive safe steps σ = (G0
S1=⇒

G1
S2=⇒ G2) in (P, π, Φ), let s2 = (p2,m2) ∈ S2 be such that for all s1 =

(p1,m1) ∈ S1, s1 and s2 are sequentially independent, and let G1
s2=⇒ G′

2

S′
2=⇒ G2

be a serialization of G1
S2=⇒ G2. Furthermore, let σ′ = (G0

S′
1=⇒ G′

2

S′
2=⇒ G2) be

the step derivation where S′
1 is the parallelisation of S1 and s2. Then we say that

σ′ is a shift of σ, denoted σ
sh(s2)−→ σ′. The shift relation over step derivations in

a (conditional) GTS is defined as the smallest relation including
sh(_)−→ and such

that σ
sh(s)−→ σ′ implies σ1;σ;σ2

sh(s)−→ σ1;σ
′;σ2 for any derivations σ1, σ2. Shift

equivalence ≡sh is the smallest equivalence containing
sh(_)−→ .

It is easy to see that if σ
sh(s2)−→ σ′ according to the above definition, then in σ′

all redexes satisfy their NACs and that redexes are pairwise parallel independent
in both steps. Therefore the result is a legal step derivation. It remains to analyse
under which conditions it is safe. The following example provides some intuition.

Example 4 (unsafe shift). Using again the rules of Fig. 1, we can build the follow-
ing safe step derivation. Notice that p3 is independent of p1 and p2 in isolation,
but if it is shifted using the construction of Def. 6 this would result in the unsafe
step of Ex. 3.

As expected, this problem can be avoided by restricting to incremental NACs,
as shown in the theorem below. First we need the following technical result.

Proposition 2 (parallelisation). Given two consecutive safe steps G0
S1=⇒

G1
s2=⇒ G2 using incremental NACs only, they are sequential independent if and

only if there is a parallelisation G0
S1[s

′
2]=⇒ G2 that is safe (see Def. 3).

Theorem 4 (safe and confluent shift with incremental NACs). Let σ be

a safe step derivation over a GTS with incremental NACs only, and let σ
sh(s)−→ σ′.

Then σ′ is a safe step derivation. Moreover, shift is confluent, that is, given

σ
sh(s1)−→ σ1 and σ

sh(s2)−→ σ2 we also have σ1
sh(s′′2 )−→ σ3 and σ2

sh(s′′1 )−→ σ3 where s′′1 , s′′2
are the residuals of s1 and s2, respectively.

Proof. The first point follows easily from Prop. 2. To show confluence of shift, as-
sume a two step derivation σ = (G0

S1=⇒ G1
S2=⇒ G2) and let s1, s2 ∈ S2 such that



220 A. Corradini and R. Heckel

σ
sh(s1)−→ σ1 and σ

sh(s2)−→ σ2 exist. Therefore, σ is safe and s1, s2 are independent of

all s ∈ S1. Then, let σ1 = (G0
S1s

′
1=⇒ G1

1

S1
2=⇒ G2) and σ2 = (G0

S1s
′
2=⇒ G2

1

S2
2=⇒ G2).

By Prop. 2 all steps are safe, so in order to have shifts σ1
sh(s′′2 )−→ σ3 and

σ2
sh(s′′1 )−→ σ3 we have to show that s′′2 ∈ S1

2 (resp. s′′1 ∈ S2
2) is independent of

all transformations in S1s
′
1 (resp. in S1s

′
2). Then, by confluence of shift on the

underlying step derivations, which can be proved essentially as in [14] for parallel
derivations, we know that sh(s′′1 ) and sh(s′′2) lead to isomorphic results.

This is similar, and in fact a consequence, of the stability of independence
under switching in item 1 of Thm. 1. More generally we show that the shift
operation does not affect the independence of the remaining transformations in
S1 and S2, i.e., for any s ∈ S1 and t ∈ S2 − s1 with residual t′ ∈ S′

2, s, t are
independent iff s, t′ are. Consider the cube in Thm. 1, and let s be t1 and t be
t12, with t13 being the transformation s1 anticipated by the shift to t3 = s′1 and
t32 playing the role of t′. By item 1 of Thm. 1, t1, t12 are independent iff t21, t

3
2 are,

while the latter is equivalent to independence of s, t′ by Def. 5. �
Thus the shift relation on safe step derivations with incremental NACs is

confluent. Since it is also terminating, as it can be proved along the lines of [14],
it has normal forms characterising shift equivalence, called canonical derivations.
That is, two safe step derivations with incremental NACs are shift equivalent if
and only if their canonical derivations are isomorphic.

