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Abstract— We present a comparative study of parameters
identification of HIV dynamic models for naive patients that
are treated with two different HAART (Highly Active Anti-
Retroviral Therapy) protocols during a period of 48 weeks.
Three HIV models of increasing complexity (in terms of number
of state variables and parameters) have been chosen, and
for each one the model parameters are computed by solving
a nonlinear optimization problem via sequential quadratic
programming (SQP). Model parameters are divided into “group
dependent”, common to all patients treated with same HAART
protocol, and “patient dependent”, specific for each patient,
and are estimated in a way that an overall cost function
comprising the fitting error of CD4+ concentration and viral
load measurements. A preliminary parameter space grid search
algorithm is performed in order to find a suitable initial guess
for the SQP algorithm. Numerical results indicate that all
considered models can give a good matching despite the scarcity
of available measurements for each patient, and in this limited
situation the minimal model appears to be (slightly) more
effective than the other models.

I. INTRODUCTION

In a historical paper [1] presenting mathematical models of
HIV disease, Perelson and Nelson claimed that a number of
stochastic and deterministic models have been developed to
describe the immune system, its interaction with HIV, and the
decline in CD4+ T cells. They added the comment: ‘These
models typically consider the dynamics of the CD4+ T cell
and virus populations as well as the effects of drug therapy.
In some of these models other immune system populations,
such as macrophages or CD8+ cells, have been included.
Many of these models have tended to focus on explaining
the kinetics of T cell decline. Unfortunately, many different
models have been able to, more or less, mimic this aspect
of HIV infection, and to make progress, additional criteria
needed to be developed.’

From 1999 many other HIV dynamical models have been
proposed in the literature mainly for two reasons. The first
one is that they usually show a positive impact on the under-
standing of HIV infection and can predict in silico the effects
of administration of drugs. The second one has a less worth-
while goal, due to the application of a merely mathematical
exercise to a fashionable problem. The question introduced
in [1] on the usefulness of the models is very complex to be
answered: in this paper we attempt to investigate this topic.
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Nevertheless a similar problem is common to other aspects
of HIV research, e.g. in epidemiology, where a systematic
study of twelve mathematical models of the potential impact
of antiretroviral therapy on HIV incidence have been recently
published [2].

In this paper we propose a comparative study of param-
eters identification of HIV dynamic models, limiting our
analysis to three models. The first model we considered is the
earliest three-state variable model (see [3], [4] and references
therein). Two variants are considered for comparison: they
take the immune system response into account by adding
variables associated with cytotoxic lymphocytes. The first
variant represents a classical model in literature (e.g. [5],
[6]), the other one includes the virulence based approach
[7]–[9]).

II. HIV MODELS

In this work we consider and compare three HIV models of
increasing complexity in terms of number of state variables
(as well as of parameters). We present the details of each
model next, and we highlight for each how the effect of
HAART is taken into account. Each model can be written in
the following general form:

ẋ = F(x, f ,θθθ)

y = H(x,θθθ),
(1)

in which x ∈ Rnx is the state variable vector, y ∈ Rny is
the measured output vector, f ∈ {0,1} is the normalized
drug amount (where 0 means no therapy and 1 means
HAART therapy), θθθ ∈ RL is the vector of parameters. F :
Rnx ×R×RL → Rnx and H : Rnx ×RL → Rny are assumed
to be continuous.

A. Model 1: minimal model

The simplest HIV model, proposed in [4], is described by
the following set of ordinary differential equations:

ẋ = λ −dx−βxv

ẏ = βxv−ay

v̇ = ky−uv.
(2)

In (2), x is the concentration of healthy CD4+ T cells, y
is the concentration of infected CD4+ T cells, and v is the
concentration of free virus, often referred to as the viral load.
Healthy CD4+ (x) are produced with rate λ , naturally die
with rate dx and become infected with rate βxv. That is
the rate of infection is proportional to both healthy CD4+
and virus concentrations. Consequently, infected CD4+ (y)
are produced with rate βxv and naturally die with rate



ay. Free virus (v) is produced with rate ky and naturally
dies with rate uv. As discussed in [3], [10], model (2) is
completely identifiable, which means that all parameters can
be calculated from the measured output. This property clearly
refers to the noise-free case, although convergence in the
presence of noise may also be established [10].

