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Delay-Constrained Shortest Paths: Approximation

Algorithms and Second-Order Cone Models
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Abstract Routing real-time traffic with maximum packet delay in contemporary

telecommunication networks requires not only choosing a path, but also reserv-

ing transmission capacity along its arcs, as the delay is a nonlinear function of

both components. The problem is known to be solvable in polynomial time under

quite restrictive assumptions, i.e., Equal Rate Allocations (all arcs are reserved

the same capacity) and identical reservation costs, whereas the general problem

is NP-hard. We first extend the approaches to the ERA version to a pseudo-

polynomial Dynamic Programming one for integer arc costs, and a FPTAS for

the case of general arc costs. We then show that the general problem can be for-

mulated as a mixed-integer Second-Order Cone (SOCP) program, and therefore

solved with off-the-shelf technology. We compare two formulations: one based on

standard big-M constraints, and one where Perspective Reformulation techniques

are used to tighten the continuous relaxation. Extensive computational experi-
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ments on both real-world networks and randomly-generated realistic ones show

that the ERA approach is fast and provides an effective heuristic for the general

problem whenever it manages to find a solution at all, but it fails for a significant

fraction of the instances that the SOCP models can solve. We therefore propose a

three-pronged approach that combines the fast running time of the ERA algorithm

and the effectiveness of the SOCP models, and show that it is capable of solving

realistic-sized instances with high accuracy at different levels of network load in a

time compatible with real-time usage in an operating environment.

Keywords Delay-constrained Routing · Approximation Algorithms · Mixed-

Integer NonLinear Programming · Second-Order Cone Model · Perspective

Reformulation

Mathematics Subject Classification (2000) 90C11 · 90C25 · 90C30 · 90C90

1 Introduction

The development of computer networks capable to support high bandwidth appli-

cations while having stringent Quality of Service (QoS) guarantees is a relevant

practical issue, since many applications over IP networks (e.g., industrial control

systems, remote sensing and surveillance systems, live Internet Protocol Television

and IP Telephony) require real-time guarantees, that is, controlled end-to-end de-

lay. Hence, Internet Service Providers are required to negotiate delay bound within

their Service Level Agreements, which in turn requires appropriate traffic engi-

neering support. From an optimization point of view, this implies both computing

paths and reserving resources along the paths of the network, since the maximum

delay of a flow depends on both.
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Even in the single-flow case, this problem is therefore significantly more difficult

than usual shortest path routing problems. Several practical approaches have been

proposed [1], where delays are assumed to be link-additive in order to simplify the

problem; however, delay bounds do depend on the amount of reserved resources at

each link, usually in a nonlinear and non-additive way. Efficient algorithms have

been devised for the special case where the resource allocation is uniform on all

the links of a path, which is called the Equal Rate Allocation (ERA) approach,

and when the objective function is basically the arc/node count of the path [2, 3].

However, even for fixed paths ERA has been shown to be highly suboptimal when

addressing the more general delay-constrained routing case [4], thus requiring more

resources than those strictly necessary to ensure a given delay bound for a given

flow, and possibly failing to find feasible delay-constrained routings even when

they exist.

In this paper, we mark a first step in the direction of joint path computation and

resource reservation under delay bound constraints by considering the more general

scenario where the resource allocation may be different on the links of the con-

sidered path. We concentrate on the Single-Flow Single-Path Delay-Constrained

Routing problem (SFSP-DCR), which is already NP-hard since it generalizes the

Constrained Shortest Path problem (CSP) [5–7]; however, due to the nonlinear na-

ture of the delay constraints, adapting known approaches for CSP is not straight-

forward. We first consider the ERA version of the problem (ERA-SFSP-DCR),

i.e., the case where all arcs in the path are allocated the same amount of resource,

which is solvable in polynomial time in the case of unit arc costs, and derive a

pseudo-polynomial time algorithm for integer arc costs and a FPTAS for general

costs. We then consider the general case and we show that the problem can be for-
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mulated as a convex Mixed-Integer Non-Linear Optimization problem (MINLP),

and in particular, as a Mixed-Integer Second-Order Cone problem (MISOCP) that

can be solved by efficient general-purpose tools. We present two MISOCP mod-

els for the problem: a straightforward one based on big-M constraints, and an

improved one where convex-envelope techniques are used to tighten the continu-

ous relaxation. Extensive computational experiments on both real-world networks

and randomly-generated realistic ones show that the exact algorithms for ERA-

SFSP-DCR are extremely fast and provide a surprisingly effective heuristic for

the general problem whenever they manage to find a solution at all, but they fail

for a significant fraction of the instances that the (MI)SOCP models can solve.

We therefore propose a three-pronged approach that combines the fast running

time of the ERA algorithms and the effectiveness of the SOCP models, and show

that it is capable of solving realistic-sized instances with high accuracy at different

levels of network load in a time compatible with real-time usage in an operating

environment.

2 The Delay-Constrained Routing Problem

A telecommunication network is represented by a directed graph G = (N,A), with

n = |N | and m = |A|. Our problem is to route one single “new” flow on the network

along a minimum cost path, where the cost is any linear function of the reserved

capacities on the traversed arcs, with a constraint on the maximum delay that any

packet may incur during the trip. For this, we assume our flow to be characterized

by an origin s ∈ N , a destination d ∈ N \ {s} and, in general, an arrival curve

A(t) : R+ → R+ specifying how many more bits of that flow can enter the origin
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s with respect to those entered t instants before; in other words, if the arrival

function F(t) measures how many bits have entered the origin at time t, we have

F(t̄+ t)−F(t̄) ≤ A(t) for all t̄ and t ≥ 0. For our purposes, we assume the arrival

curve to be entirely specified by the two parameters σ (burst) and ρ (rate) of a

leaky-bucket traffic shaper [8], so that A(t) = σ+ tρ. Each link (arc) (i, j) ∈ A in the

network is characterized by a fixed link delay lij , a physical link speed wij , and a

reservable capacity cij (≤ wij , since in general other flows are already present in the

network at the time when the new one is routed). Each node i ∈ N in the network

is characterized by a given node delay ni; furthermore, the maximum transmit unit

L (i.e., the maximal size of any packet) is known and assumed constant. The

flow has a deadline δ, which bounds from above the maximum time that every

bit in the flow is allowed to spend traversing the network prior to reaching the

destination; in other words, the worst-case delay of the flow must be at most δ.

