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Global regularity for a logarithmically supercritical
hyperdissipative dyadic equation
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Abstract. We prove global existence of smooth solutions for a slightly super-
critical dyadic model. We consider a generalized version of the dyadic model
introduced by Katz-Pavlovic [10] and add a viscosity term with critical ex-
ponent and a supercritical correction. This model catches for the dyadic a
conjecture that for Navier-Stokes equations was formulated by Tao [13].
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1. Introduction

The a priori estimate of relevant quantities is a crucial part of the analysis of
PDEs. For our purposes, the most interesting example is the system of Navier–
Stokes equations in dimension three. In that case the kinetic energy and the energy
dissipation are super–critical, hence in a way negligible, quantities with respect to
the scaling invariance of the problem. Indeed, proofs of regularity are available only
in the so–called hyper–dissipative case, where the Laplace operator is replaced by
(−∆)α for α ≥ 5/4 and this additional dissipation makes the energy relevant again
(see for instance [11, 9]).

In a recent paper Tao [13] has shown that hyper–dissipativity can be slightly
relaxed by a logarithmic factor. The idea originates from the same author [12] and
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has been applied in other problems, mainly from dispersive equations. In [13] Tao
adds a small correction to the hyper–dissipative term, replacing (−∆)5/4 with

(−∆)5/4

g((−∆)1/2)2
,

and provides a simple and neat proof of global existence if
∫

1/(sg(s)4) = ∞. He
then suggests that the same result should hold, based on some heuristics on the
flow of energy, under the weaker condition

∫
1/(sg(s)2) = ∞.

The aim of this paper is to prove Tao’s conjecture for the dyadic model, a
simplified version of the Navier–Stokes equations, that nevertheless has shown to
be an effective tool in the understanding of the full Navier–Stokes problem [14].
In particular, we believe that the main result of our paper (Theorem 5) gives a
complete answer to some questions raised in Remark 5.2 of [14]. As a bonus result,
in Section 3.3.1 we prove that the conjecture in [13] is true for the vector-valued
dyadic model introduced in [14]. A proof of the conjecture for the full Navier–Stokes
equations is a work in progress.

1.1. The model. Given β > 0 and two real sequences φ = (φn)n≥1 and
g = (gn)n≥1, with φ bounded and g positive, set kn = 2βn for n ≥ 0. Consider the
critical hyper–dissipative generalized dyadic model,

(1)

{
X ′

n = φn−1kn−1X
2
n−1 − φnknXnXn+1 − 1

gn
knXn,

Xn(0) = xn,
t > 0, n ≥ 1,

where X = (Xn)n≥0 is a family of real functions, X0 ≡ 0 and x = (xn)n≥1 is the
given initial condition.

The classical critical regime here corresponds to g ≡ 1. Tao’s statement for
Navier-Stokes equation, transposed on our model, works whenever

∑
n g

−2
n = ∞

(gn =
√
n for instance), while the conjecture, on our model, states that global

regularity should hold for
∑

n g
−1
n = ∞ (e. g. gn = n).

The role of the coefficients φ is to break the structure of the non–linearity.
Otherwise, as shown in [4], if φ ≡ 1, the energy flow is very steady, in the sense
that the transfer of energy from Xn to Xn+1 starts before Xn−1 is discharged
enough and this allows to prove regularity in a full supercritical regime. Further
generalizations are possible, see Section 3.3.

The dyadic model has been introduced in [10] and analyzed in several other
works [7, 8, 1, 2]. The model with viscosity has been initially introduced in [6]
and further analyzed in [5, 4].

1.2. The dyadic version of [13]. It is easy to be convinced that Tao’s condi-
tion

∫
1/(sg(s)4) = ∞ reads in our case as

∑
1/g2

n = ∞. To this end, we reproduce
in this section a non–rigorous sketch of the idea of [13] adapted to the dyadic frame-
work. Assume also, as we do, that (gn)n≥1 and (kn/gn)n≥1 are non–decreasing.
Assume moreover, for simplicity, that gn = g(n), where g is non–decreasing, con-
tinuous, non–zero on [0,∞) and

∫
g(x)−2 = ∞.

Given a solution X, set for s ≥ 1,

a(t) =
∞∑

n=1

kn

gn
X2

n, A(t) =
∞∑

n=1

k2s
n X

2
n, B(t) =

∞∑
n=1

k2s+1
n

gn
X2

n.
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We know by the energy estimate that a ∈ L1([0,∞)). By differentiating and using
the Cauchy–Schwartz and Young inequalities,

d

dt
A+ 2B = 2(22βs − 1)

∞∑
n=1

φnk
2s+1
n X2

nXn+1 ≤ B + c

∞∑
n=1

gnk
2s+1
n X2

nX
2
n+1.