The effect of HAART can be included in model (2) by
reducing the infection rate constant as follows: β ← β (1−
η f ), in which η ∈ (0, 1) is drug effectiveness. Hence the
considered model is as follows:

Model 1:


ẋ = λ −dx−β (1−η f )xv

ẏ = β (1−η f )xv−ay

v̇ = ky−uv.
(3)

We notice that this model is in the form of (1) by defining:
x =

[
x y v

]′, θθθ =
[
λ d β η a k u

]′ and y =[
x v

]′, since we assume that the measured variables are
the concentration of healthy CD4+ cells and the viral load.
Functions F(·) and H(·) are consequently defined.

B. Model 2: including immune system response variables

Research on HIV control has focused on identifying ther-
apy protocols able to result in long-term immune-mediated
control of HIV. In particular, cytotoxic T lymphocyte (CTL)
responses have been shown to be particularly effective in
reducing HIV replication rate. These immune responses have
been captured by the following mathematical model [6]:

ẋ = λ −dx−βxv

ẏ = βxv−ay− pyz

ẇ = cxyw− cqyw−bw

ż = cqyw−hz,

(4)

in which, in addition to healthy and infected CD4+ T cells
(x and y, respectively), w represents the CTL precursors and
z are the CTL effectors, which are ultimately responsible for
killing infected cells with a rate pyz. Compared to model
(2), the viral load is not explicitly described because it is
generally assumed that v̇ = ky−uv∼ 0, and hence v∼ k

u y =
k̄y, i.e. the viral load is proportional to the infected CD4+
T cells. CTL precursors proliferate at rate cxyw, die at rate
bw, and differentiate into CTL effectors at rate cqyw. CTL
effectors die at rate hz. From a physiological point of view,
one should expect model (4) to describe the HIV dynamics
better than model (2) because the former takes into account
the CTL immune responses which are known to play an
important role in the success of HIV control [6], especially
if a significant amount of CTL precursors is reached early.
On the other hand, model (4) has four parameters more than
(2) to identify.

As in model (2), the effect of HAART is modeled by
replacing β ← β (1−η f ) obtaining:

Model 2:


ẋ = λ −dx−β (1−η f )xy

ẏ = β (1−η f )xy−ay− pyz

ẇ = cxyw− cqyw−bw

ż = cqyw−hz.

(5)

The general form (1) is clearly obtained by
defining: x =

[
x y w z

]′, y =
[
x v

]′, and
θθθ =

[
λ d β η a p c q b h k̄

]′. Function
F(·) is readily defined from (5) whereas H(·) is given by:

H(x,θθθ) =
[

x
k̄y

]
. (6)

C. Model 3: including immune system response variables
and increasing virulence

One possible criticism regarding the two models previ-
ously presented is that they admit stable equilibrium points
in absence of therapy, i.e. they admit the possibility to
stop permanently anti-retroviral therapy without any eventual
uptake of viral load and fall of healthy CD4+ T cells. As
secondary aspect, neither model (3) nor (5) discriminate
between the effects of Protease Inhibitors (PI) and Reverse
Transcriptase Inhibitors (RTI) used (together) in HAART
protocols. This observation led Landi et al. [9] to propose a
variant of (4) in which infection rate constant β is replaced
by an additional state which (slightly) grows linearly with
time. Such a state, referred to as virulence, makes the
system evolution uncontrollable after many years (decades).
According pharmacological considerations, the effect of PI
is modeled as a reduction of the free virus production rate
from infected cells, whereas the effect of RTI is modeled as
a reduction of virulence growth rate. Recently Pannocchia et
al. [7] argued that an indefinite linear growth of the virulence
state, even if extremely slow, may not be justified from a
biological perspective. As a remedy the purely integrating
dynamics of the virulence state was replaced by a stable
linear dynamics in which the steady state virulence value is
such that the system still does not admit stable equilibria.

The model considered in [7] is described by:

ẋ = λ −dx− rxv

ẏ = rxv−ay− pyz

v̇ = k(1−ηP f )y−uv

ẇ = cxyw− cqyw−bw

ż = cqyw−hz

ṙ = (1−ηT f )(br−arr),

(7)

in which r is the virulence dynamic state, ηP ∈ (0, 1) is PI
drug effectiveness, ηT ∈ (0, 1) is the RTI drug effectiveness.
We can notice that the infection rate is now rxv, and r follows
a first-order dynamics:

r(t) = r(t0)exp
(
− t−t0

τ

)
+
(

br
ar

)(
1− exp

(
− t−t0

τ

))
, (8)

in which τ = 1
(1−ηT f )ar

is the first-order time constant. It is
easy to notice that limt→∞ r(t) = r∞ = br

ar
. Moreover, since

r(t0) is chosen smaller than r∞, the virulence grows with
time and asymptotically reaches a constant value. The effect
of RTIs is modeled as reduction of the virulence growth rate
by a factor (1− ηT f ), i.e. an increase of first-order time



constant. We here propose a minor variant to model (7):

Model 3:



ẋ = λ −dx− (1−ηT f )rxv

ẏ = (1−ηT f )rxv−ay− pyz

v̇ = k(1−ηP f )y−uv

ẇ = cxyw− cqyw−bw

ż = cqyw−hz

ṙ = br−arr.