Given link reservation costs fij (i.e., the cost of reserving one unit of capacity on

(i, j)), the Single-Flow Single-Path Delay-Constrained Routing (SFSP-DCR) problem

requires to find one feasible s-d path and a feasible reservation of capacity for each

of its arcs so that the flow can be routed along the path, with the given reserved

capacities, by respecting the deadline (delay constraint) δ at the minimum possible

reservation cost.

2.1 Delay Modeling

Formulating SFSP-DCR requires to specify how the worst-case delay of the flow

is computed. This depends on several factors:

1. the selected routing for the flow, i.e., the selected s-d path P in G;
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2. for each arc (i, j) of the chosen path P , the reserved capacity (or rate)

0 ≤ rij ≤ cij (≤ wij) for the flow along the arc;

3. the specific characteristics of the software/hardware systems at the nodes dic-

tating how the flows entering and leaving the nodes are managed (intra-node

scheduling of different flows, queues and buffer depths, . . . ).

The latter point requires a sophisticated analysis, that can be performed, e.g., via

network calculus [9]. In all cases of interest here, the delay is finite only if the

minimum reserved rate along the arcs of the path is at least as large as the rate ρ

of the path, i.e.,

rij ≥ ρ ∀(i, j) ∈ P . (1)

Once (1) is satisfied, the general form of the delay for a given routing path P is

σ

min{ rij : (i, j) ∈ P} +
∑

(i,j)∈P

(
θij + lij + ni

)
, (2)

where θij is the delay experienced by the flow on traversing the arc (i, j) that is

due to the scheduling protocol. The exact form of θij depends on the details of

the scheduling algorithm at nodes: following [2, 3] we assume

θij :=
L

rij
+

L

wij
, (3)

which corresponds to Strictly Rate-Proportional delay (e.g. [8, 10, 11]). Other

slightly different forms of delay formulae exist, such that the Weakly Rate Pro-

portional one, that have basically the same algebraic form and therefore could be

subject to the same treatment; see [2–4] and the references therein. The funda-

mental property of (3) in our context is that it is a convex function of rij when

rij ≥ 0, which is clearly very useful in order to devise efficient solution approaches.
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2.2 Feasibility of SFSP-DCR

While SFSP-DCR is clearly NP-hard (it reduces to the Constrained Shortest Path

problem, e.g., if cij = ρ for all arcs), checking the existence of a feasible solution is

easy. Indeed, according to (2)–(3), the delay is a decreasing function of the rates,

which means that setting rij = cij for each arc (i, j) provides the best (least)

possible contribution to the delay.

Let us then define the set C := { cij : (i, j) ∈ A } of all possible arc capacities

(note that |C| ≤ m), and for any r ∈ C, the reduced graph Gr := (N,Ar) where

Ar := { (i, j) ∈ A : cij ≥ r }, i.e., all arcs whose residual capacity is smaller than

r are removed. Let us now define the modified arc costs

l̄ij :=
L

cij
+

L

wij
+ lij + ni ;

for future notational convenience, we will denote by l′ij := L/wij+lij+ni the part of

l̄ij that does not depend on the choice of r. Solving an s-d shortest path on Gr thus

allows one to compute the minimum-delay path P among the paths not containing

arcs with capacity smaller than r, and therefore such that σ/rmin(P ) ≤ σ/r, where

rmin(P ) := min{ rij : (i, j) ∈ P}. Clearly, if the cost (delay, in our context) of P

is ≤ δ − σ/r, then a feasible solution has been found. It is easy to show that, by

repeating the above process for each r ∈ C (hence |C| ≤ m times), one either finds

a feasible solution or proves that none exists. Indeed, the only issue may come

from the fact that the minimum-delay path P for some value of r may actually

only use arcs with a larger capacity (hence assigned rate) than r: this means

that σ/r > σ/rmin(P ), possibly leading to declaring P unfeasible while it actually

satisfies the delay bound. However, in such a case P is also a path of Gr̄ (and

therefore it remains optimal) for some values r̄ > r in C, the largest of which



8 Antonio Frangioni et al.

corresponds to rmin(P ); therefore, the delay of P is correctly evaluated during the

iteration corresponding to rmin(P ).

By simply keeping track of the minimum cost among all feasible paths thusly

generated (possibly avoiding to stop as soon as the first feasible path is found), this

approach provides a first heuristic for SFSP-DCR. Since all arcs are reserved the

maximum possible rate, this heuristic should not be expected to provide particu-

larly good bound (and indeed this is shown to happen in Sect. 5.2); however it can

quickly detect unfeasible instances. Furthermore, the heuristic can be improved

somewhat using the ideas from the ERA case presented in next section.

3 The Equal Rate Allocation Case

Some polynomial time approaches to SFSP-DCR have been proposed in the litera-

ture [2,3] under two strong assumptions. The first one is the Equal Rate Allocation

(ERA), i.e., that all the arcs (i, j) of the chosen s-d path P must receive the same

resource allocation; therefore, rij = r (≥ ρ) for a given value r for all (i, j) ∈ P ,

while of course rij = 0 for (i, j) /∈ P . Since throughout this section we shall con-

sider the ERA assumption to be in force, we will always refer to “the rate r”

as the unique value assigned to all rij , for (i, j) ∈ P , which of course implies that

rmin(P ) = r as well; the corresponding restricted problem will be denoted as ERA-

SFSP-DCR. The second assumption concerns the form of the objective function,

as discussed in the following.
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3.1 The Equal Costs Case

The ERA-SFSP-DCR problem can be solved in polynomial time if the objective

function is nondecreasing with respect to the cardinality of P and the rate r;

clearly, this is the case if we take fij = 1 for all (i, j) ∈ A, i.e., we pay the same

cost for installing a unit of capacity on each arc, as this means that the objective

function has form r · |P |, where |P | denotes the number of arcs in P . We will denote

this problem by EC-ERA-SFSP-DCR (from “Equal Costs”).