Split the sum on the right–hand side in a sum [L] up to N and in a sum [H] from
N on, where N will be chosen at the end. On the one hand,

[L] =
N∑

n=1

g2
n

(kn

gn
X2

n

)
(k2s

n X
2
n+1) ≤ cg2

NaA,

on the other hand

[H] =
∑
n≥N

gn

kn
(ks+1

n X2
n)(ks+1

n X2
n+1) ≤

gN

kN
A2.

If we choose N so that kN ≈ A, that is N ≈ logA, we have

Ȧ ≤ c(1 + a)g(logA)2A,

whose solutions stay bounded on bounded sets.

1.3. The dyadic version of Tao’s conjecture. We present here a heuris-
tic argument that shows, as in Remark 1.2 of [13], that the weaker assumption∑

n g
−1
n = ∞ is sufficient for global regularity.

Indeed, let X be a weak solution on [0, T ) and consider a blow–up scenario in
T : at some time t the energy of solution is concentrated in n, n+ 1, . . . n+m and
n→∞ when t→ T . The balance of energy on n, . . . , n+m yields:

d

dt

(1
2

n+m∑
i=n

X2
i

)
= φn−1kn−1X

2
n−1Xn − φmkmX

2
n+mXn+m+1 −

n+m∑
i=n

ki

gi
X2

i ,

where we could imagine φn−1kn−1X
2
n−1Xn as the energy moving from n− 1 to n,

φmkmX
2
n+mXn+m+1 the energy moving from n + m to n + m + 1, and ki

gi
X2

i the
energy dissipated in i. So, roughly speaking, knX

3
n is the speed at which the energy

moves from n to n+1, whereas kn

gn
X2

n is the speed at which the energy is dissipated
in n.

Now in the blow–up scenario, to go to high “n”s, the energy has to go through
all the states. The ratio between the energy dissipated and the energy that goes
through n is 1

gnXn
≥ C

gn
. So, to have a non–trivial amount of energy reaching the

infinite state, we have to require
∑
g−1

n <∞.
Our proof is a rigorous version of the above argument. We find a recursive

formula (9) for the tail energy and dissipation. Then we prove that any sequence
satisfying the recursion decays super–exponentially fast.

2. Preliminaries

2.1. Basic definitions.

Definition 1. A weak solution is a sequence of X = (Xn)n≥1 of differentiable
functions on all [0,∞), satisfying (1).
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Whenever X denotes a weak solution, En(t) and Fn(t) will denote the energy
of the tails: for all n ≥ 1 and t ≥ 0,

En(t) :=
∑
i≤n

X2
i (t) <∞, and Fn(t) :=

∑
i≥n

X2
i (t) ≤ ∞.

We will also denote by E the total energy of the solution X: for all t ≥ 0,

E(t) :=
∑
n≥1

X2
n(t) = lim

n→∞
En(t) = ‖X(t)‖2H .

Clearly E(t) = En(t) + Fn+1(t) for all n ≥ 1. From (1) we get
d

dt
(X2

n) = 2φn−1kn−1X
2
n−1Xn − 2φnknX

2
nXn+1 −

2
gn
knX

2
n,

so that if X is a weak solution, for all n ≥ 1,

(2) E′n = −2φnknX
2
nXn+1 −

∑
i≤n

2
gi
kiX

2
i .

To compute the variation of Fn we need an extra condition on solutions.

Definition 2. A weak solution X satisfies the energy inequality on [0, T ] if

(3) E(t) +
∫ t

0

∑
n≥1

2
gn
knX

2
n(s)ds ≤ E(0), t ∈ [0, T ].

A weak solution satisfies the energy equality if there is equality in the above formula.

We remark that, as is expected in this class of problems, regularity readily
implies uniqueness and that the energy inequality holds (there is no anomalous
dissipation). The converse is not true in general (see for instance [1, 3]).

By (2) and (3) it follows that, if X satisfies the energy inequality, then

(4) Fn(t) ≤ Fn(0) +
∫ t

0

2φn−1kn−1X
2
n−1Xn ds−

∫ t

0

∑
i≥n

2
gi
kiX

2
i ds.

The following proposition gives a sufficient condition for the energy equality.
We first introduce some functional spaces. For all s ∈ R and p ≥ 1, let W s,p denote
the Banach space

W s,p =
{
x = (xn)n≥1 ∈ RN : ‖x‖p

W s,p :=
∑
n≥1

2psn|xn|p <∞
}
.

In particular, we set Hs = W s,2 and H := H0 = `2(R).

