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Abstract

In this paper we address the problem of trading
optimally, and in a principled way, the compressed
size/decompression time of LZ77 parsings by introduc-
ing what we call the Bicriteria LZ77-Parsing problem.

The goal is to determine an LZ77 parsing which
minimizes the space occupancy in bits of the compressed
file, provided that the decompression time is bounded
by T . Symmetrically, we can exchange the role of
the two resources and thus ask for minimizing the
decompression time provided that the compressed space
is bounded by a fixed amount given in advance.

We address this goal in three stages: (i) we intro-
duce the novel Bicriteria LZ77-Parsing problem which
formalizes in a principled way what data-compressors
have traditionally approached by means of heuristics;
(ii) we solve this problem efficiently, up to a negligible
additive constant, in O(n log2 n) time and optimal O(n)
words of working space, by proving and deploying some
specific structural properties of a weighted graph de-
rived from the possible LZ77-parsings of the input file;
(iii) we execute a preliminary set of experiments which
show that our novel compressor is very competitive to
all the highly engineered competitors (such as Snappy,
lzma, bzip2), hence offering a win-win situation in the-
ory&practice.

1 Introduction

The advent of massive datasets and the consequent de-
sign of high-performing distributed storage systems—
such as BigTable by Google [7], Cassandra by Facebook
[5], Hadoop by Apache—have reignited the interest of
the scientific and engineering community towards the
design of lossless data compressors which achieve effec-
tive compression ratio and very efficient decompression
speed. The literature abounds of solutions for this prob-
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lem, named “compress once, decompress many times”,
that can be cast into two main families: the com-
pressors based on the Burrows-Wheeler Transform [6],
and the ones based on the Lempel-Ziv parsing scheme
[35, 36]. Compressors are known in both families that
require time linear in the input size, both for compress-
ing and decompressing the data, and take compressed-
space which can be bound in terms of the k-th order
empirical entropy of the input [25, 35].

But the compressors running behind those large-
scale storage systems are not derived from those scien-
tific results. The reason relies in the fact that theo-
retically efficient compressors are optimal in the RAM
model, but they elicit many cache/IO misses during
the decompression step. This poor behavior is most
prominent in the BWT-based compressors, and it is not
negligible in the LZ-based approaches. This motivated
the software engineers to devise variants of Lempel-Ziv’s
original proposal (e.g. Snappy, LZ4) with the injection of
several software tricks which have beneficial effects on
memory-access locality. These compressors expanded
further the known jungle of space/time trade-offs1, thus
posing the software engineers in front of a choice: ei-
ther achieve effective/optimal compression-ratios, pos-
sibly sacrificing the decompression speed (as it occurs in
the theory-based results [15–17]); or try to balance them
by adopting a plethora of programming tricks which
trade compressed space by decompression time (such
as in Snappy, LZ4 or in the recent LZ77-end [26]), thus
waiving mathematical guarantees on their final perfor-
mance.

In the light of this dichotomy, it would be natural
to ask for an algorithm which guarantees effective
compression-ratios and efficient decompression speed in
hierarchical memories. In this paper, however, we aim
for a more ambitious goal which is further motivated by
the following two simple, yet challenging, questions:

• who cares whether the compressed file is slightly

1See e.g., http://mattmahoney.net/dc/.
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longer than the one achievable with BWT-based
compressors, provided that we can improve signifi-
cantly BWT’s decompression time? This is a natu-
ral question arising in the context of distributed
storage-systems, and the one leading the design
Snappy and LZ4.

• who cares whether the compressed file can be
decompressed slightly slower than Snappy or LZ4,
provided that we can improve significantly their
compressed space? This is a natural question in a
context where space occupancy is a major concern,
e.g., tablets and smart-phones, and the one for
which tools like Google’s Zopfli have been recently
introduced.

If we are able to offer mathematical guarantees to
the meaning of “slightly longer/slower”, then these two
questions become pertinent and challenging in theory
too. So in this paper we introduce the following prob-
lem, that we call bicriteria data compression: given an
input file S and an upper bound T on its decompres-
sion time, the goal is to determine a compressed ver-
sion of S which minimizes the compressed space pro-
vided that it can be decompressed in T time. Sym-
metrically, we could exchange the role of time/space
resources, and thus ask for the compressed version of
S which minimizes the decompression time provided
that the compressed-space occupancy is within a fixed
bound.

In order to attack this problem in a principled way
we need to fix two ingredients: the class of compressed
versions of S over which this bicriteria optimization
will take place; and the computational model measur-
ing the resources to be optimized. For the former in-
gredient we will take the class of LZ77-based compres-
sors because they are dominant in the theoretical (e.g.,
[8, 9, 14, 17, 22]) and in the practical setting (e.g., gzip,
7zip , Snappy, LZ4, [24, 26, 34]). In Section 2, we will
show that the Bicriteria data-compression problem for-
mulated over LZ77-based compressors is well funded be-
cause there exists an infinite class of strings which can
be parsed in many different ways, thus offering a wide
spectrum of space-time trade-offs in which small varia-
tions in the usage of one resource (e.g., time) may in-
duce arbitrary large variations in the usage of the other
resource (e.g., space).

For the latter ingredient, we take inspiration from
several models of computation which abstract multi-
level memory hierarchies and the fetching of contiguous
memory words [1, 2, 4, 28, 33]. In these models the
cost of fetching a word at address x takes f(x) time,
where f(x) is a non-decreasing, polynomially bounded
function (e.g., f(x) = dlog xe and f(x) = xO(1)). Some
of these models offer also a block copy operation, in

which a sequence of ` consecutive words can be copied
from memory location x to memory location y (with
x ≥ y) in time f(x) + `. We remark that, in our
scenario, this model is more proper than the frequently
adopted two-level memory model [3], because we care
to differentiate between contiguous/random accesses to
memory-disk blocks, which is a feature heavily exploited
in the design of modern compressors [10].