The crucial observation is that it is easy to solve EC-ERA-SFSP-DCR for a

fixed value of r, as this basically is a hop-constrained shortest path problem. In

fact, for a fixed value of r one can define the arc costs

lrij := L/r + l′ij

(cf. Sect. 2.2) and exploit the well-known property of the Bellman-Ford algorithm

for the shortest path problem, i.e., that of being able to determine shortest paths

with a constraint on the maximum number of hops. This is based on the fact that

the Bellman-Ford algorithm works in n− 1 phases; at the end of the h-th phase,

the path currently entering a generic node i is the one having least cost among the

paths (from s to i) with at most h arcs. Furthermore, the cost of the considered

paths entering i is (obviously) nonincreasing as h grows. Hence, for the fixed value

of r one can run the Bellman-Ford algorithm (with root s) on the reduced graph

Gr (cf. Sect. 2.2) with the arc costs lr and easily find the optimal solution to the

EC-ERA-SFSP-DCR with the fixed value of r in O(nm) time. This is done by

simply checking the cost (that is delay in our context) of the s-d path entering d

at the end of each phase: the first time this cost (delay) is ≤ δ−σ/r one has found

the hop-shortest delay-feasible path for the given value of r. Clearly, if the delay
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is always > δ − σ/r, then no feasible delay-constrained path exists for the given

value of r.

This approach has first been analyzed in [2] for the problem of finding the delay-

minimal path under the ERA assumption. As in Sect. 2.2, this is done by repeating

the above procedure for all values of r in the set C. Furthermore, in [2] it is observed

that, by simply keeping track of the hop-shortest delay-feasible path found for each

value r ∈ C (which is freely obtained if the Bellman-Ford algorithm is used) and

returning the best (in terms of minimum cardinality) computed path over the

values r in C, an exact approach can be immediately derived for determining a

feasible delay-constrained path P (if it exists) of minimum cardinality. Note that

a simple way to enhance the practical efficiency of this approach is simply to order

the values of C in an increasing way, and then applying the Bellman-Ford algorithm

on Gr for increasing values of r: since the set Ar is non-increasing when r increases,

while the path delays decrease, then the first time a feasible delay-constrained path

is determined, this is indeed the hop-shortest delay-feasible path.

Another possibility to speed-up the approach, at the risk of not finding the

optimal solution, is to rather use the standard general shortest path scheme [12]

where the set Q of candidate nodes is a FIFO list (or queue). This SPT.L.Queue al-

gorithm provides an efficient implementation of the Bellman-Ford algorithm that,

despite having the same worst-case time complexity, is typically much faster in

practice. Also, each node i is extracted from Q at most n − 1 times (if there are

no negative cost cycles, as it clearly is the case in our application), correspond-

ingly to the phases of the original Bellman-Ford algorithm. Hence, one can just

run the SPT.L.Queue algorithm and, each time d exits Q, check the corresponding

path. Although by doing this one may fail to explore some of the hop-constrained
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shortest paths, our experiments showed that this happens very infrequently, while

the algorithm is indeed significantly faster. Furthermore, it is easy to see that the

modified algorithm surely finds a solution if the original one does: the shortest

path corresponds to a feasible solution, if there is any, and both versions reliably

find it. This is important because, as we shall see, the ERA approach is very

effective for solving the general problem when it does find a solution, but often

ERA-SFSP-DCR is empty while SFSP-DCR is not; using SPT.L.Queue cannot

worsen this situation, as it does find a feasible solution if one exists. In fact, this

variant has shown to be so much preferable in our test set that we will only report

results about it.

The above analysis also suggests a similar modification to the feasibility-

checking approach of Sect. 2.2: just use SPT.L.Queue to compute the shortest

path and, whenever d exits Q, compute the cost and the delay of the current path,

saving the best (minimum cost) one obtained. This way one explores several paths

for each value of r, instead of just one, and starting with hop-short ones. Clearly,

because the value of rij is not taken to be equal for all arcs, but rather set to its

maximum possible value, the number of hops is no longer equivalent (for fixed r) to

the objective function value, but one may still hope to generate “good” paths. We

call this approach ERA-I (ERA-inspired); its distinctive feature is that it always

produces a feasible solution, if one exists. Furthermore, it can be used to compute

(at no added extra cost) the least possible feasible value of δ for which a feasible

solution exists by just recording the smallest possible delay value generated; this

will we useful in our computational experiments, as discussed in Sect. 5.1.

However, the approach above does not necessarily find an optimal solution to

EC-ERA-SFSP-DCR when the more general objective function r |P | has to be
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minimized. The obvious counterexample is the one where the computed minimal

cardinality path P is such that the delay constraint is not tight: then, r can be

suitably reduced by maintaining the path feasibility but without modifying the

path cardinality, thus finding a better solution.