(9)

We notice that according to (9), the virulence state r still
evolves as in (8) with τ = 1

ar
, i.e. the first-order time constant

is not affected by RTI drugs. On the other hand, the infection
term is reduced by a factor (1−ηT f ) due the effect of RTI
drugs, similarly to models (3) and (5).

The general form (1) is obtained by defining:
x =

[
x y v w z r

]′, y =
[
x v

]′, and θθθ =[
λ d ηP ηT a p c q b h k u ar br

]′.
Functions F(·) and H(·) are consequently defined from (9).
Clearly, in comparison with models (3) and (5), model (9) is
more involved in terms of number of states and parameters
to be identified.

III. PARAMETERS IDENTIFICATION

In order to compare models of different complexity, for
each model a similar identification procedure has been fol-
lowed, which is based on the minimization of the weighted
sum of square errors of fitting for CD4+ T cell concentration
and viral load. The key aspects of the identification proce-
dure, common to all models, are: (i) the model parameters are
divided into group dependent parameters (i.e. identical for
all patients under the same treatment) and patient dependent
parameters (i.e. specific for each patient); (ii) the date of
seroconversion is not known, and it is also estimated for each
patient as additional parameter; (iii) an initial suboptimal
combination of group and patients parameters is obtained
by discretizing the parameters space and performing a grid
search; (iv) starting from the suboptimal combination of pa-
rameters found in (iii), a constrained nonlinear optimization
problem is solved using an SQP algorithm to achieve further
reduction of the objective function.

A. Datasets

Data of patients used in this work were provided by
the San Raffaele Research Institute (Milano, Italy) within
the VEMAN Study [11]. More specifically, two groups of
patients are considered:
• TRU. Patients treated with a standard HAART protocol

composed by a PI and Truvada (typical RTI).
• MVC. Patients treated with an experimental HAART

protocol composed by a PI and Maraviroc.
In both groups all patients are naive, i.e. never treated with
HAART protocols before, and they are monitored for 48
weeks after the beginning of therepy measuring, among other
plasma indicators not used in this work, concentration of
CD4+ T cells and free virus at week 0, 4, 8, 16, 24, 36, and
48. The measurements at week 0 are collected just before
the starting of the therapy.

The VEMAN study comprises 25 patients of each group,
but in this work we considered 11 patients of the TRU
group and 14 patients of the MVC group because for other
patients the full period of 48 was not reached. It is also
important to remark that in most cases after a few months
of HAART the viral load falls below the detection limit of
36 copies/mL, values that is returned by the instrument for
any actual concentration lower or equal to that limit.

B. Identification problem rationale and formulation

Given the different mechanism of action of the drugs
used in the two groups, we perform separate parameter
identification for each group. Adopting a similar rationale as
in [7] for each model we grouped the parameters as follows:
• some parameters are regarded identical for all patients

of the group, and define the vector θθθ g;
• some parameters are regarded specific for each patient,

and define the vector θθθ i for the i−th patient;
• some parameters are not identified and their value is

taken from the literature; they define the vector θθθ 0.
Hence, for each model describing the HIV evolution in the
i−th patient the overall parameters vector is given by:

θθθ =
[
θθθ
′
0 θθθ

′
g θθθ

′
i
]′
. (10)

The choice of considering some parameters identical for all
patients in the same group, as well as assuming known from
the literature some other parameters is motivated by:
• the partial identifiability of Model 2 and Model 3

opposed to global identifiability of Model 1 [7], [10];
• the limited number of available measurements (14 mea-

surements for each patient);
• the impossibility of choosing the sampling instants;
• the limited information contained in many samples of

viral load, which are below the detection limit.
Furthermore, the datasets include only one measurement
prior to the beginning of therapy (the measurement at week
0), and it is clearly impossible to estimate drug effectiveness.
The parameter grouping for Model 3 was carefully discussed
in [7], using parameter sensitivity analysis and the DAISY
tool [12] for checking identifiability of the system after
a number of parameters were assumed known. Hence, for
Model 3 we choose the following partition of the overall
parameters vector:

θθθ 0 =
[
ηP ηT a p q h ar br

]′
,

θθθ g =
[
k b c

]′
, θθθ i =

[
λi di ui

]′
. (11)

It can be noticed that the number of parameters that actually
are subject to identification is six, among which three pa-
rameters are considered identical for all patients in the same
group. For Model 1, given its complete identifiability it is not
necessary to set some parameters to values taken from the
literature, but it is still useful to distinguish between group
dependent and patient dependent parameters. Specifically, we
choose for Model 1:

θθθ 0 =
[
η
]
, θθθ g =

[
a β k

]′
, θθθ i =

[
λi di ui

]′
. (12)



For Model 2, instead, we choose:

θθθ 0 =
[
η a p q h

]
,

θθθ g =
[
c b β

]′
, θθθ i =

[
λi di k̄i

]′
. (13)

The identification problem is formulated as the following
nonlinear optimization program:

min
θθθ g,{θθθ i,T0,i}

Np
i=1

Φ =
1

Np

Np

∑
i=1

Nm

∑
j=1

e′i, jWei, j s.t. (14a)

θθθ
min
g ≤ θθθ g ≤ θθθ

max
g (14b)

θθθ
min
p ≤ θθθ i ≤ θθθ

max
p i = 1, . . . ,Np (14c)

T min
0 ≤ T0,i ≤ T max

0 , (14d)

in which Np is the number of patients in the group, Nm
is the number of available measurement instants, T0,i is
time elapsed from infection to beginning of therapy for i-th
patient, W =

[
10−4 0

0 1

]
is the weight matrix that is defined to

make numerically comparable the measurements, θθθ
min
g , θθθ

min
p ,

T min
0 (θθθ max

g , θθθ
max
p , T max

0 ) specify the lower (upper) bounds
(see Tables II, III and IV) for group parameters vector,
patient parameters vector, and time elapsed from infection
to beginning of therapy, respectively, and:

ei, j =

[
xm

i (t j)− xi(t j;θθθ 0,θθθ g,θθθ i,T0, j)
log10 vm

i (t j)− log10 vi(t j;θθθ 0,θθθ g,θθθ i,T0, j)

]
, (15)

where xm
i (t j) is the measured CD4+ T cell concentration

for the i-th patient at time t j and xi(t j;θθθ 0,θθθ g,θθθ i,T0, j) is the
corresponding prediction made with either Model 1, Model 2
or Model 3 using parameters θθθ 0, θθθ g, θθθ i and assuming that:

f =

{
0 for t < T0,i

1 for t ≥ T0,i .
(16)

A similar definition applies to the measured viral load vm
i (t j)

and the corresponding prediction vm
i (t j;θθθ 0,θθθ g,θθθ i,T0, j). If for

any i, j both vm
i (t j) and vi(t j;θθθ 0,θθθ g,θθθ i,T0, j) are below the

detection limit, ei, j is replaced by:

ei, j =

[
xm

i (t j)− xi(t j;θθθ 0,θθθ g,θθθ i,T0,i)
0

]
. (17)

C. Identification problem implementation based on sequen-
tial quadratic programming

The range of variability of each parameter is not known
precisely, and especially for patient dependent parameter
it is expected to be quite large due to a significant inter-
patient variability. Therefore, a preliminary identification
phase is done by grid search testing each (group and patient)
parameter at M points within its range. To ease the search
and cope with the large variability, each (group or patient)
parameter θ ∈ [θ min, θ max] is expressed in log scale as:

θ(π) = θ
min
(

θ max

θ min

)π

, π ∈ [0, 1]. (18)

It is clear that θ(0) = θ min and θ(1) = θ max. Hence, the grid
for each parameter is generated by a linear discretization of
the corresponding normalized parameter range [0, 1].

TABLE I
VALUES OF COST FUNCTION ACHIEVED BY PRE-IDENTIFICATION PHASE

(Φ0) AND IDENTIFICATION PHASE (Φ∗) FOR MODEL 1 (M1), MODEL 2
(M2) AND MODEL 3 (M3)

TRU set MVC set

M1 M2 M3 M1 M2 M3

Φ0 4.04 8.15 3.57 5.97 12.01 7.43
Φ∗ 2.52 5.67 3.40 4.91 7.37 5.78

After testing all combinations a parameter values, we
obtain a preliminary objective function value Φ0. Then,
starting from this initial guess we solve problem (14) using
a SQP algorithm [13] implemented in GNU Octave. Such
an algorithm is guaranteed to generate a sequence of non-
increasing function values, and to converge to a (local)
minimum of (14). We denote the (locally) optimal function
value with Φ∗. It is clear that Φ∗≤Φ0. Moreover, we remark
that the pre-identification phase is particularly important (and
indeed time consuming) in order to reach a good minimum.