Given these two ingredients, we devise a formal
framework that allows us to analyze any LZ77-parsing
scheme in terms of both the space occupancy (in bits)
of the compressed file, and the time cost of its decom-
pression taking into account the underlying memory hi-
erarchy (see Section 3). More in detail, we will extend
the model proposed in [17], based on a special weighted
DAG consisting of n = |S| nodes, one per character of S,
and m = O(n2) edges, one per possible phrase in the
LZ77-parsing of S. In our new graph each edge will have
attached two weights: a time weight, that accounts for
the time to decompress a phrase (derived according to
the hierarchical-memory model mentioned above), and a
space cost, that accounts for the number of bits needed
to store the LZ77-phrase associated to that edge (de-
rived according to the integer-encoder adopted in the
compressor). Every path π from node 1 to node n in G
(hereafter, named “1n-path”) corresponds to an LZ77-
parsing of the input file S whose compressed-space occu-
pancy is given by the sum of the space-costs of π’s edges
(say s(π)) and whose decompression-time is given by the
sum of the time-weights of π’s edges (say t(π)). As a re-
sult of this correspondence, we will be able to rephrase
our bicriteria LZ77-parsing problem into the well-known
weight-constrained shortest path problem (WCSPP) (see
[30] and references therein) over the weighted DAG G, in
which the goal will be to search for the 1n-path π whose
decompression-time is t(π) ≤ T and whose compressed-
space occupancy s(π) is minimized. Due to its vast
range of applications, WCSPP received a great deal of at-
tention from the optimization community. It is an NP-
Hard problem, even on a DAG with positive weights and
costs [11, 18], and it can be solved in pseudo-polynomial
O(mT ) time via dynamic programming [27]. Our ver-
sion of the WCSPP problem has m and T bounded by
O(n log n) (see Section 3), so it can be solved in poly-
nomial time, namely O(mT ) = O(n2 log2 n) time and
O(n2 log n) space. Unfortunately this bounds are unac-
ceptable in practice, because n2 ≈ 264 just for one Gb
of data to be compressed.

The second contribution of this paper is to prove
some structural properties of our weighted DAG which
allow us to design an algorithm that approximately
solves our version of WCSPP in O(n log2 n) time and
O(n) working space. The approximation is additive,



that is, our algorithm determines a LZ77-parsing whose
decompression time is ≤ T + 2 tmax and whose com-
pressed space is just smax bits more than the optimal
one, where tmax and smax are, respectively, the maxi-
mum time-weight and the maximum space-cost of any
edge in the DAG. Given that the values of smax and
tmax are logarithmic in n (see Section 2), those addi-
tive terms are negligible. We remark here that this
type of additive-approximation is clearly related to the
bicriteria-approximation introduced by [29], and it is
more desirable than the “classic” (α, β)-approximation
[20] because ours is additive whereas the latter is multi-
plicative, so the larger is the problem size the better is
our approximation. The further peculiarity of our ap-
proach is that we are using the additive-approximation
to speed-up the solution to a problem that already ad-
mits in our setting a polynomial solution which, how-
ever, grows as Ω(n2) thus resulting unusable in practice.

The third, and last, contribution of this paper is
to present a set of preliminary experimental results
which compare an implementation of our compressor
against state-of-the-art LZ77-based algorithms (Snappy,
LZMA, LZ4, gzip) and BWT-based algorithms (with
bounded and unbounded memory footprint). These
experiments bring out two key aspects: (i) they provide
a practical ground to the two pertinent questions posed
at the beginning of the paper, thus, motivating the
theoretical analysis introduced with our novel Bicriteria
data-compression problem; (ii) they show that our
parsing strategy dominates all the highly engineered
competitors, by exhibiting decompression speeds close
to those of Snappy and LZ4 (i.e., the fastest known
ones), and compression ratios close to those of BWT-
based and LZMA compressors (i.e., the more succinct
ones).

2 On the LZ77-parsing

Let S be a string of length n built over an alphabet
Σ = [σ] and terminated by a special character. We
denote by S[i] the i-th character of S and by S[i, j]
the substring ranging from i to j (included). The
compression algorithm LZ77 works by parsing the input
string S into phrases p1, . . . , pk such that phrase pi can
be any substring of S starting in the prefix p1, . . . , pi−1.
Once the parsing has been identified, each phrase is
represented via codewords, that are pairs of integers
〈d, `〉, where d is the distance from the position where
the copied phrase occurs, and ` is its length. Every first
occurrence of a new character c is encoded as 〈0, c〉.
These pairs are compressed via variable-length integer
encoders which eventually produces the compressed
output of S as a sequence of bits. Among all possible
parsing strategies, the greedy parsing is widely adopted:

it chooses pi as the longest prefix of the remaining suffix
of S. This is optimal whenever the goal is to minimize
the number of generated phrases or, equivalently, the
phrases have equal bit-length; but if phrases are encoded
with a variable number of bits then the greedy approach
may be sub-optimal [17].

Modeling the space occupancy. A LZ77-phrase
〈d, `〉 is typically compressed by using two distinct (uni-
versal) integer encoders, since distances d and lengths
` are distributed differently in S. We use s(d, `) to de-
note the length in bits of the encoding of 〈d, `〉. We re-
strict our attention on variable-length integer encoders
which emit longer codewords for bigger integers, the so
called non-decreasing cost property. This assumption is
not restrictive because it encompasses all universal en-
coders, such as Truncated binary, Elias’ Gamma and
Delta [12], Golomb [19], and LZ4’s encoder. An inter-
esting fact about these encoders is that they take a log-
arithmic number of bits per integer. This fact is crucial
in evaluating the complexity of our algorithm, since it
depends on the number of distinct values assumed by
s(d, `) when d, ` ≤ n. We denote by scosts this number,
which is O(log n) for all the universal encoders above.

For the sake of presentation, we denote by s(π) the
bit-length of the compressed output generated accord-
ing to the LZ77-parsing π. This is estimated by sum-
ming the lengths of the encoding of all phrases in π,
hence

∑
〈d,`〉∈π s(d, `).

Modeling the decompression speed. The aim
of this section is to define a model for evaluating the
time to decompress a string S compressed via LZ77

in a hierarchical-memory setting. The decompression
proceeds from left to right in S by reconstructing
one phrase at a time. For each phrase 〈d, `〉, the
decompressor needs to decode its codeword and then
copy the substring of length ` at distance d from the
current position in S. In terms of memory accesses this
means a random access to locate that copy plus the
cost of reading it. Taking inspiration from models in
[1, 2, 4, 28, 33], we assume that accessing a character at
distance d takes t(d) time, where t(d) = dlog de, whereas
scanning ` consecutive characters takes ` time regardless
of the memory level containing these characters.2

Under these assumptions, the decompression of a
phrase 〈d, `〉 takes s(d, `) time to read and decode the
codeword of d and `, time t(d) + ` to read the copy,
and time ` to append it to S. Summing over all
phrases, and recalling that their total length is n, we
get a total decompression time of t(π) =

∑
〈d,`〉∈π 2` +∑

〈d,`〉∈π(t(d) + s(d, `)) = 2n+
∑
〈d,`〉∈π(t(d) + s(d, `)).

Since the 2n term is independent of the parsing it

2See Drepper’s monograph on memory hierarchies [10].



Table 1: Summary of main notations.