This has been addressed in [3], where the following simple modification to the

above approach has been proposed. Again, an outer loop is performed where r

is chosen in C, the reduced graph Gr built, and the Bellman-Ford shortest path

procedure with root s and costs lr is ran. For each possible path cardinality h, this

determines a minimum-delay s-d path P among the paths in Gr having exactly h

arcs. If such a path P is found to be feasible, then the algorithm first computes the

minimum value of the rate such that the delay constraint related to P is satisfied

as an equality: this is simply done by considering that

∆(r, P ) :=
σ + L|P |

r
+

∑

(i,j)∈P

l′ij ≤ δ (4)

and noting again that the path delay is nondecreasing with respect to the rate,

i.e., that for

r̃(P ) :=
σ + L|P |

δ −∑
(i,j)∈P l′ij

(5)

one has both ∆(r̃(P ), P ) = δ and r̃(P ) ≤ r. Therefore, the algorithm minimizes

the cost function, with respect to r, in the rate interval [r̃(P ), r]; the approach is

described in [3] for slightly more general cost functions, but in our case this simply

amounts to picking the value r̃(P ). The following result holds true for the optimal

solution (as stated, but not really proven, in [3]):

Proposition 3.1 The best of the computed pairs (r̃(P ), P ) is an optimal solution to

EC-ERA-SFSP-DCR.
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Proof Consider the optimal solution (r∗, P ∗) to the problem, and let r be the

smallest element in C larger than (or equal to) r∗; clearly, such an r must exist

since otherwise all arcs of P ∗ should be assigned a capacity strictly larger than the

maximal arc capacity. Let us then consider the iteration of the approach where

that particular r is chosen: clearly, P ∗ is a path in Gr (each arc (i, j) ∈ P ∗ has

capacity at least r∗, hence at least r) and it is delay-feasible for that value of r

(since it is delay-feasible for r∗ ≤ r and the delay decreases with r). Therefore,

there exist delay-feasible s-d paths in Gr having exactly h∗ = |P ∗| arcs. Now, let

us consider the path P determined by the algorithm for the rate r and the hop

count h∗: since P is the minimum-delay s-d path in Gr with h∗ hops, its delay

∆(r, P ) must be smaller than or equal to the delay ∆(r, P ∗) of P ∗. However, if by

contradiction we had ∆(r, P ) < ∆(r, P ∗), then, since |P | = |P ∗| = h∗, one would

also have

∑
(i,j)∈P l′ij <

∑
(i,j)∈P∗ l

′

ij =⇒ δ −∑
(i,j)∈P l′ij > δ −∑

(i,j)∈P∗ l′ij

(cf. (4)): the r-dependent term is in fact identical for P and P ∗, and hence

r̃(P ) < r̃(P ∗). Since r̃(P ∗) ≤ r∗, then this would imply that (r̃(P ), P ) is a bet-

ter solution than (r∗, P ∗). It follows that both P and P ∗ are optimal solutions,

and therefore the best of the computed pairs (r̃(P ), P ) is an optimal solution to

EC-ERA-SFSP-DCR, as stated. ⊓⊔

Note that the solution (if any) is found in time O(|C|nm) ≤ O(nm2); clearly it

is feasible for the general SFSP-DCR, and therefore we can use this as a heuristic

for the problem where the rij are allowed to take on different values (and, possibly,

cost coefficients are not all equal). We will refer to this in the following as ERA-H.
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3.2 The General Costs Case

An interesting remark, that does not seem to having been done yet in the literature,

is that, under some conditions, it is possible to extend ERA-H to the case of non-

identical arc reservation costs fij , thus considering objective functions of form

rf(P ), where f(P ) :=
∑

(i,j)∈P fij .

In particular, assuming that fij are positive integers, one may replace the

Bellman-Ford shortest path computation at each iteration of the ERA-H algo-

rithm with a standard pseudo-polynomial Dynamic Programming approach to the

Constrained Shortest Path problem, thus obtaining a pseudo-polynomial time al-

gorithm (note that, under such a more general objective function, SFSP-DCR

is NP-hard, despite the ERA assumption). Specifically, this can be obtained

by considering any valid upper bound f̄ on the cost of a simple s-d path in G

(f̄ ≤ (n − 1)fmax, where fmax := max{ fij : (i, j) ∈ A }) and generating the ex-

tended Directed Acyclic Graph G̃ obtained from G by replicating each node i for

f̄ + 1 times, producing nodes (i, f) for all (integer) values f ∈ F̄ := {0, 1, . . . , f̄};

the (well-known) rationale of this definition is that (i, f) represents the fact that

node i has been reached from s with a path of cost f . Each arc (i, j) in G is then

replicated as well (at most) f̄ + 1 times to join all nodes (i, f) with (j, f + fij),

except of course those such that f + fij > f̄ ; each of these arcs has the same de-

lay coefficients and reservation capacity of the original arc (i, j). By the outlined

transformation, it is easy to see that there is a one-to-one correspondence between

the paths of G and these of G̃ in terms of associated delay, hop count, reservable

capacity and cost. It is well-known that, by basically visiting G̃, in O(f̄m) time

one can determine for all possible values f ∈ F̄ the minimum-delay s-d path in G
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among the s-d paths with objective function value exactly equal to f . This gives

the following:

Theorem 3.1 If fij are positive integers, then ERA-SFSP-DCR can be solved in

pseudo-polynomial time O(|C|f̄m) ≤ O(nm2fmax).

Proof We adapt ERA-H as follows: for each r ∈ C we construct the subgraph of

G̃, say G̃r, containing only arcs with capacity ≥ r (thus still with size bounded

by O(f̄m)). We then perform a breadth-first visit of G̃r from the node (s,0); each

time a node (d, f) for some value of f is visited we have found, among all s-d paths

of cost f , the minimum-delay one having the given number of hops. If that path P

is delay-feasible we proceed, as in ERA-H, to find the smallest compatible value of

r via (5) and we compare the cost r̃(P )f = r̃(P )f(P ) with that of the best solution

found so far (if any), keeping the best.