Proposition 3. Let T > 0 and X be a weak solution with initial condition
x ∈ H. If X ∈ L3([0, T ];W β/3,3), then X satisfies the energy equality on [0, T ].

Proof. Let t ∈ [0, T ] and n ≥ 1. By equation (2),

(?) 0 ≤ En(t) +
∫ t

0

∑
i≤n

2
gi
kiX

2
i (u)du = En(0)−

∫ t

0

2φnknX
2
n(u)Xn+1(u)du.

To prove the energy equality, it is sufficient to take the limit for n→∞ and show
that the last term of (?) converges to zero. By Young’s inequality,∫ t

0

knX
2
n(u)|Xn+1(u)|du ≤

2
3

∫ t

0

kn|Xn(u)|3du+
1
3

∫ t

0

kn+1|Xn+1(u)|3du,
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and the terms on the right–hand side converge to zero, since X ∈ L3([0, T ];W β/3,3).
�

2.2. Local existence and uniqueness.

Proposition 4. Let s > 0 and suppose x ∈ Hs, g ∈ H−s. Then there exist η >
0, depending only on ‖x‖Hs , and a unique solution in the class H := L∞([0, η];Hs).

Proof. In view of applying Banach’s fixed point theorem, we introduce the
operator F on H defined as follows. For all n ≥ 1 and t ∈ [0, η], let

(FV )n(t) := xne
− kn

gn
t +
∫ t

0

e−
kn
gn

(t−u)
[
φn−1kn−1V

2
n−1(u)− φnknVn(u)Vn+1(u)

]
du,

so that X is a solution if and only if it is a fixed point of F . To apply Banach’s
fixed point theorem we must show that F maps some ball BH(M) := {v ∈ H :
‖v‖H ≤M} into itself and that F is a contraction on the ball. To this end, we will
often use that if v ∈ H, then |vn(t)| ≤ k−s

n ‖v‖H for all t ≥ 0, n ≥ 1.
We deal with the first requirement, so suppose V ∈ BH(M). For all n ≥ 1 and

t ∈ [0, η],

|(FV )n(t)| ≤ |xn|e−
kn
gn

t + ‖φ‖`∞

∫ t

0

e−
kn
gn

(t−u)
[
kn−1V

2
n−1 + kn|VnVn+1|

]
du

≤ |xn|e−
kn
gn

t + ‖φ‖`∞(k1−2s
n−1 + k1−s

n k−s
n+1)‖V ‖2

∫ t

0

e−
kn
gn

(t−u)du

≤ |xn|+ 2‖φ‖`∞k
−2s
n−1gn(1− e−

kn
gn

t)‖V ‖2,

so ‖FV ‖H ≤ ‖x‖Hs + 2‖φ‖`∞‖V ‖2L(η), where we defined

L(t) :=
[∑

n≥1

k2s
n k

−4s
n−1g

2
n(1− e−

kn
gn

t)2
]1/2

,

and sup0≤t≤η L(t) = L(η) by monotonicity. We claim that limη→0 L(η) = 0. Con-
sider

L2(η) = 24βs
∑
n≥1

k−2s
n g2

n(1−e−
kn
gn

η)2 ≤ 24βs
N∑

n=1

k−2s
n g2

n

(
kn

gn
η

)2

+24βs
∑
n>N

k−2s
n g2

n.

Since g ∈ H−s, we can choose N such that the second term is arbitrarily small,
and then choose η in such a way that the first term is small too, hence L(η) → 0
as η → 0.

Let M := 2‖x‖Hs . If η is small enough so that L(η) ≤ (4‖φ‖`∞M)−1, then
‖FV ‖H ≤ M/2 + 2‖φ‖`∞M

2L(η) ≤ M , so the first requirement is satisfied for all
η such that L(η) ≤ (8‖φ‖`∞‖x‖Hs)−1.

To prove that F is a contraction, suppose X,Y ∈ BH(M). For all n ≥ 1 and
t ∈ [0, η],

|(FX−FY )n(t)| ≤ ‖φ‖`∞

∫ t

0

e−
kn
gn

(t−u)
[
kn−1

∣∣X2
n−1−Y 2

n−1

∣∣+kn

∣∣XnXn+1−YnYn+1

∣∣]du.
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With the obvious decomposition ab − cd = 1
2 (a − c)(b + d) + 1

2 (b − d)(a + c) and
recalling that for all j, |vj(t)| ≤ k−s

j ‖v‖H, we get

|(FX −FY )n(t)| ≤ 2M‖φ‖`∞‖X − Y ‖H
[
kn−1k

−2s
n−1 + knk

−s
n k−s

n+1

] ∫ t

0

e−
kn
gn

(t−u)du

≤ 4M‖φ‖`∞‖X − Y ‖Hk−2s
n−1gn(1− e−

kn
gn

t),

hence
‖FX −FY ‖H ≤ 4M‖φ‖`∞‖X − Y ‖HL(η).