Name Definition Properties

S A (null-terminated) document to be compressed.
n Length of S (end-of-text character included).
S[i] The i-th character of S.
S[i, j] Substring of S starting from S[i] until S[j]
〈0, c〉 A LZ77 phrase which represents a single character c.
〈d, `〉 A LZ77 phrase which represents a copy of a string of length `

at distance d
t(d) Amount of time spent in accessing the first character of a copy

at distance d.
t(d) = O(log n).

s(d, `) The length in bits of the encoding of 〈d, `〉. s(d, `) ≤ s(d′, `′), for d ≤ d′ and
` ≤ `′.

t(d, `) The time needed to decompress the LZ77-phrase 〈d, `〉. We have both t(d, `) = t(d) +
s(d, `) and t(d, `) ≤ t(d′, `′), for
d ≤ d′ and ` ≤ `′.

s(π) The space occupancy of parsing π. s(π) =
∑
〈d,`〉∈π s(d, `).

t(π) The time needed to decompress the parsing π. t(π) = 2n+
∑
〈d,`〉∈π t(d, `).

smax The maximum space occupancy (in bits) of any LZ77 phrase
of S.

smax = O(log n) in our model.

tmax The maximum time taken to decompress a LZ77 phrase of S. tmax = O(log n) in our model.
scosts The number of distinct values which may be assumed by s(d, `)

when d ≤ n, ` ≤ n.
scosts = O(log n) in our model.

tcosts The number of distinct values which may be assumed by t(d, `)
when d ≤ n, ` ≤ n.

tcosts = O(log n) in our model.

can be neglected, thus focusing on the terms t(d, `) =
t(d) + s(d, `) for each individual phrase of π. As in
the previous section we denote by tcosts the number of
distinct values which may be assumed by t(d, `) when
d, ` ≤ n; clearly tcosts = O(log n). Similarly to scosts,
this term will be crucial in defining the time complexity
of our algorithm.

Pathological strings: space/time trade-offs
matter. In our context we are interested in LZ77-
parsings which “optimize” two criteria, namely decom-
pression time and compressed space. In this respect,
the notion of “best” parsing needs to recall the one
of Pareto-optimal parsings, i.e., parsings which are not
worse than some others in one parameter, being it the
decompression time or the compressed space. Here we
show, as claimed in the introduction, that there exists
an infinite family of strings for which the Pareto-optimal
parsings exhibit significant differences in their decom-
pression time versus compressed space.

For the sake of presentation let us assume that each
codeword takes constant space, and that our model of
computation consists of just two memory levels such
that the access time of the fastest level (of size c) is
negligible, while the access time of the slowest level

(of unbounded size) is substantial. We construct our
pathological input string S as follows. Fix any string
P of length at most c drawn over a alphabet Σ which
can be LZ77-parsed with k phrases. For any i ≥ 0, let
Bi be the string $c+iP with $ a special symbol not in
Σ. Our string S is B0B1 . . . Bm. Since the length of
run of $s increases as i increases, no pair of consecutive
strings Bi and Bi+1 can be part of the same LZ77-
phrase. Moreover, we have two alternatives in parsing
each Bi, with i ≥ 1: (1) we parse Bi by deploying only
its content and thus not requiring any cache miss at
decompression time, this uses 2 + k phrases which copy
at distance at most c; (2) we parse Bi by using 2 phrases
copied from the previous string Bi−1, thus requiring one
cache miss at decompression time.

There are m − 1 Pareto-optimal parsings of S ob-
tained by choosing one of the above alternatives for each
string Bi. On one extreme, the parser always chooses
alternative (1) obtaining a parsing with m(2+k) phrases
which is decompressible with no cache misses. On the
other extreme, the parser always prefers alternative (2)
obtaining a parsing with 2+k+2m phrases which is de-
compressible with m−1 cache misses. In between these
two extremes, we have a plethora of Pareto-optimal



parsings: we can move from one extreme to the other
by trading decompression speed for space occupancy. In
particular, we can save k phrases at the cost of one more
cache miss, where k is a value which can be varied by
choosing different strings P . The ambitious goal of this
paper is to automatically and efficiently choose any of
these trade-offs.

3 From LZ77-Parsing to a weighted DAG

In this section we model the bicriteria LZ77-parsing
problem as a Weight-Constrained Shortest Path prob-
lem (WCSPP) over a weighted DAG G defined as follows.
Given an input string S of length3 n,the graph G con-
sists of n nodes, one per input character, and m edges,
one per possible LZ77-phrase in S. In particular we dis-
tinguish two types of edges: (i, i+ 1), which represents
the case of the single-character phrase 〈0,S[i]〉, and (i, j)
with j = i+ ` > i+1, which represents the phrase 〈d, `〉
and thus the case of S[i, i + ` − 1] occurring d char-
acters before in S. This construction was proposed in
[32]: clearly, G is a DAG and each path from node 1 to
node n (1n-path) corresponds to an LZ77-parsing of S.
Subsequently, [17] added the weight s(d, `) to the edge
(i, j) in order to denote its space occupancy in bits.

We extend this modeling by adding another weight
to G’s edges, namely the time t(i, j) taken to decode
〈d, `〉. This way, every 1n-path π not only identifies
an LZ77-parsing of S, but also the sum of the space-
costs (s(π)) and the sum of the time-weights (t(π)) of
its edges define its compressed bit-space occupancy and
its decompression time, respectively. As a result of this
modeling, we can re-phrase our bicriteria LZ77-parsing
as the Weighted-Constrained Shorted Path problem in
G, which asks for minπ∈Π s(π) provided that t(π) ≤ T .
Clearly we could reverse the role of space and time in
G’s edges, but for ease of explanation, in the rest of the
paper we will consider only the first formulation, even if
our algorithmic solution can be used for both versions
without any loss in its time/space efficiency.

In the following, we say that an edge (i′, j′) is nested
in an edge (i, j) whenever i ≤ i′ < j′ ≤ j. To design
efficient algorithms for WCSPP, it is crucial to exploit the
peculiar properties of G.

Property 3.1. Given an edge (i, j) of G, any (i′, j′)
nested in (i, j) is (a) an edge of G and (b) its time-
and space-weights are smaller or equal than the ones of
(i, j).

The first property derives from the fact that G
models the parsing of a text using a prefix-/suffix-
complete dictionary, as the LZ77 one. The second

3Recall that S is terminated by a special character.

property derives from the fact that the functions s(d, `)
and t(d, `), which model the time/space edge-weights,
are non-decreasing in both arguments. So, given a
phrase S[i, j] and its corresponding codeword 〈d, `〉,
any substring S[i, j′] is also a phrase (from the prefix-
complete property) and its codeword 〈d′, `′〉 is such that
d′ ≤ d and `′ ≤ `, because S[i, j′] occurs at least
wherever S[i, j] does.