One can easily prove that this approach finds the optimal solution of the prob-

lem by extending the arguments of the previous section. In particular, it is sufficient

to consider the optimal solution (r∗, P ∗) of the problem, its path cost f∗ = f(P ∗)

and hop count h∗ = |P ∗|, and the properly chosen r ≥ r∗: because P ∗ belongs to

the graph G̃r and it has the given function value and hop count, there must be

an iteration where node (d, f∗) is visited, providing a path P with |P | = h∗. Rea-

soning as in Sect. 3.1 one has that, if by contradiction we had ∆(r, P ) < ∆(r, P ∗),

this would imply r̃(P ) < r̃(P ∗) ≤ r∗ (note that this goes through (4)–(5) and

therefore crucially uses the fact that |P ∗| = |P |, whence the need to perform a

breadth-first visit), hence r̃(P )f(P ) = r̃(P )f∗ < r∗f∗ = r∗f(P ∗) and the same

conclusions stated in Sect. 3.1 follows. Note that the latter relation crucially re-

quires f(P ) = f(P ∗); in Sect. 3.1 this was actually the same as the condition
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|P ∗| = |P |, but here the two are different (and both needed), which justifies the

need of the more involved pseudo-polynomial construction. ⊓⊔

As it often happens, a pseudo-polynomial time algorithm for the integer case

can be used to construct a Fully-Polynomial Time Approximation Scheme (FP-

TAS) for the case where fij are not (necessarily) integer values.

Theorem 3.2 If fij are positive, then ERA-SFSP-DCR admits a FPTAS with time

complexity O(n2m3/ε).

Proof The approach requires the repeated application of the pseudo-polynomial

time algorithm of Theorem 3.1 on a suitably defined approximated problem. The

“outer loop” of the algorithm cycles over all values of f ∈ F := { fij : (i, j) ∈ A },

i.e., all possible arc costs (|F | ≤ m). For the currently selected f , one defines the

reduced graph Gf where all arcs with cost strictly larger than f are deleted, and

defines the scaled costs

f̃ij = ⌈fij/K⌉, where K := (εf)/(n− 1)

for all arcs in Gf . Since fij ≤ f for all arcs in Gf , f̃ij ≤ ⌈n/ε⌉; hence, we can

solve the reduced and scaled ERA-SFSP-DCR problem on Gf , with costs f̃ij , by

means of the pseudo-polynomial time algorithm of Theorem 3.1, in O(n2m2/ε)

time. After this is done for all values of f ∈ F , the minimum cost solution found

is ε-optimal for the ERA-SFSP-DCR on the original graph and with the original

(unscaled) fij .

This can be proven similarly to Theorem 3.1: consider the optimal solution

(r∗, P ∗) to the problem, its maximal arc cost fmax(P
∗) := max{ fij : (i, j) ∈
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P ∗ }, its hop count h∗ := |P ∗|, and its scaled path cost f̃∗ := f̃(P ∗). Now con-

sider the outer iteration where f = fmax(P ∗). Clearly, P ∗ is a path in Gf , and

f ≤ f(P ∗) (since f = fmax(P ∗), and the costs are positive). Finally, consider the

inner iteration (that must occur) with the appropriate r ≥ r∗, where node (d, f̃∗)

is extracted from Q providing a path P with |P | = h∗. Because P is a minimum

delay s-d path with (scaled) cost f̃∗ and hop count h∗, one has ∆(r, P ) ≤ ∆(r, P ∗)

which, reasoning as in Theorem 3.1, gives r̃(P ) ≤ r∗. Furthermore, as a result of

the rounding operation one has

fij ≤ Kf̃ij ≤ fij +K ;

summing over P one obtains f(P ) ≤ Kf̃(P ), while summing over P ∗ one obtains

Kf̃(P ∗) ≤ f(P ∗) + h∗K. Now, using f̃(P ) = f̃∗ = f̃(P ∗) and the definition of K

one obtains f(P ) ≤ f(P ∗) + h∗K ≤ f(P ∗) + εf , which using f ≤ f(P ∗) can be

rewritten as

f(P ) ≤ f(P ∗)(1 + ε) ,

i.e., P is ε-optimal considering the cost of the path alone. However, since we have

already proven that r̃(P ) ≤ r∗, we can conclude that

r̃(P )f(P ) ≤ r̃(P )f(P ∗)(1 + ε) ≤ r∗f(P ∗)(1 + ε),

i.e., P is ε-optimal by considering the ERA-SFSP-DCR objective function rf(P ).

Since the objective function value of the best solution found by the outlined ap-

proach is less than or equal to r̃(P )f(P ), the thesis follows. The stated approx-

imation result is thus obtained with the announced time complexity, since there

are at most m outer iterations, each performed in O(n2m2/ε) time. ⊓⊔
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The tricky part of the approach is the selection of the scaling factor f , which

must be on one hand “large enough” so that all scaled costs are “small” (≤ n/ε),

and on the other hand “small enough” to ensure that f ≤ f(P ∗); this is guaranteed

by iterating over all the possible values of f , which are at most m, although

in practice there may be better approaches. For instance, unless the set of arc

costs is wildly distributed across a very large interval, just running the pseudo-

polynomial time approach once with f = fmax (hence Gf = G) looks to have

pretty good chances to actually provide an ε-optimal solution right away. One

may even be able to formally prove this by (approximately) solving the problem

of computing the shortest feasible s-d path (in terms of the costs fij); reasoning as

in Sect. 2.2, this can be cast as a standard Constrained Shortest Path problem and

thus efficiently tackled by a FPTAS. If the obtained lower bound (by considering

the approximation factor) is ≥ fmax, then the single application of the pseudo-

polynomial time algorithm is already guaranteed to produce ε-optimal solutions.

However, the approaches outlined before still assume the ERA restriction. Since

evidence have been provided [4] (in the multi-flow case but with fixed path) that

this can be highly suboptimal, in next section we discuss exact MINLP models of

SFSP-DCR that can be used to compute optimal solutions to the more general

scenario, and therefore assess the effectiveness of ERA-H when applied to the

non-restricted case.