Let θ ∈ (0, 1). Choose η small enough that L(η) ≤ θ(8‖φ‖`∞‖x‖Hs)−1. Then the
first requirement is satisfied and ‖FX −FY ‖H ≤ θ‖X −Y ‖H, and we conclude by
Banach’s fixed point theorem. �

3. The main result

In this section we prove our main result. The theorem follows immediately
from our Theorem 13, which works in a slightly more general setting.

Theorem 5. Suppose that gn is non-decreasing, kn

gn
is eventually non-decreasing

and that
∑

n≥1 g
−1
n = ∞. If x ∈ Hs for all s > 0, then there exists a solution X

with initial condition x such that X ∈ L∞([0,∞);Hs) for all s > 0. This solution
is unique in the class L3

loc([0,∞);W β/3,3).

3.1. The bounding sequence. For all initial condition in H, we introduce a
sequence of positive numbers which will be fundamental to bound all weak solutions.

Definition 6. A sequence y = (yn)n≥1 is the bounding sequence for x ∈ H if
it is defined by

y1 := y2 := 2‖x‖2H ,(5)

yn+2 := Cn+2(y
1/2
n+1)yn +

∑
i≥n+2

x2
i , n ≥ 1,(6)

where for n ≥ 3, Cn : R+ 7→ (0, 1) is the following increasing function,

Cn(v) :=
(

1 +
1

1
2gn‖φ‖`∞v

)−1

, v > 0.

Lemma 7. Suppose g is non-decreasing. Let T > 0, x ∈ H and y be the
bounding sequence for x. Suppose X is a weak solution with initial condition x
that satisfies the energy inequality on [0, t] for all t < T . Then X2

n(t) ≤ yn for all
t ∈ [0, T ) and all n ≥ 1.

Proof. Define

(7) d2
n(t) = Fn(t) +

∑
i≥n+1

∫ t

0

2
gi
kiX

2
i (s)ds.

Roughly speaking, d2
n represents the combination of the amount of energy stored

in all modes larger than n at time t and the energy dissipated by these modes up
to time t.
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Notice that X2
n(t) ≤ Fn(t) ≤ d2

n(t) ≤ ‖x‖2H by the definition of dn and (3).
By (4) we deduce that

(8) d2
n(t) ≤

∫ t

0

2φn−1kn−1X
2
n−1(s)Xn(s)ds−

∫ t

0

2
gn
knX

2
n(s)ds+ Fn(0).

Define
d̄n := sup

0≤t<T
dn(t) <∞.

We claim that for all n ≥ 1

(9) d̄2
n+2 ≤ Cn+2(d̄n+1)d̄2

n + Fn+2(0).

Then, since y1 := y2 := 2‖x‖2H and since Cn is monotone increasing, an easy
induction argument yields d̄2

n ≤ yn for all n ≥ 1 and hence that

X2
n(t) ≤ d2

n(t) ≤ d̄2
n ≤ yn,

for all n and all t.
We turn to the proof of the claim (9). By the Cauchy-Schwarz inequality

applied to (8)

d2
n(t) ≤

∫ t

0

‖φ‖`∞kn−1|Xn−1(s)|(X2
n−1(s) +X2

n(s))ds+ Fn(0)

≤ ‖φ‖`∞ d̄n−1

∫ t

0

kn−1(X2
n−1(s) +X2

n(s))ds+ Fn(0)

≤ gn‖φ‖`∞ d̄n−1

∫ t

0

(
kn−1

gn−1
X2

n−1(s) +
kn

gn
X2

n(s)
)
ds+ Fn(0),

where we used the fact that gn and kn are non-decreasing with n. We get another
bound from (7),

d2
n(t)− d2

n−2(t) = Fn(t)− Fn−2(t)−
∫ t

0

2kn−1

gn−1
X2

n−1(s)ds−
∫ t

0

2kn

gn
X2

n(s)ds

≤ −2
∫ t

0

(
kn−1

gn−1
X2

n−1(s) +
kn

gn
X2

n(s)
)
ds,

hence putting the former into the latter,

d2
n(t) ≤ d2

n−2(t)−2
∫ t

0

(
kn−1

gn−1
X2

n−1(s) +
kn

gn
X2

n(s)
)
ds ≤ d2

n−2(t)−
d2

n(t)− Fn(0)
1
2gn‖φ‖`∞ d̄n−1

,

yielding

d2
n(t) ≤

(
1 +

1
1
2gn‖φ‖`∞ d̄n−1

)−1

d2
n−2(t) + Fn(0) = Cn(d̄n−1)d2

n−2(t) + Fn(0).