3.1 Pruning the graph. The size of G may be
quadratic in n; just consider the string S = an which
generates one edge per substring of S. Given that n
is typically of the order of millions or even billions,
storing the whole G is unfeasible. This problem has
been already faced in [17] while solving the bit-optimal
LZ77-parsing problem over a graph with only the space-
cost edges. Their solution mainly relied on two ideas: (i)
pruning from their graph a large subset of unnecessary
edges, yet guaranteeing that the bit-optimal path is
preserved, and (ii) generating the forward stars of the
nodes in the pruned graph on-the-fly by means of an
algorithm, called FSG. It was shown in [17] that such
pruned graph has size O(n scosts) and can be generated
incrementally in that time and only O(n) space.

The contribution of this section is twofold: we show
that there exists a small subgraph of G, consisting of
O(n(scosts + tcosts)) edges, which includes all Pareto-
optimal 1n-paths of G; we then show that this pruned
graph can be generated efficiently by using the FSG al-
gorithm. The monotonicity property stated in Prop-
erty 3.1 for the s()-cost and the t()-weight of DAG-edges
allows us to define the notion of maximality of an edge,
which (in turn) is correlated to the property of Pareto-
optimality of a 1n-path in G.

Definition 3.1. An edge e = (i, j) is said to be s-
maximal iff, either the (next) edge e′ = (i, j + 1) does
not exist, or it does exist but the s-cost of e′ is strictly
larger than the s-cost of e. In a similar vein we define
the notion of t-maximal edge, and state that an edge is
maximal whenever it is either s-maximal or t-maximal,
or both.

Lemma 3.1 shows that, for any path π from node
i to j and for each i′ between i and j, there is a path
from i′ to j with cost/time not higher than those of π.

Lemma 3.1. For each triple of nodes i < i′ < j, and
for each path π from i to j, there exists a path π′ from
i′ to j such that t(π′) ≤ t(π) and s(π′) ≤ t(π).

Proof. Let (h, k) be the edge of π which surpasses i′ in
G, i.e, h < i′ ≤ k, and let π′′ be the sub-path of π′

from k to j. If i′ = k, the thesis follows by setting



π′ = π′′, and noticing that this is a suffix subpath
of π thus incurring in smaller costs. Otherwise, the
edge (i′, k) exists (because of the suffix-completeness
property of LZ77-phrases), and its time and space
weights are not greater than the corresponding ones of
edge (h, k) (Property 3.1). Thus the thesis follows by
setting π′ = (i′, k) · π′′.

The lemma stated above, used with j = n, allows
to “push” to the right non-maximal edges by iteratively
substituting non-maximal edges with maximal ones
without augmenting the time and space costs of the
path. This fact is exploited in Theorem 3.1, which shows
that the search of optimal paths in G can be limited to
those composed of maximal edges only.

Theorem 3.1. For any 1n-path π there exists a 1n-
path π? composed of maximal edges only and such that
π? is not worse than π in any one of its two costs, i.e.,
t(π?) ≤ t(π) and s(π?) ≤ s(π).

Proof. We show that any 1n-path π containing non-
maximal edges can be turned into a 1n-path π′ contain-
ing maximal edges only. Take the leftmost non-maximal
edge in π, say (v, w), and denote by πv and πw, respec-
tively, the prefix/suffix of path π ending in v and start-
ing from w. By definition of maximality, it must exist
a maximal edge (v, z), with z > w, whose time/space
weights are the same ones of (v, w). We can then apply
Lemma 3.1 to the triple (w, z, n) and thus derive a path
µ from z to n such that s(µ) ≤ s(πw) and t(µ) ≤ t(πw).

We then construct the 1n-path π′′ by connecting the
sub-path πv, the maximal edge (v, z), and the path µ:
using Lemma 3.1 one readily shows that the time/space
costs of π′′ are not larger than these of π. The key
property is that we pushed right the leftmost non-
maximal edge (if any), which must now occur (if ever)
within µ; by iterating this argument we get the thesis.

Let G̃ be the pruned graph defined by keeping
only maximal edges in G. Since the set of maximal
edges is given by the union of s-maximal and t-maximal
edges, there cannot be more than scosts + tcosts maximal
edges outgoing from any node. Given that both scosts

and tcosts are O(log n), it follows that G̃ has at most
O(n log n) edges, and thus it is asymptotically sparser
than G. Due to lack of space we cannot dig into
the generation of these edges (details in the journal
paper), so here we state that all maximal edges of G
can be generated on-the-fly by easily adapting the FSG-
algorithm [17] and taking O(1) amortized time per edge,
hence overall O(n log n) time and O(n) bits of working
space. This means that the retrieval of the optimal
path π? can be done by examining only a (significantly

smaller) sub-graph of G which can be generated in an
optimal output-sensitive manner.

4 Our Approximation Algorithm

This section is devoted to solve WCSPP over the weighted
DAG G whose structure and weights satisfy Prop-
erty 3.1. Recall that tmax and smax are, respectively, the
maximum time-cost and the maximum space-weight of
the edges in G. We denote with z(P ) the optimal value
of an optimization problem P , set ϕ? = z(WCSPP), and
use WCSPP(λ) to denote the Lagrangian relaxation of
WCSPP with Lagrangian multiplier λ, namely:

(WCSPP (λ)) min
π∈Π

s(π) + λ(t(π)− T ).

As mentioned in the introduction, our algorithm
works in two phases. In the first phase, described in
Section 4.1, the algorithm solves the Lagrangian Dual
problem through a specialization of Kelley’s cutting-
plane algorithm [23], as first introduced by Handler and
Zang [21]. The result is a lower-bound z? for WCSPP

and an instantiation for the parameter λ? ≥ 0 which
maximizes the optimal value of WCSPP(λ). In addition,
this computes in almost linear time (Lemma 4.1) a pair
of paths (πL, πR) which are optimal for WCSPP(λ?) and
are such that t(πL) ≥ T and t(πR) ≤ T .

In case one path among them satisfies the time
bound T exactly, then its space-cost equals the optimal
value ϕ?, and thus that path is an optimal solution
for WCSPP. Otherwise, the algorithm starts the second
phase, described in Section 4.2, which is the more
technical algorithmic contribution of this paper. This
phase derives a new path by joining a proper prefix of
πL with a proper suffix of πR. The key difficulty here
is to show that this new path guarantees an additive-
approximation of the optimal solution (Lemma 4.5), and
it can be computed in just O(n) time and O(1) auxiliary
space. At the end, we will have proved the following:

Theorem 4.1. There is an algorithm which computes a
path π such that s(π) ≤ ϕ?+smax and t(π) ≤ T +2 tmax

in O(n log n log(n tmax smax)) time and O(n) space.