4 Second-Order Cone Models

We now proceed at presenting MISOCP models for the general version SFSP-

DCR. For this, we first introduce arc-flow binary variables xij ∈ {0, 1} indicating
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whether or not arc (i, j) belongs to the chosen path P , so that we can use the

standard flow conservation constraints

∑

(j,i)∈BS(i)

xji −
∑

(i,j)∈FS(i)

xij =





−1, if i = s,

1, if i = d,

0, otherwise

i ∈ N (6)

to model the s-d–path requirements. We also introduce arc reserve variables rij , a

single variable rmin (with obvious meaning) and the corresponding constraints

0 ≤ rij ≤ cijxij (i, j) ∈ A (7)

ρ ≤ rmin ≤ rij + cmax(1− xij) (i, j) ∈ A (8)

that ensure on one hand that rij = 0 if xij = 0, and on the other hand that

ρ ≤ rmin ≤ rij if xij = 1. Note that the finiteness condition (1) is represented in

(8), and cmax := max{ cij : (i, j) ∈ A } is used in (8) to ensure that any arc not

in the chosen path (xij = 0) does not contribute to setting rmin; using cij in (8)

would not be correct, as it would imply that rmin ≤ min{ cij : (i, j) ∈ A }, even

counting arcs not in the chosen path.

We then introduce θij variables to represent the arc-additive part of the delay

defined by (2)–(3); with these, the delay constraint can be modeled as

t+
∑

(i,j)∈A

(
θij +

(
L

wij
+ lij + ni

)
xij

)
≤ δ (9)

t rmin ≥ σ , t ≥ 0, (10)

where t is an auxiliary variable needed to express the nonlinear σ/rmin term via

the (rotated) SOCP constraint (10). The issue now is to represent the fact that θij

is zero if xij = 0, while it is given by an appropriate (convex) nonlinear expression

otherwise.
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We will first present the following big-M formulation for this fragment of the

problem:

0 ≤ θij ≤ Mxij (i, j) ∈ A (11)

θij ≥ sij −M(1− xij) (i, j) ∈ A (12)

sij r
′

ij ≥ L (i, j) ∈ A (13)

sij ≥ 0 (i, j) ∈ A (14)

0 ≤ r′ij ≤ rij +M(1− xij) (i, j) ∈ A. (15)

The formulation requires two extra sets of variables. Indeed, one would like to

represent the nonlinear θij ≥ L/rij term via the (rotated) SOCP constraint

rij θij ≥ L,

but this is not possible because, since L > 0, neither θij nor rij are allowed to be

zero, whereas rij = θij = 0 is expected when xij = 0. This is why one introduces:

– constraints (11) to guarantee that xij = 0 =⇒ θij = 0, although these may be

also avoided since the model has no incentive in increasing the value of θij ;

– variables sij ≥ 0 such that θij ≥ sij if xij = 1, while basically θij and sij are

“free” if xij = 0;

– variables r′ij ≥ 0 such that r′ij ≤ rij if xij = 1, while basically r′ij and rij are

“free” if xij = 0;

– the SOCP constraint (13) ensuring that sij ≥ L/r′ij , which of course implies

θij ≥ sij ≥ L/r′ij ≥ L/rij

whenever xij = 1.
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All this requires a “big-M” in the constraints, which we claim is best set as

M = max(
√
L , L/ρ). The rationale for this choice is as follows:

– When xij = 0, (11)–(15) give

0 ≥ θij ≥ sij −M , sij ≥ L/r′ij , r′ij ≤ M.

(as rij = 0 as well). Since in this case sij and r′ij can take any value (they

do not appear in the objective function nor in any other constraint) we only

need to choose a value of M for which a solution exists: this boils down to

M ≥ sij ≥ L/r′ij ≥ L/M , hence M2 ≥ L.

– When xij = 1 instead, (11)–(15) give

M ≥ θij ≥ sij ≥ L/r′ij ≥ L/rij ,

but rij ≥ ρ from (8), whence M ≥ L/ρ.

Hence, SFSP-DCR can be modeled as a MISOCP, and therefore solved by off-the-

shelf, efficient, general-purpose solvers like Cplex or GUROBI. However, the thusly

proposed formulation has m binary variables and 4m+2 continuous ones, together

with m + 1 SOCP constraints and, more importantly, several big-M coefficients.

It can be expected that such a formulation may quickly become rather difficult to

solve.

To avoid some of the issues in the previous formulation, we exploit a well-

known reformulation technique known as “Perspective Reformulation”, that has

been introduced in [13] and used in several applications with success (e.g. [14–18]),

although usually in a different form than the one that is presented here. The

approach is based on the well-known fact (e.g. [19]) that, given any convex function
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f : Rq → R and the two sets

P0 := { 0 } , P1 := { v ∈ R
q : l ≤ v ≤ u , f(v) ≤ 0 } ,

the best possible convex approximation of their (nonconvex) union is

conv(P0 ∪ P1 ) =
{
v : λl ≤ v ≤ λu , λf(v/λ) ≤ 0 , λ ∈ [0,1]

}
. (16)

The above formulation looks ill-defined when λ = 0, but, as we will see, in prac-

tice this is not an issue. We can readily apply this to (3); in particular, we take

v = [θij , rij ] and

f(θij , rij) :=
L

rij
− θij ,

and identify λ = xij to obtain that our requirement can be modeled by the MINLP

fragment

ρxij ≤ rij ≤ cijxij

0 ≤ θij ≤ (L/ρ)xij

Lx2
ij

rij
≤ θij . (17)

The crucial observation is that (17) can be directly modeled as a (rotated) SOCP

constraint; thus,

min
∑

(i,j)∈A fijrij (18)

(6) , (7) , (8) , (9) , (10)

θij rij ≥ Lx2
ij (i, j) ∈ A (19)

θij ≥ 0 (i, j) ∈ A (20)

xij ∈ {0, 1} (i, j) ∈ A (21)
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provides an exact reformulation of the problem. Indeed, the SOCP constraint (19)

ensures that θij ≥ L/rij when xij = 1, but simply reduces to θij ≥ 0 when xij = 0

(which will then mean that θij = 0 in any optimal solution since the model does

not have any incentive to grow θij), thus negating the need for the extra vari-

ables sij and r′ij of the big-M formulation. Clearly, (18)–(21) is a more promising

formulation than the one based on (11)–(15): while it has the same number of

integer variables and conic constraints, it has only 2m + 2 continuous variables,

i.e., only m+ 1 more than the structural ones, and clearly the minimum possible

number to express the fractional terms in (2)–(3). Furthermore, the continuous

relaxation of this formulation is likely to be significantly stronger, since the “op-

timal” reformulation of some (small) fragments of the model has been used; this

has been already shown to yield significant performance improvements in other

applications [13–16, 18], and the next section will show that the same holds here.