Taking the sup for s ∈ [0, T ) yields the claimed inequality (9). �

Lemma 7 states that the variables Xn(t) can be bounded by the the bounding
sequence y, so we will spend the rest of the section to show exponential decay for
the bounding sequence yn. As a first step we see that bounding sequences converge
to 0.
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Lemma 8. Suppose g is non-decreasing and
∑

n≥1 g
−1
n = ∞. Let x ∈ Hs

for some s > 0 and let y be the bounding sequence for x. For all n ≥ 1, let
hn :=

∑
j≥n

∑
i≥j x

2
i . Then

(10) yn+2m ≤ yn

m∏
i=1

Cn+2i(y
1/2
n+2i−1) + hn, for all n ≥ 1,m ≥ 0.

Moreover yn → 0 as n→∞.

Proof. Since Cj ≤ 1 for all j, inequality (10) is easily proved by induction on
m using (6).

From this we deduce that y is bounded. Since v 7→ Cj(v) is monotone increas-
ing, we may replace the bound for y inside Cj yielding that

Cj(y
1/2
j−1) ≤ (1 + cg−1

j )−1, j ≥ 1,

for some constant c > 0. Since
∑

j≥1 g
−1
j = ∞, then

∏
j≥1(1 + cg−1

j )−1 = 0. Since
g is monotone, then

∏
i≥1(1 + cg−1

n+2i)
−1 = 0 too, hence by considering (10) for n

and n+ 1, we get,
lim sup

j≥n
yj ≤ hn + hn+1.

Since x ∈ Hs, limn→∞ hn = 0, therefore yn → 0. �

The next step is to introduce in Definition 9 below a special sub–sequence of
the indices of gn, this step is necessary because the hypothesis

∑
n gn = ∞ does

not provide enough information on the rate of divergence of the series.

Definition 9. Given a sequence g with
∑

n≥1 g
−1
n = ∞, a positive integer n0

and real numbers θ > 0, s > 0, define by induction on k ≥ 0,

(11) nk+1 := inf
{
n ≥ nk + 2 :

n∑
j=nk+2

g−1
j ≥ 2−skθ

}
<∞.

Notice that the definition above gives a finite number, because
∑

j≥1 g
−1
j = ∞.

The importance of this definition will be clear with the next two lemmas.

Lemma 10. Suppose g is non-decreasing and
∑

n≥1 g
−1
n = ∞. Let x ∈ Hs for

some s > 0 and let y be the bounding sequence for x. Then there exist n0 ≥ 1 and
θ > 0 such that the sequence (nk)k≥0 given in Definition 9 satisfies the following
inequality:

(12) sup
j≥nk

yj ≤ 2−2sk, k ≥ 0.

Proof. In view of applying Lemma 8, we need to bound yn and hn for n large.
Since x ∈ Hs, then for any ε > 0, xn ≤ ε2−sn eventually and in particular for n
large,

hn =
∑
j≥n

∑
i≥j

x2
i =

∑
j≥1

jx2
j+n−1 ≤ 2−2snε

∑
j≥1

j2−2s(j−1).

so for any η > 0, hn ≤ η2−2sn eventually. We also know from Lemma 8 that yn → 0
as n→∞. Thus fix some η > 0 and let n0 be large enough that for all n ≥ n0,

(13) yn ≤ 1 and hn ≤ η2−2sn.

We now proceed to prove (12) by induction on k ≥ 0. The initial step is simply
given by the definition of n0.
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We turn to the induction step. Suppose supj≥nk
yj ≤ 2−2sk. Then for j ≥

nk + 1,

Cj(y
1/2
j−1)

−1 := 1 +
1

1
2gj‖φ‖`∞y

1/2
j−1

≥ 1 +
1

1
2gj‖φ‖`∞2−sk

= 1 + c2skg−1
j ,

where c = 2/‖φ‖`∞ . By (10) we have then, for n ≥ nk − 1,

yn+2m ≤ yn

m∏
i=1

(1 + c2skg−1
n+2i)

−1 + hn,

By the monotonicity of g,
m∏

i=1

(1 + c2skg−1
n+2i) ≥ 1 + c2sk

m∑
i=1

g−1
n+2i ≥ 1 + c2sk 1

2

n+2m∑
j=n+2

g−1
j .