We call this type of result an (smax, 2 tmax)-additive
approximation. By recalling that smax and tmax are
O(log n), since we are using universal integer encoders
and memory hierarchies whose time access grows loga-
rithmically (see Section 2), it holds:

Corollary 4.1. There is an algorithm that computes
an (O(log n), O(log n))-additive approximation of the
Bicriteria data-compression problem in O(n log2 n)
time and O(n) space.



It is important to remark that this type of approxi-
mation is very strong because it is additive rather than
multiplicative in the value of the bounded resources,
as instead occur for the “classic” (α, β)-approximation
[20]. In this additive-approximation, the absolute er-
ror stays constant as the value of the optimal solution
grows, conversely to what occurs in the multiplicative-
approximation for which, as the optimum grows, the
absolute error grows too.

Interestingly, from Theorem 4.1 and our assump-
tions on smax and tmax we can derive a FPTAS for our
problem as stated in the following theorem (proof in the
journal paper).

Theorem 4.2. For any fixed ε > 0, then there ex-
ists a multiplicative

(
ε, ε2
)
-approximation scheme for

the Bicriteria data-compression problem which takes
O
(

1
ε

(
n log2 n+ 1

ε2 log4 n
))

time and O(n + 1
ε3 log4 n)

space complexity.

By setting ε > 3

√
log4 n
n , the bounds become

O
(
n log2 n

/
ε) time and O(n) space. Notice that both

the FPTAS and the (α, β)-approximation guarantee to
solve the Bicriteria data-compression problem in o(n2)
time complexity, which was our original goal.

4.1 First phase: The cutting-plane algorithm.
The first phase consists of solving the Lagrangian dual
of problem WCSPP through the first phase of Handler
and Zang’s seminal paper [21]. Our key observation is
that each iteration can be implemented by solving a
bit-optimal LZ77-problem formulated over the pruned
graph G̃.

The Lagrangian dual of problem WCSPP is
maxλ≥0 minπ∈Π s(π) + λ(t(π) − T ). This can
be rewritten as a (very large) linear program in
which every 1n-path defines one of the constraints
and, possibly, one face of the feasible region:
maxλ≥0 {u : u ≤ s(π) + λ(t(π)− T ), ∀π ∈ Π }.

This can be interpreted geometrically. Let us
denote as L(π, λ), or λ-cost, the Lagrangian cost s(π) +
λ(t(π) − T ) of the path π with parameter λ. Each
path π represents thus the line ϕ = L(π, λ) in the
Euclidian space (λ, ϕ). Feasible paths have a non-
positive slope (since t(π) ≤ T ), unfeasible paths have
a positive slope (since t(π) > T ). Let us now consider
the Lagrangian function ϕ(λ) = minπ∈Π L(π, λ). This
function is piecewise linear and represents the lower
envelope of all the “lines” in Π. A convenient way
of interpreting the large linear program above is as
the problem of maximizing the function ϕ(λ) over all
λ ≥ 0. Unfortunately, the exponential number of
paths makes impossible to solve this by a brute-force

π1

π2

ϕB(λ)

ϕ

λλ+

Figure 1: Each path π ∈ B is a line ϕ = L(π, λ), and ϕB(λ) (in red)
is given by the lower envelope of lines π1 and π2. Notice that the
maximum value of function ϕB is the same as the maximum value of
the lower envelope of all the lines in the space.

approach. However, the full set of paths Π is not
needed. In fact, we can use a cutting-plane method
[23] which determines a pair of paths (πL, πR) such that
(i) L(πL, λ

?) = L(πR, λ
?) = the optimal (maximum)

value of ϕ(λ) and (ii) t(πL) ≥ T and t(πR) ≤ T .
Referring to the terminology often used to describe
the simplex method [31], these paths correspond to a
(feasible) optimal basis of the linear program.

The cutting-plane method is iterative and best
explained geometrically. At each step, the algorithm
generates one of the paths in Π and keeps a set B as
formed by two 1n-paths, denoted as π1 and π2 through
this section. Set B defines the restricted Lagrangian
function ϕB(λ) which is a restriction of the function
ϕ(λ) to the paths B ⊆ Π, as illustrated in Figure 1.
The algorithm maintains the following invariant: the
maximum of function ϕB(λ), which is given by the
intersection of π1 and π2, is equal to the maximum
value of the function defined by the lower envelope of
all the lines defined by the paths generated thus far. At
the beginning B is given by the space-optimal and the
time-optimal paths, which can be obtained by means of
two shortest path computations over G̃. It is easy to see
that π1 must have a non-negative slope (thus t(π1) ≥ T )
and π2 must have a non-positive slope (t(π2) ≤ T ) for
otherwise one of the two is optimal and we can stop;
this invariant is kept true along the iterations. It is
also easy to see that the intersection point λ+ between
π1 and π2 correspond to the maximum of the function
ϕB(λ), as illustrated in Figure 1. Since ϕ(λ) may be
interpreted as the lower envelope of a set of lines given
by paths in Π ⊇ B, it holds ϕB(λ) ≥ ϕ(λ) for each
λ ≥ 0. As a corollary ϕB(λ+) ≥ ϕ(λ?), i.e., the optimal
value of ϕB(λ) is an upper-bound to the optimal value
of ϕ(λ). In particular, ϕB(λ+) is strictly greater than
ϕ(λ?) when B is not an optimal basis.

At each step, the algorithm knows the value λ+



(by induction) which maximizes ϕB (λ), for the current
subset B. Then it computes a path π+ for which
L(π+, λ+) = ϕ (λ+) = minπ∈Π L(π, λ+) (according to
definition of ϕ). Our key observation here is that
path π+ can be determined by searching for a shortest
path whose (relaxed) cost is evaluated as s(π) +λ+t(π)

within the pruned DAG G̃. Nicely, this search can be
implemented via an adaptation of the FSG-algorithm
[17] thus taking O(n log n) time and O(n) space, as
already remarked above.

In the case that the computed ϕ (λ+) = L(π+, λ+)
equals ϕB (λ+) (which is known by induction) then the
pair (π1, π2) is an optimal basis, and the algorithm stops
by setting λ? = λ+ and (πL, πR) = (π1, π2). Otherwise,
the algorithm must update B to maintain the invariant
on ϕB(λ) stated above. A simple geometric argument
shows B can be updated as (π1, π

+) if π+ if feasible and
as (π+, π2) if it is not. Moreover, the algorithm updates
λ+ to reflect the new optimal value of ϕB .

The last question is for how many iterations we have
to run the cutting-plane algorithm above. Mehlhorn
and Ziegelmann have shown [30] that, for the case where
the costs and the resources of each arc are integers be-
longing to the compact sets [0, C] and [0, R] respectively,
then the cutting-plane algorithm (which they refer to
as the Hull approach) terminates in O(log(nRC)) iter-
ations. In our context R = C = O(n):

Lemma 4.1. The first phase computes a lower-bound z?

for WCSPP, an instantiation for λ? ≥ 0 which maximizes
the optimal value of WCSPP(λ), and a pair of paths
(πL, πR) which are optimal for WCSPP(λ?). This takes
O(m̃ log(n tmax smax)) time and O(n) space, where

m̃ = O(n log n) is G̃’s size.