6 Conclusion

We have investigated the computational model of safe step derivations for con-
ditional graph transformation systems. We have proved that, unlike the general
case, if NACs are restricted to be incremental then the safety of a step, which
ensures its serializability, follows from the pairwise independence of the com-
ponent match-rule pairs. In turn, Thm. 3 showed that parallel independence of
conditional transformations can be checked efficiently if NACs are incremental:
we think that this result can be exploited for the efficient computation of crit-
ical pairs. Finally Thm. 4 showed the existence of canonical representatives for
the shift-equivalence classes of step derivations with incremental NACs. This re-
sult holds for any system satisfying Thm. 1: the stability of independence under
switching provides a semantic characterisation for well-behaved concurrency, for
which incremental NACs are a sufficient structural condition on rules.

There are several possible developments of the present work, that we intend
to explore in the future. First, we aim at investigating graph processes with
incremental NACs as a more compact representation of shift equivalence classes
of derivations, and how far this can be generalised to arbitrary NACs. Next
we intend to look for weaker structural conditions able to ensure that a GTS,
even if including non-incremental NACs, still satisfies Thm. 1 (and therefore
has canonical derivations). Finally, the extension of the proposed step-based
computational model to non-monic matches and non-monic NACs looks like an
interesting challenge to face.



Canonical Derivations with Negative Application Conditions 221

References

1. Baldan, P., Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Löwe, M.: Concurrent
Semantics of Algebraic Graph Transformations. In: Rozenberg, G. (ed.) The Hand-
book of Graph Grammars and Computing by Graph Transformations, Concurrency,
Parallelism and Distribution, vol. 3, pp. 107–188. World Scientific (1999)

2. Baldan, P., Corradini, A., Heindel, T., König, B., Sobociński, P.: Unfolding gram-
mars in adhesive categories. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO
2009. LNCS, vol. 5728, pp. 350–366. Springer, Heidelberg (2009)

3. Baldan, P., Corradini, A., Montanari, U., Ribeiro, L.: Unfolding semantics of graph
transformation. Inf. Comput. 205(5), 733–782 (2007)

4. Corradini, A., Heckel, R., Hermann, F., Gottmann, S., Nachtigall, N.: Transfor-
mation systems with incremental negative application conditions. In: Martí-Oliet,
N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 127–142. Springer,
Heidelberg (2013)

5. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informati-
cae 26(3/4), 241–265 (1996)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science. Springer (2006)

7. Ehrig, H.: Introduction to the algebraic theory of graph grammars (a survey). In:
Claus, V., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73,
pp. 1–69. Springer, Heidelberg (1978)

8. Golas, U., Ehrig, H., Habel, A.: Multi-amalgamation in adhesive categories. In:
Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS,
vol. 6372, pp. 346–361. Springer, Heidelberg (2010)

9. Habel, A., Heckel, R., Taentzer, G.: Graph Grammars with Negative Application
Conditions. Fundamenta Informaticae 26(3,4), 287–313 (1996)

10. Habel, A., Müller, J., Plump, D.: Double-pushout graph transformation revisited.
Mathematical Structures in Computer Science 11(5), 637–688 (2001)

11. Heckel, R.: DPO Transformation with Open Maps. In: Ehrig, H., Engels, G.,
Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 203–217.
Springer, Heidelberg (2012)

12. Hermann, F.: Permutation equivalence of DPO derivations with negative applica-
tion conditions based on Subobject Transformation Systems. ECEASST 16 (2008)

13. Hermann, F., Gottmann, S., Nachtigall, N., Braatz, B., Morelli, G., Pierre, A.,
Engel, T.: On an automated translation of satellite procedures using triple graph
grammars. In: Duddy, K., Kappel, G. (eds.) ICMT 2013. LNCS, vol. 7909,
pp. 50–51. Springer, Heidelberg (2013)

14. Kreowski, H.J.: Is parallelism already concurrency? Part 1: Derivations in graph
grammars. In: Ehrig, H., Nagl, M., Rosenfeld, A., Rozenberg, G. (eds.) Graph
Grammars 1986. LNCS, vol. 291, pp. 343–360. Springer, Heidelberg (1987)

15. Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. ITA 39(3) (2005)
16. Lambers, L., Ehrig, H., Orejas, F., Prange, U.: Parallelism and Concurrency in

Adhesive High-Level Replacement Systems with Negative Application Conditions.
In: Proceedings of the ACCAT workshop at ETAPS 2007. ENTCS, vol. 203 / 6,
pp. 43–66. Elsevier (2008)

17. Lambers, L.: Certifying Rule-Based Models using Graph Transformation. Ph.D.
thesis. Technische Universität, Berlin (2009)

18. Taentzer, G.: Parallel high-level replacement systems. Theor. Comput. Sci. 186(1-2),
43–81 (1997)


	Canonical Derivations with Negative Application Conditions
	1 Introduction
	2 Basic Definitions
	3 Independence and Switch Equivalence
	4 Conditional Step Derivations
	5 Canonical Derivations with Incremental NACs
	6 Conclusion
	References