By the definition of nk+1 in (11), if n ≤ nk and n+ 2m ≥ nk+1 we have
n+2m∑
j=n+2

g−1
j ≥ 2−skθ.

Collecting all conditions, we have proved that if n ∈ {nk−1, nk} and n+2m ≥ nk+1,
then

yn+2m ≤ yn(1 +
1
2
cθ)−1 + hn.

Since n ≥ nk − 1 ≥ nk−1, then by inductive hypothesis yn ≤ 2−2s(k−1); moreover
since n ≥ nk − 1 ≥ k, then by the second one of (13), hn ≤ η2−2sk, so the bound
above becomes

yn+2m ≤ 2−2s(k−1)(1 +
1
2
cθ)−1 + η2−2sk.

Now we choose θ large enough and η small enough that

22s(1 +
1
2
cθ)−1 + η ≤ 2−2s,

to get
yn+2m ≤ 2−2s(k+1), n ∈ {nk − 1, nk}, n+ 2m ≥ nk+1.

Since for all j ≥ nk+1 there exist n and m such that nk − 1 ≤ n ≤ nk and
j = n+ 2m ≥ nk+1, we have proved

sup
j≥nk+1

yj ≤ 2−2s(k+1),

closing the induction. �

Lemma 11. Suppose g is non-decreasing and
∑

n≥1 g
−1
n = ∞. Let n0 ≥ 1 and

θ > 0 be constant. If (nk)k≥0 is as in Definition 9 then there exist infinitely many
k ≥ 1 such that nk+1 = nk + 2.

Proof. Suppose that there exists a non–negative integer r such that nk+1 ≥
nk + 3 for all k ≥ r. By the definition of the sequence (nk)k≥0, we know that for
k ≥ r,

nk+1−1∑
j=nk+2

g−1
j < 2−skθ.
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Summing on k we obtain ∑
k≥r

nk+1−1∑
j=nk+2

g−1
j <∞,

hence since
∑

j≥nr
g−1

j = ∞,

(14)
∑
k≥r

(g−1
nk

+ g−1
nk+1) = ∞.

But g−1
nk+1 ≤ g−1

nk
≤ g−1

nk−1+2 ≤ 2−s(k−1)θ, which is in contradiction with (14).
Hence there exist infinitely many k such that nk+1 = nk + 2. �

Lemma 12. Let x ∈ Hs for some s > 0 and let y be the bounding sequence for
x. Suppose that gn is non-decreasing, gn2−sn is eventually non-increasing and that∑

n≥1 g
−1
n = ∞. Then ∑

n≥1

22snyn <∞.

Proof. Let us recall the recursion (6) that defines the bounding sequence y,

(15) yn+2 := cn+2yn + fn+2, n ≥ 1,

where

cn := Cn(y1/2
n−1) :=

(
1 +

1
1
2gn‖φ‖`∞y

1/2
n−1

)−1

, n ≥ 3,

and where fn := Fn(0), n ≥ 3. Since x ∈ Hs, it is immediate that

(16)
∑
n≥1

22snfn <∞,

so our strategy will be to show that cn → 0 as n→∞.
By Lemma 10 there exist n0 and θ such that the sequence (ni)i≥1 of Definition 9

satisfies

(17) sup
j≥ni

yj ≤ 2−2si, i ≥ 0.

A fortiori these inequalities hold also if we take larger values for n0 and θ, so let θ
be large enough to verify inequality (20) below and let n0 be large enough that:

(1) fn ≤ 1
22−2sn for n ≥ n0 (a consequence of (16));

(2) n 7→ gn2−sn is non-increasing for n ≥ n0.

By Lemma 11 there exists k such that nk+1 = 2 + nk, that is, g−1
nk+2 ≥ 2−skθ

hence

(18) gnk+m ≤ 1
22sθ

2s(k+m), m ≥ 2.

We have all the ingredients to prove the following inequality:

(19) ynk+m ≤ 22s2−2s(k+m), m ≥ 0.

Let us proceed by induction on m. The initial steps for m = 0 and m = 1 follow
immediately from (17) with i = k.
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For the inductive step, suppose the inequality (19) is true up to m+1. By (18)
and the inductive hypothesis,

cnk+m+2 =

(
1 +

1
1
2gnk+m+2‖φ‖`∞y

1/2
n+k+m+1

)−1

≤
(

1 +
2θ

‖φ‖`∞

)−1

≤ 1
2
2−4s,

if we choose θ large enough that

(20)
(

1 +
2θ

‖φ‖`∞

)−1

≤ 1
2
2−4s.