4.2 Second phase: The path-swapping algo-
rithm. Unfortunately, it is not easy to bound the solu-
tion computed with Lemma 4.1 in terms of the space-
optimal solution of WCSPP. Therefore the second phase
of our algorithm is the technical milestone that allows
to turn the basis (πL, πR) into a path whose time- and
space-costs can be mathematically bounded in terms of
the optimal solution for WCSPP. In the following we
denote a path as a sequence of increasing node-IDs and
do not allow a node to appear multiple times in a path,
so a path (v, w,w,w, z) must be intended as (v, w, z).
Moreover, we use the following notation.

• Pref(π, v) is the prefix of a 1n-path π ending into
the largest node v′ ≤ v in π.

• Suf(π, v) is the suffix of a 1n-path π starting from
the smallest node v′′ ≥ v in π.

Given two paths π1 and π2 in G, we call path swapping
through a swapping-point v, which belongs either to π1

or π2 (or both), the operation which creates a new path,
denoted by ps (π1, π2, v) = (Pref(π1, v), v,Suf(π2, v)),
that connects a prefix of π1 with a suffix of π2 via v.

Property 3.1 guarantees that the path-swap oper-
ation is well-defined and, in fact, the next Fact 4.1
states that we always have edges to connect the last
node of Pref(π1, v) with v, and v with the first node of
Suf(π2, v). An illustrative example is provided in Fig-
ure 2.

Fact 4.1. The path-swap operation is well-defined for
each pair of 1n-paths (π1, π2) and for each swapping-
point v which belongs either to π1 or π2 (or both).

For any given λ ≥ 0, a path π is λ-optimal if its
Lagrangian cost L(π, λ) is equal to the value of the
Lagrangian function ϕ(λ). The following lemma shows
that any path-swap of two λ-optimal paths is off at most
tmax in time and smax in space from being a λ-optimal
path.

Lemma 4.2. Let π1, π2 be λ-optimal paths, for some
λ ≥ 0. Consider the path πA = ps (π1, π2, v), where v
is an arbitrary swapping point. There exist values s, t
such that s ≤ s(πA) ≤ s + smax, t ≤ t(πA) ≤ t + tmax

and s+ λ(t− T ) = ϕ(λ).

Proof. Let πB = ps (π2, π1, v): we claim that

L(πA, λ) + L(πB , λ) ≤ 2ϕ(λ) + smax + λ tmax

which then immediately gives the thesis since ϕ(λ) ≤
L(π, λ) for each 1n-path π.

Let us denote by `(i, j) the scalarized cost s(i, j) +
λ t(i, j) of edge (i, j), and by `(π) =

∑
(i,j)∈π `(i, j)

the sum of the scalarized costs of all edges in π, so
that L(π, λ) = `(π) − λT . Moreover, let us use the
notation Pj = `(Pref(πj , v)) and Sj = `(Suf(πj , v)) for,
respectively, the scalarized costs of the prefix and suffix
of the path πj before/after the swapping point v. There
are three cases to consider:

1. v belongs to both π1 and π2: In this case, we have
`(πA) = P1 +S2, `(πB) = P2 +S1, `(π1) = P1 +S1

and `(π2) = P2 +S2. Since `(π1) + `(π2) = `(πA) +
`(πB) and π1 and π2 are λ-optimal paths, we have
L(πA, λ) + L(πB , λ) = L(π1, λ) + L(π2, λ) = 2ϕ(λ)
from which our claim follows (with equality).

2. v does not belong to π1: let v′ and v′′ be, respec-
tively, the rightmost node preceding v and the left-
most node following v in π1 (see Figure 2). We
have



v′

Pref(π1, v)

v

Pref(π2, v)

v′′

Suf(π1, v)

Suf(π2, v)

Figure 2: A path-swap of π1, π2 at the swapping point v. The resulting path is dashed.

• `(π1) = P1 + `(v′, v′′) + S1;

• `(π2) = P2 + S2;

• `(πA) = P1 + `(v′, v) + S2;

• `(πB) = P2 + `(v, v′′) + S1.

By using the above relations we have

`(πA) + `(πB) =

P1 + `(v′, v) + S2 + P2 + `(v, v′′) + S1 =

`(π1) + `(π2)− `(v′, v′′) + `(v′, v) + `(v, v′′)

which then gives our claim observing that π1 and
π2 are λ-optimal paths, `(v′, v) ≤ `(v′, v′′) due to
the non-decreasing cost property, and `(v, v′′) ≤
smax + λtmax.

3. v does not belong to π2: this case is symmetric to
the previous one.

Now, consider two paths π1, π2 to be swapped and
two consecutive swapping points, that is, two nodes v
and w belonging to either π1 or π2 and such that there
is no node z belonging to π1 or π2 with v < z < w.
The lemma below states that time and space of paths
ps (π1, π2, v) and ps (π1, π2, w) differ by at most tmax

and smax.

Lemma 4.3. Let π1, π2 be two paths to be swapped.
Let also v and w be two consecutive swapping points.
Set π = ps (π1, π2, v) and π′ = ps (π1, π2, w): then,
|s(π)− s(π′)| ≤ smax and |t(π)− t(π′)| ≤ tmax.

Proof. Let us consider the sub-paths Pref = Pref(π, v)
and Pref ′ = Pref(π′, w). There are two cases:

1. v ∈ π1: in this case, Pref ′ = (Pref, w). Thus,
s(Pref ′)−s(Pref) = s(v, w) and t(Pref ′)− t(Pref) =
t(v, w);

2. v /∈ π1: let Pref = (v1, . . . , vk, v); in this case,
we have Pref ′ = (v1, . . . , vk, w). Thus, we have
s(Pref ′) − s(Pref) = s(vk, w) − s(vk, v) ≤ smax; a
similar argument holds for the time weight.

S

T

πR

πL

π?

tmax tmax

smax

Figure 3: Geometrical interpretation of Lemmas 4.2 and 4.3. Paths
are represented as points in the time-space coordinates. Path π? is
obtained by path-swapping paths πL and πR. The blue rectangle
is guaranteed by Lemma 4.2 to intersect with the segment from πL

to πR, while Lemma 4.3 guarantees that there is at least one path-
swapped solution having time coordinates between t and t+ tmax for
any t ∈ [t(πR), t(πL)], in this case [T + tmax, T + 2tmax].