We finish this section by underlying a potential advantage of using MISOCP

models: they could be easily generalized to the case where the cost comprises both

reservation costs and fixed costs for the arc selection.

5 Computational Results

We now report our computational experiences aimed at assessing the relative effi-

ciency and effectiveness of the different exact and heuristic approaches to SFSP-

DCR. In particular, we compare ERA-H, ERA-I, and the two different MISOCP

solvers for the solution of the general model SFSP-DCR. However, we confine

ourselves to the case in which all capacity reservation costs fij are equal. This

choice is partly motivated by the fact that, in such a scenario, ERA-H can be
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implemented simply and runs in (low) polynomial time O(|C|nm), as shown in

Sect. 3.1. However, another motivation is that defining sensible weights which

measure the different impact of capacity consumption on different arcs is nontriv-

ial, and in want of a specific need to do otherwise, assuming unitary weights is the

reasonable option. Thus, while the experimental evaluation of the performances of

the Dynamic Programming algorithm and the FPTAS presented in Sect. 3.2 could

be interesting, it has not been carried out in this study; hopefully, it will be the

subject of future investigation. We will refer to the model (18)–(21) as “P”, and

to the model using instead the constraints (11)–(15) as “bM”. All the experiments

have been performed on a (currently, rather low-end) PC with a 2Ghz Opteron

246 processor and 2Gb RAM, running a 64 bits Linux operating system (Ubuntu

12.4). All the codes were compiled with gcc 4.4.3 and -O3 optimizations. The two

MISOCP models were solved by the two state-of-the-art, off-the-shelf, commercial

solvers Cplex 12.5 and GUROBI 5.10. Both solvers were ran without time limit and

with default parameters.

5.1 The Instances

Constructing a set of significant DCR instances is a nontrivial exercise; fortunately,

the recently released FNSS tool [20] provides a number of expert-tuned options to

help devising realistic models of current telecommunications networks.

The generation process starts by selecting a network topology (basically, the

graph G). For this, we considered two sets of real-world IP network topologies:

the GARR subset [21] of the Internet Topology Zoo [22], and the SNDlib ones [23],

which can be downloaded in gml format. Furthermore, in order to test our models
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on larger instances we used also random topologies generated according to the

Waxman model [24]. This can be done directly by FNSS, which allows to generate

random Waxman topologies simply by specifying the number of nodes n and the

(probability) parameter α ∈ (0,1], representing the link density: in our experiments

we set n ∈ {100,200} and α = 0.4.

Once the topology is loaded in FNSS (either by reading a gml file or by its

internal random generator), one can assign realistic link capacities using one of

the three allocation algorithms specifically designed for modeling PoP-level link

capacity assignment in ISP backbones. These algorithms exploit the correlation

between the amount of capacity assigned to a specific link and three metrics that

are meant to capture the importance of the link; in particular, we used the edge

betweenness centrality metric that corresponds to the number of shortest paths

passing through a specific link. In particular, once one has specified a set of possible

link capacity values wij (in our case the standard {1, 10,40} Gbps), the “edge

betweeness” algorithm will assign a capacity from the set to all the links of the

network proportionally to the edge betweenness centrality.

After this is done, FNSS also supports generation of realistic traffic matrices

that take into account the capacities of the network. To generate a traffic matrix

one needs to specify the mean traffic demand µ(T ) and its standard deviation

σ2(T ); for our experiments we set µ(T ) = 0.8 Gbps and σ2(T ) = 0.05. We remark

that SNDlib instances also provide link capacity and (multiple) traffic matrices,

but for the sake of uniformity we used randomly-generated data on these, too.

Basically, the above set of parameters (together with arc costs) define an in-

stance of a Multicommodity Min Cost Flow (MMCF) problem; in order to stan-

dardize and ease the distribution of our instances we thus created a correspond-



26 Antonio Frangioni et al.

ing set of MMCF instances in the well-known Mnetgen format [25]. We remark

that FNSS generates by default n2 traffic flows, i.e., one for each possible origin-

destination pair in the network; while this results in an acceptable number of flows

in all the real-world instances, the same cannot be said for the Waxman ones, that

would in this way get the order of 10000 flows. Restricting the number of flows in

FNSS is possible but complex; thus, we rather exploited this “translation stage” to

select a subset of the FNSS generated flows, limiting the number to n logn.

The last step of the generation process takes in input any MMCF instance and

defines reasonable values for the missing parameters, basically the delay-related

ones. For this, we implemented a DCR-generator that generates the remaining

network parameters according to the suggestions of telecommunication network

experts. In particular, the MTU L is set to 1500 bytes, since nearly all IP over

Ethernet implementations use the Ethernet V2 frame format. Node delays ni and

link delays lij are then set equal to L/wij ; individual reservation capacities cij are

taken to be all equal to the mutual reservation capacitiy wij at this stage. Flow

bursts σ are set to 3 times the MTU value. Finally, to define flow deadlines δ, we

calculate the least possible value δmin, under which no routing is possible, and the

maximum possible value δmax, over which the delay constraint becomes redundant.

As mentioned in Section 2.2, δmin can be computed using the ERA-I algorithm; as

for δmax, one can use an analogous approach where each rij is set to its minimum

possible value ρ (as opposed to its maximum possible value cij as in ERA-I). Then,

δ is randomly chosen uniformly within the interval [ δmin , (δmax − δmin)β ] for a

fixed parameter β; in our experiments we used β = 0.2.

All the produced files are freely available at [25], and the DCR-generator will

also be made available in due time. We remark that we tested, on a small subset of
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topologies, several other combinations of the generation parameters at the various

steps (traffic matrices, delay, . . . ) but the general flavor of the results did not

change significantly, so we believe that the ones reported in next section can be

considered fairly typical.