Moreover, since nk ≥ k − 1, we have

fnk+m+2 ≤
1
2
2−2s(nk+m+2) ≤ 1

2
22s2−2s(k+m+2),

hence
ynk+m+2 = cnk+m+2ynk+m + fnk+m+2 ≤ 22s2−2s(k+m+2),

thus closing the induction.
Inequality (19) says us that yn → 0 at least as fast as 2−2sn. To get

∑
n 22snyn <

∞ we need a little bit more. We proved above that for any θ large enough there
exists nk such that

sup
j≥nk

cj ≤
(

1 +
2θ

‖φ‖`∞

)−1

.

By the arbitrarity of θ, limn→∞ cn = 0. This together with (15) and (16) proves
that ∑

n≥1

22snyn <∞. �

3.2. Global existence, uniqueness and regularity.

Theorem 13. Let x ∈ Hs for some s > β
3 . Suppose that gn ∈ H−s is non-

decreasing, gn2−sn is eventually non-increasing and that
∑

n≥1 g
−1
n = ∞. Then

there exists a solution in the class L∞([0,∞);Hs). This solution is unique in the
class L3

loc([0,∞);W β/3,3).

Proof. Let T > 0 be the maximal time of existence in Hs of the solution
provided by Proposition 4. In particular, X ∈ L∞([0, t];Hs) for all t < T and,
since s > β/3, X ∈ L3([0, t];W β/3,3) for all t < T . Hence, by Proposition 3, X
satisfies the energy equality on [0, t]. Lemma 7 applies, so if y denotes the bounding
sequence for x, we have

(21) X2
n(t) ≤ yn, n ≥ 1, t ∈ [0, T ).

By Lemma 12
sup

t∈[0,T )

‖X(t)‖2Hs ≤
∑
n≥1

22snyn <∞.

If T = ∞ we just proved X ∈ L∞([0,∞);Hs). Suppose by contradiction that
T < ∞. Then the bound in (21) can be extended to t ∈ [0, T ] by the continuity
of Xn hence again by Lemma 12, X(T ) ∈ Hs and it would be possible to apply
Proposition 4, in contradiction with the maximality of T .

Finally we turn to uniqueness in L3
loc([0,∞);W β/3,3). By Proposition 3, Lemma 7

and Lemma 12, if X is a solution of class L3
loc([0,∞);W β/3,3), then X is also of

class L∞loc([0,∞);Hs), hence by Proposition 4 it is unique. �
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3.3. Additional remarks. The last part of the paper is devoted to some final
remarks about our results. They have been collected here in order to give a more
complete understanding of the problem, while focusing, in the main body of the
paper, on the assumptions corresponding to those of [13].

3.3.1. A useful generalization. The results presented in the previous sections
allow for more general coefficients φ. Namely, assume that

(22) φn = φn(t,Xn−m, Xn−m+1, . . . , Xn+m),

for all n ≥ 1, where m ≥ 1 is a fixed integer. For convenience we set X−m =
X−m+1 = · · · = X0 = 0. Assume moreover that the functions (φn)n≥1 are uni-
formly bounded and uniformly Lipschitz. This ensures that the local existence and
uniqueness theorem (Proposition 4) still holds. In Proposition 3 and Lemma 7 we
only use the uniform boundedness, while lemmas 8, 10-12 deal only with bounding
sequences.

The above model has a nice application to the averaged Navier-Stokes system
studied by Tao in [14]. By making a special average on the transport of the NS
equations, the author derives a vector-valued dyadic system, very similar to (1) but
with four components for each n. A general version of this averaged system is
(23)

X ′
1,n = −kα

n

gn
X1,n + kγ

n

(
−C1X3,nX4,n − C2X1,nX2,n − C3X1,nX3,n + C4X

2
4,n−1

)
,

X ′
2,n = −kα

n

gn
X2,n + kγ

n

(
C2X

2
1,n − C5X

2
3,n

)
,

X ′
3,n = −kα

n

gn
X3,n + kγ

n

(
C3X

2
1,n + C5X2,nX3,n

)
,

X ′
4,n = −kα

n

gn
X4,n + kγ

nC1X1,nX3,n − kγ
n+1C4X4,nX1,n+1,

X·,n(0) = x·,n,

for all t > 0 and n ≥ 1.
Here X = (Xi,n)i∈{1,2,3,4},n≥1 is a family of real functions, Xi,n : [0,∞) → R;

X·,0 ≡ 0; x = (xi,n)i∈{1,2,3,4},n≥1 is the given initial condition, kn = 2βn with
β > 0, and C1, . . . , C5 are five real constants.