Thus, s(Pref ′)− s(Pref) ≤ smax and t(Pref ′)− t(Pref) ≤
tmax. Symmetrically, it holds s(Suf) − s(Suf ′) ≤ smax

and t(Suf)−t(Suf ′) ≤ tmax; since s(π) = s(Pref)+s(Suf)
and s(π′) = s(Pref ′)+s(Suf ′), it follows |s(π)−s(π′)| ≤
smax , and a similar argument holds for |t(π)− t(π′)|.

Figure 3 gives a geometrical interpretation of this
lemmas and shows, in an intuitive way, that it is possible
to path-swap the optimal basis (πL, πR) computed by
the cutting-plane algorithm (Lemma 4.1) to get an
additive (smax, 2 tmax)-approximation to the WCSPP by
carefully picking a swapping point v. This result is
deployed to prove the following.

Lemma 4.4. Given an optimal basis (πL, πR) with
t(πL) > T and t(πR) < T , there exists a swapping point
v? and a path-swapped path π? = ps (π1, π2, v

?) such
that t(π?) ≤ T + 2 tmax and s(π?) ≤ ϕ? + smax.

Proof. Since ps (πL, πR, v1) = πR and ps (πL, πR, vn) =
πL, Lemma 4.3 implies that there must exist some
v? such that the path π? = ps (πL, πR, v

?) has time
t(π?) ∈ [T + tmax , T + 2 tmax ]. Due to Lemma 4.2,
there are s ≥ s(π?)− smax and t ≥ T (since t+ tmax ≥



t(π?) ≥ T + tmax) such that s + λ(t − T ) = ϕ?; hence
s ≤ ϕ?, which ultimately yields that s(π?) ≤ ϕ?+ smax.

The gap-closing procedure consists thus on choosing the
best path-swap of the optimal basis (πL, πR) with time-
weight within T + 2 tmax. The solution can be selected
by scanning left-to-right all the swapping points, and
evaluating the time cost and space weight for each
candidate. This procedure can be implemented by
keeping the time and space of the current prefix of πL
and suffix of πR, and by updating them every time a
new swapping point is considered. Since each update
can be performed in O(1) time, we obtain the following
lemma, which combined with Lemma 4.1, proves our
main Theorem 4.1.

Lemma 4.5. Given an optimal basis (πL, πR) of prob-
lem D′, an additive (smax, 2 tmax)-approximation to
WCSPP can be found in O(n) time and O(1) auxiliary
space.

5 Experimental results

We describe here the preliminary results we obtained by
executing BC-ZIP, an in-memory C++ implementation of
our LZ77-based data-compression scheme introduced in
this paper. These experiments aim not only at estab-
lishing the ultimate performance of our compressor, but
also at investigating the following three issues:
1) Trade-off range In Section 3 we motivated the
interest in the Time-Constrained Space-Optimal LZ77-
Parsing problem by showing a series of pathological
texts for which the LZ77-parsings exhibit wide space-
time trade-offs. In this section, we provide experimental
evidence that these pathological cases do occur in
practice, so that the design of a flexible compressor, as
the one we propose in this paper, is worth not only in
theory.
2) Estimating compression ratio The number of
phrases is a popular metric for estimating the compres-
sion ratio induced by a LZ77-parsing. Ferragina et al.
showed [17] that this is a simplistic metric, since there

is a Ω
(

log logn
logn

)
multiplicative gap in the compressed-

space achieve by the bit-optimal parsing and the greedy
one. In this section we deepen this argument by compar-
ing experimentally the time-space trade-off when com-
pressed space is either estimated exactly or approxi-
mated by the number of phrases in the parsing. The
net result is to show that the number-of-phrases is a
bad estimate for the space-occupancy of a LZ77-based
compressor, so the space-time trade-offs obtained by al-
gorithms based only on this measure can be widely off-
mark of the true ones.

3) Comparing to the state-of-the-art Our ex-
periments are executed against many state-of-the-
art compression libraries. We executed the ex-
periments over datasets of several types of data:
Wikipedia (natural language), DBLP (XML), PFAM

(biological data, [13]), and U.S. Census (database).
Each dataset, available at http://acube.di.unipi.

it/bc-zip-dataset/, consists of a chunk of 1GiB (230

bytes). We compared our compressor BC-ZIP against
the most popular and top-performing compressors be-
longing to the two main families: LZ77-based and BWT-
based. From the former family, we included: (i) zlib

which is the core of the well-known gzip compressor;
(ii) LZMA2 which is the core of 7zip compressor and
is appreciated for its high compression ratio and com-
petitive decompression speed. From the latter family,
we included: (i) bzip2 which is a general purpose
compressor available on any Linux distributions; and
(ii) BWT-Booster which is the state-of-the-art for BWT-
based compressors [15]. Moreover, we included Snappy

and LZ4 which are highly engineered LZ77-compressors
used in BigTable [7] and Hadoop, offering a very fast
decompression speed.

Each decompressor has been implemented in C++,
to work in-memory, and it has been compiled with g++

version 4.6.3 with options -O3 -fomit-frame-pointer
-march=native and evaluated on a machine with the
following characteristics: (i) processor: Intel Core 2
Duo P8600, with 64k of L1 cache and 3mb of L2 cache;
(ii) RAM: 4GB DDR3 PC3-8500; (iii) Operating system:
Ubuntu 12.04.

On compression we used the parameters yielding
the best compression ratios, when available. In partic-
ular, results in Figure 5 have been obtained by running
bzip -9, gzip -9, lz4 -9 and xz -9 (for LZMA) while
compressing the dataset. We notice that both Snappy

and BWT-Booster offer just one fixed trade-off, thus not
offering any compression parameter to tune.

Implementation details. In implementing
BC-ZIP we resorted to a simple byte-oriented encoder
for the LZ77-phrases which alleviates the detrimental
effects of branching codes. Encoding a phrase requires
at most 2 bytes for the length and 4 bytes for the
distance (so smax = 48 bits). Then we modeled the
time-costs of the edges by three values which have been
determined through many benchmarks (details in the
journal paper), and we got tmax ≈ 0.125µs.

In order to create the graph G, we developed two
ways of assigning time/space weights to edges: the full
model and the fixed model. Those models differ in the
way they assign the space weight to edges. In the “full”
model, the space weight of an edge is a measure of
the bit-length of the corresponding codeword, while in

http://acube.di.unipi.it/bc-zip-dataset/
http://acube.di.unipi.it/bc-zip-dataset/


the “fixed” model each edge has unitary weight. Thus,
the space weight of a parsing in the “full” model is its
compressed size, while in the “fixed” model is its number
of phrases. Both models assign time weight to edges
according to the time model illustrated in Section 2,
where parameters have been derived experimentally. In
particular, the time weight of a phrase 〈d, `〉 is t1 if
d < 16000, t2 if d ∈ [16000, 2300000], and t3 otherwise,
where the parameters ti are derived by executing a
proper benchmark over our machine (details in the
journal paper).