IV. RESULTS AND DISCUSSION

A. Results

The preliminary identification phase and identification
phase are applied to the three models, using both TRU and
MVC datasets. A tailored code was written for the solution
of the preliminary identification phase, while the solution of
the identification phase is obtained using the GNU Octave
(version 3.6.4) nonlinear optimization routine sqp, modified
to compute numerical gradients with a step of 10−4 instead
of the default value about 10−8. For each model and dataset,
the solution time of the preliminary identification phase using
M = 4 grid points for each parameter is in the order of about
60-70 minutes (on an Intel Xeon X5650 2.66 GHz machine
running Linux 2.6.37). Then, to complete identification phase
less than 5 minutes are necessary.

The preliminary identification phase gives us good sub-
optimal initial conditions and allows us to restrict bounds
for each parameter in the subsequent identification phase,
which is dedicated to refine the search of the optimal
values of parameters. As expected, the values of objective
function for all the models and datasets are lower after the
identification stage with respect to the preliminary phase
objective function (see Table I). Model 1 achieves the lowest
values of preliminary and optimal cost functions, for both
TRU and MVC set; on the contrary, the worst performance,
in terms of minimization of the preliminary and optimal cost
functions, is obtained by Model 2.

Not all the parameters of each models are found by
using the identification phase, mainly because Model 2 and
Model 3 are not completely identifiable. The values of these
fixed parameters (see Tables II, III and IV) are obtained by
the reference papers of each models, and they are invariant
with respect to the TRU and MVC set. The effectiveness of
therapy is set at the same value (85%) for all models and



TABLE II
MODEL 1: GROUP PARAMETERS, PATIENT PARAMETERS (AVERAGE

VALUES), FIXED PARAMETERS AND SEARCHING BOUNDS.

Group parameters TRU MVC bounds

a (1/day) 0.917 0.895 10−3−1
β (1/(day copies µL)) 8.83 ·10−7 2.52 ·10−7 10−7−10−5

k ((copies µL)/(cells mL day)) 200 671.01 2 ·102−103

Patient parameters TRU MVC bounds

λ (cells/(µL day)) 6.77 5.17 2−20
d (1/day) 0.0132 0.0089 10−3−5 ·10−2

u (1/day) 0.093 0.092 2 ·10−2−10
T0 (day) 1084 916.4 56−56 ·103

Fixed parameters TRU MVC

η (normalized) 0.85 0.85
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Fig. 1. Example of the identification results obtained for one patient (V001-
005) of TRU set, using each of the three models.

datasets. For all considered models, our identification pro-
cedure is able to distinguish and characterize the dynamical
evolution related to both datasets by means of the differentia-
tion of group dependent parameters. Likewise, the dynamics
of each subject are well-followed by the differentiation of
patient dependent parameters. Notice that Model 2 shows the
lowest differentiation for the group dependent parameters,
with respect to the other models. The numerical estimates of
both group and patient dependent parameters (see Tables II,
III and IV), obtained with our procedure, are significantly
different from the ranges reported in literature, [14]–[16].
In Figure 1 we show the outcome of the identification
procedure for an illustrative patient (V001-005) from the
TRU set, considering all three models. We report in Figure 2
the exemplifying results of the identification phase for one
patient of the MVC set (V002-010). For both TRU and
MVC sets and for all the models, the CD4+ concentration is
well-fitted using the obtained patient dependent parameters.
Conversely, the data of viremia are well-fitted only for
Model 1 and Model 3, but Model 2 is not able to fit the
low values of viremia data.

TABLE III
MODEL 2: GROUP PARAMETERS, PATIENT PARAMETERS (AVERAGE

VALUES), FIXED PARAMETERS AND SEARCHING BOUNDS.