In the framework of Navier-Stokes equations the constants α = 2 and γ = 5
2

give a strictly supercritical regime. In [14] the author shows that this system with
a suitable initial condition develops a singularity. For the system (23) the critical
regime is for α = γ and g ≡ 1 (it is the regime in which the transport effects are of
the same order of the dissipative effect) whereas the logarithmically supercritical
regime conjectured in [13] is given by α = γ and g such that

∑
n g

−1
n = ∞.

The latter case can be included in our model (1) with general coefficients (22).
Indeed, by summing up the components X2

n :=
∑4

i=1X
2
i,n one gets

1
2
d

dt
X2

n = −k
α
n

gn
X2

n + C4(kγ
nX

2
4,n−1X1,n − kγ

n+1X
2
4,nX1,n+1)

= −k
α
n

gn
X2

n + φnk
γ
nX

2
n−1Xn − φn+1k

γ
n+1X

2
nXn+1

and this can be reduced to the system (1), when α = γ by a suitable choice of β
and appropriate functions φn(t) depending on n and t and uniformly bounded.

3.3.2. Conditions for smoothing. Here we study the smoothing effect of the
dissipative part. We work under the assumptions of Theorem 5.

The linear operator. Consider the system Z ′n = −kn

gn
Zn, n ≥ 1, the linear part

of (1).
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Lemma 14. Assume additionally that ngn

kn
→ 0. If x ∈ `2 and Z is the solution

starting at x, then Z(t) ∈ L∞([ε,∞);Hs) for every ε > 0 and every s > 0.

Proof. Clearly Zn(t) = xn exp
(
−kn

gn
t
)

and supn(2snZn(t)) <∞ for all s > 0,
t > 0 if and only if ngn

kn
→ 0. �

Remark 15. If ngn

kn
6→ 0, the linear dissipation may not have a smoothing

effect. Indeed, it is easy to construct a counterexample. Choose n1 ≥ 1 and set
np+1 = np2βknp/np , p ≥ 1, gnp

= knp
/np, and define gn = gnp

for np ≤ n ≤ mp,
and gn = gnpkn/kmp for mp + 1 ≤ n < np+1, where mp = np + knp/np It is easy to
verify that (gn)n≥1 satisfies our standing assumptions and that there are sequences
(xn)n≥1 ∈ `2 such that the corresponding solution Z is not smooth.

Smoothing by dissipation. We now analyse the smoothing effect for the non–
linear equation. Our final result is the following.

Theorem 16. Assume additionally that ngn

kn
→ 0. If s > β and X is a solution

such that X(0) ∈ Hs and X ∈ L∞([0, T ];Hs), then X ∈ L∞loc((0, T ];Hs) for every
s > 0.

The theorem follows immediately from the following lemma.

Lemma 17. Under the same assumptions of the previous theorem, let s1 > β
and s2 ∈ (s1, 2s1 − β). If X is a solution such that X(0) ∈ Hs1 and X ∈
L∞([0, T ];Hs1), then X ∈ L∞loc((0, T ];Hs2). More precisely, there is a non–decreasing
upper semi–continuous function ϕ : (0,∞) → R such that ϕ is continuous in 0 with
ϕ(0) = 0, and

sup
t∈[0,T ]

(
ϕ(t)‖X(t)‖Hs2

)
<∞.

Proof. We have that

2s2nXn(t) = 2s2n e−
kn
gn

tXn(0)+2s2n

∫ t

0

e−
kn
gn

(t−s)(φn−1kn−1X
2
n−1−φnknXnXn+1) ds,

and consider the two terms on the right hand side separately.
For the non–linear term, we use the inequality |Xn(t)| ≤ 2−s1n‖X‖L∞(Hs1 ) to

get
(24)∣∣∣2s2n

∫ t

0
e−

kn
gn

(t−s)(φn−1kn−1X
2
n−1 − φnknXnXn+1) ds

∣∣∣ ≤
≤ c‖X‖2L∞(Hs1 )‖φ‖`∞2n(s2−2s1)gn ≤ c‖X‖2L∞(Hs1 )‖φ‖`∞2n(s2−2s1+β) ∈ `2,

since gn ≤ ckn and, by the choice of s2, s2 − 2s1 + β < 0.
For the term with the initial condition we notice that

2s2n e−
kn
gn

t |Xn(0)| = 2(s2−s1)n e−
kn
gn

t
(
2s1n|Xn(0)|

)
≤ ψ(t)

(
2s1n|Xn(0)|

)
∈ `2,

where ψ(t) = supn

(
2(s2−s1)n exp

(
−kn

gn
t
))

. It is easy to check that ψ is non–
increasing, lower semi–continuous and ψ(t) ↑ ∞ as t ↓ 0. Choose ϕ = 1/ψ to
conclude the proof. �
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