At compression time, the user can specify a time
bound T (in millisecs) or a compression level C =
(T − Tt)/(Ts − Tt), where Tt is the decompression time
of the time-optimal parsing and Ts is the decompression
time of the most succinct space-optimal parsing. We
notice that compression level C = 0 (resp. C = 1)
corresponds to the parsing with fastest decompression
time (resp. smallest compressed space).

Experimental trade-off spectrum. We ob-
served the experimental shape of the time-space trade-
offs curve by compressing each dataset with linearly
varying compression level from 0.2 to 1, considering
both the fixed and the full model. Figure 4 shows that,
for the full model, the space-time trade-off curve of the
linearly changing compression level is actually linear
too, which clearly shows that the trade-off can be effec-
tively controlled in a principled way by our compressor.

Results are instead far less significant for the fixed
model, in which space is estimated as the number of
phrases in the parsing. Even if its curve is close to
the one of the full model for DBLP, the curves are sig-
nificantly different for the other three datasets. More-
over, the space-optimal parsing generated in the fixed-
model with compression level 1 (which is equivalent to
the greedy parsing) is dominated by the parsings gen-
erated with compression levels from 0.7 to 0.9 in U.S.

Census, while parsings with compression level 0.7 and
0.8 are dominated by parsings with compression level
0.9 and 1 in Wikipedia. This clearly shows that the
number of phrases is a poor metric for estimating the
compression ratio of a parsing, and it offers a very sim-
plistic estimate of the decompression time.

Comparison with state-of-the-art. Figure 5 re-
ports the performance of the various compression al-
gorithms on the datasets. Results show that the per-
formance of our BC-ZIP are extremely good. On the
one hand, it generates parsings with decompression
time better than those of LZ4 in three out of four
datasets (DBLP, PFAM, U.S. Census), whereas for the
fourth dataset (Wikipedia) BC-ZIP achieves a decom-
pression time which is a little bit worse than LZ4 but
with a significantly improved compression ratio. On the

other hand, its compression ratio at higher compression
levels is close to the best one, namely that of LZMA2

(excluding BWT-Booster, which exhibit an exceedingly
slow decompression time), but with an order of magni-
tude faster decompression speed. Compression ratios of
BC-ZIP are indeed very remarkable, because it uses a
very simple byte-oriented encoder opposed to the sta-
tistical Markov-Chain encoder used in LZMA2.

Overall, these results show that not only our ap-
proach allows to effectively control the time-space trade-
off in a practical yet principled manner; by explic-
itly taking into account both decompression-time and
compressed-space, BC-ZIP leads to parsings which are
faster to decode and more space-succinct than those gen-
erated by highly tuned and engineered parsing heuris-
tics, like those of Snappy and LZ4.

6 Conclusions

We conclude this paper by mentioning two interesting
future directions where the novel optimization-based ap-
proach proposed in this paper could be tested. The
first one concerns the practical impact of these tech-
niques on real big-data applications and their storage
systems, like Hadoop. The second question, more of a
theoretical vein, is whether it is possible to extend this
novel bicriteria optimization approach to other interest-
ing compressor families such as PPM and BWT.
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Figure 4: Decompression time and compressed space trade-offs obtained by changing the compression level from 0.2 to 1. The
fractional numbers close to each curve specify the compression level achieved by the parsing providing that space/time trade-off. In
the “full” model (green line), the space cost of a codeword is given by its length, while in the “fixed” model the space cost is unitary.
In this plot, 1MB is 106 bytes.

Dataset Parsing Compressed size Decompression time
(MB, 106 bytes) (seconds)

DBLP

BC-ZIP - 1 129.8 2.95
BC-ZIP - 0.9 130.4 2.86
BC-ZIP - 0.8 131.4 2.77
BC-ZIP - 0.7 132.6 2.69
BC-ZIP - 0.6 134.6 2.56
BC-ZIP - 0.5 136.7 2.43
BC-ZIP - 0.4 139.3 2.32
BC-ZIP - 0.3 143.4 2.18
BC-ZIP - 0.2 148.5 1.96

Snappy 323.4 2.13
LZ4 214.7 1.98
zlib 191.6 11.65
LZMA2 120.4 20.47
bzip2 121.4 48.98
BWT-Booster 98.2 > 100

PFAM

BC-ZIP - 1 61.6 1.11
BC-ZIP - 0.9 61.8 1.08
BC-ZIP - 0.8 62.1 1.04
BC-ZIP - 0.7 62.4 1.00
BC-ZIP - 0.6 62.7 0.97
BC-ZIP - 0.5 63.1 0.92
BC-ZIP - 0.4 63.8 0.88
BC-ZIP - 0.3 64.5 0.83
BC-ZIP - 0.2 65.6 0.80

Snappy 147.6 1.70
LZ4 74.4 1.41
zlib 62.3 7.63
LZMA2 39.1 7.16
bzip2 48.7 21.65
BWT-Booster 54.7 > 100

Dataset Parsing Compressed size Decompression time
(MiB, 106 bytes) (seconds)

U.S. Census

BC-ZIP - 1 139.0 2.98
BC-ZIP - 0.9 139.6 2.84
BC-ZIP - 0.8 140.4 2.72
BC-ZIP - 0.7 141.7 2.58
BC-ZIP - 0.6 143.0 2.43
BC-ZIP - 0.5 144.6 2.24
BC-ZIP - 0.4 146.6 2.03
BC-ZIP - 0.3 149.5 1.79
BC-ZIP - 0.2 153.1 1.61

Snappy 324.1 2.28
LZ4 225.0 2.01
zlib 176.3 11.44
LZMA2 124.3 20.34
bzip2 180.7 50.40
BWT-Booster 141.9 > 100

Wikipedia

BC-ZIP - 1 287.7 6.40
BC-ZIP - 0.9 289.5 6.21
BC-ZIP - 0.8 291.8 5.96
BC-ZIP - 0.7 294.8 5.76
BC-ZIP - 0.6 299.0 5.51
BC-ZIP - 0.5 305.0 5.18
BC-ZIP - 0.4 311.1 4.85
BC-ZIP - 0.3 319.3 4.50
BC-ZIP - 0.2 331.5 4.02

Snappy 585.7 2.84
LZ4 435.1 2.63
zlib 380.3 17.63
LZMA2 253.9 39.09
bzip2 304.5 66.64
BWT-Booster 228.8 > 100

Figure 5: Rows “BC-ZIP - c” stands for the performance of our implementation of the Time-Constrained Space-Optimal LZ77 parsing
with compression level c.
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