Group parameters TRU MVC bounds

c ((µL/cells)2 1/day) 10−5 10−5 10−8−1
b (1/day) 0.0047 0.0060 10−5−1
β (1/(day copies µL)) 0.0010 0.0011 10−7−10

Patient parameters TRU MVC bounds

λ (cells/(µL day)) 14.80 19.69 0.5−102

d (1/day) 0.03 0.036 10−2−0.5
k̄ ((copies mL)/(cells µL)) 9.6 ·104 1.9 ·105 102−106

T0 (day) 605.3 366.1 40−2 ·103

Fixed parameters TRU MVC

η (normalized) 0.85 0.85
a (1/day) 0.2 0.2
p (µL/(cells day)) 1 1
q (cells/µL) 0.5 0.5
h (1/day) 0.1 0.1

TABLE IV
MODEL 3: GROUP PARAMETERS, PATIENT PARAMETERS (AVERAGE

VALUES), FIXED PARAMETERS AND SEARCHING BOUNDS.

Group parameters TRU MVC bounds

c ((µL/cells)2 1/day) 9.8 ·10−5 8.8 ·10−5 10−5−10−4

b (1/day) 0.049 0.0042 10−4−5 ·10−3

k ((copies µL)/(cells mL day)) 182.8 109.4 102−6 ·102

Patient parameters TRU MVC bounds

λ (cells/(µL day)) 7.40 7.54 1−20
d (1/day) 0.016 0.015 10−3−5 ·10−2

u (1/day) 0.068 0.047 2 ·10−2−0.5
T0 (day) 283.3 421.2 40−2 ·103

Fixed parameters TRU MVC

ηT (normalized) 0.85 0.85
ηP (normalized) 0.85 0.85
a (1/day) 0.1 0.1
p (µL/(cells day)) 2 2
q (cells/µL) 100 100
h (1/day) 0.06 0.06
br (copies/day) 1.2 ·10−8 1.2 ·10−8

ar (1/day) 1.6484 ·10−4 1.6484 ·10−4

B. Discussion

It is worth noticing that, for all models, the achieved cost
function over the MVC set is higher than that achieved over
the TRU set (e.g, for Model 1, Φ∗ is equal to 2.52 for
TRU set and 4.91 for MVC set). This worse fitting could
be associated with a slightly more oscillatory behavior of
the measured CD4+ T cells experienced in patients treated
with Maraviroc with respect to patients of TRU set, as
shown in Figure 2. According to the cost function values,
the most effective model appears to be Model 1, followed
by Model 3 and then Model 2. These results for Model 1
could be largely expected because such a model is com-
pletely identifiable using the available dataset, except for the
effectiveness, and indeed we estimated all model parameters.
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Fig. 2. Example of the identification results obtained for one patient (V002-
010) of MVC set, using each of the three models.

For the other models instead, complete identifiability using
the same dataset does not hold, and we tried to overcome
this limitation by fixing a number of parameters, indicated
by sensitivity analysis [7], and estimating the remaining
ones. Regarding the worse behavior of Model 2, especially
in fitting the viral load, one possible motivation is that it
assumes a static relationship between the infected CD4+ T
cells and the virus concentration [see Eq. (6)]. As possible
remedy, one could use a variant of Model 2 which includes
the dynamic evolution of viral load described as in Model 1
and Model 3. In this way, however, such a variant would be
very similar to Model 3 (except for the virulence state), and
hence the comparison of these three models could be less
interesting. Finally, in the comparison between Model 1 and
Model 3, it should be highlighted that the slightly higher cost
function of Model 3 is mainly due to a worse fitting of the
first viral load measurement. In particular, if we excluded the
error of the first viral load measurement (or give it a lower
weight) the cost function values of Model 1 and Model 3
would be almost equal.

V. CONCLUSIONS AND OUTLOOK

Our work represents only a first step towards a deeper
knowledge of different models with respect to practical iden-
tification of their parameters. A traditional rule of modeling
is that if two models lead to the same error you should
prefer the simplest one; this rule represents the guideline
also in the case of HIV models, where the compromise
between limited data and practicability of the identification
procedure should be taken into account. Our study follows
the criterion to compare different models in terms of the
minimization of the weighted sum of square fitting errors
for CD4+ and viral load for the same dataset of patients. We
would like to point out that, at the best of our knowledge,
in previous studies for homogeneous dataset a comparison
between mathematical models to identify and validate HIV
evolution models has not been performed. The conclusions
of this paper cannot lead to an ultimate decision on the best
choice among HIV models: more research activity needs to

be carried out, e.g. using a higher number of models and
a larger dataset. Nevertheless it is interesting to note that
both the earlier three state model and the more complex
virulence-based model fit satisfactorily the two datasets. On
the other hand the virulence model has a more complete
and flexible structure and it could be used for different HIV
species and for studying the immune system and possible
viral mutations, also in cases of different therapeutic actions.
We expect that this work stimulates more researches in this
comparative direction.
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