5.2 Computational Experiments

In a first set of experiments, we assumed link speed wij and link capacity cij to

coincide; in other words, each flow is individually routed in an “empty” network.

Because of our generation process (cf. Sect. 5.1), this means that each correspond-

ing instance is feasible.

A first set of results related to the performance of the heuristics ERA-I and

ERA-H is reported in Table 1. For each instance of the three test sets (visually

separated by an horizontal line) we report the size of the graph and the number

of flows (k); each line of the table refers to the solution of all flows in the instance,

one by one, as SFSP-DCR. For both heuristics, we report the average and the

maximum (among all the flows of the instance) gap between the optimal value,

as computed by the SOCP models, and the value of the solution returned by the

heuristic. We do not report running times because, for both heuristics, they were

negligible, always less than 0.001 seconds; furthermore, they will be reported later

on (cf. Table 3). However, for ERA-H we report the failure rate (column “inf”),

i.e., the fraction of the instances (flows) for which ERA-H was not able to find a

feasible solution. We don’t do this for ERA-I because, as the theory predicts, it

was always capable of finding a feasible solution. Of course, the average and the
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maximum for ERA-H were only computed for those flows for which it did produce

a feasible solution.

The table clearly depicts a rather awkward picture, whereby ERA-I always

produces solutions of rather abysmal quality (average gaps almost always larger

than 50% and maximal gaps on the region of 90%) but solves all flows, whereas

ERA-H consistently produces solutions of extremely good quality in average: as

the “max” column shows gaps can be quite large at times, but the very low average

means that this occurs very rarely. However, ERA-H fails to find solutions in a

significant fraction of the cases (up to 85%), despite all instances being guaranteed

to be feasible.

We then move on to Table 2, which reports the behavior of the two general-

purpose solvers for the solution of the two MISOCP models P and bM. Since we

did not set any time limit all solvers were capable of solving all instances, so we

only report the (average and maximum) running time (“t”) and the number of

nodes (“n”) they required. We do not report again instance information since the

rows are organized exactly as in Table 1 and have the same meaning.

The table clearly shows that—how it should be expected—model P is much

better than model bM. On the real-world networks, the first is between 2 and 6

times faster on average for Cplex and between 3 and 12 times faster on average

for GUROBI, with similar (albeit often somewhat smaller) improvement rates on the

maximum time. For the largest networks, the ratios climb to a factor of 10 and

15 for the average and to a factor of 20 and 35 for the maximum, respectively for

Cplex and GUROBI. Hence, there is no reason not to use model P. The comparison

between the two solvers is less clear: GUROBI is often somewhat faster, but also
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somewhat less consistent (although Cplex have occasionally shown numerical is-

sues). Incidentally, these results probably depend on somewhat different strategies,

as shown by the fact that GUROBI enumerates significantly more nodes, but it is

often faster in doing so, which probably implies it being less reliant on strategies

to improve the lower bound, such as valid inequalities; indeed, this is the typical

approach that the folklore would associate to a faster behavior on “easy” instances

but a less consistent one on“harder” ones. Yet, the two solvers are largely equiva-

lent, and the results bode relatively well for the use of the P model in a real-world

operating environment, with average and even maximum (except for a few cases

for GUROBI) running times in the split-second range. However, as the size grows

average (and especially maximum) running times become unfeasibly large. Ad-

mittedly, one could experiment with setting a tight time limit and/or a coarser

optimality tolerance to the MISOCP solvers to determine whether or not good fea-

sible solutions can be obtained (although not proven optimal) in much less time;

however, it is fair to say that these results already start to show the limitations of

an approach entirely relying on general-purpose tools.

Given these results, for our final set of experiments we focused only on the P

model. The rather peculiar behavior of the ERA-H heuristic, which is very effective

when it does deliver a solution, but also rather prone to failure, suggests to try to

combine the best characteristics of all the available approaches. One simple way

to do that is to develop a three-pronged approach (“3P” in the following) that

proceeds as follows:

1. initially it runs the very quick ERA-I, and if the instance is found to be un-

feasible it terminates;
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2. otherwise it runs ERA-H: if a solution is found it is reported and the approach

terminates;

3. if all else fails, then model P is ran and its solution is reported.

This is clearly not the most sophisticated approach: one could for instance choose

to always run at least the root node of the P model to try to determine whether

the current instance is one of the (very) few where ERA-H finds solution of bad

quality, or more in general run the MISOCP solvers on tight time limits giving

them the ERA-H solution as cutoff. However, we decided to limit ourselves to

the simplest solution and test it on a somewhat more “realistic” environment. In

particular, we fixed in four possible ways (0, 0.2, 0.4, 0.8) a maximum level γ of

arc load, and for each level we subtracted to the arc capacity an amount uniformly

drawn at random in [0, γwij ] to simulate a more realistically loaded network. We

then compared three approaches in all these four scenarios: ERA-H, the use of the

MISOCP solvers (obviously with model P), and the 3P approach. The results are

shown in Tables 3, 4, 5, and 6 for γ = 0 (i.e., the “unloaded” network of Tables

1 and 2), γ = 0.2, γ = 0.4 and γ = 0.8, respectively. The rows of the tables are

all organized in the same way as the previous ones. In the leftmost part of each

table we report the (average and maximum) running times of the 3P approach,

with both solvers, as compared to that of the direct MISOCP approach. In the

middle part we report the (average and maximum) gap of 3P, which is of course

the same for the two solvers, since that of the MISOCP is always zero. Finally,

in the leftmost part we report the average (when it is larger than 1e-6 seconds)

and maximum running time of ERA-H, as well as the corresponding fraction of

“failed” instances. This is just the number of flows for which a solution was not
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found when γ = 0, but for larger values of γ some of the instances actually do not

have a solution; thus, in this case we report the fraction of the feasible instances

(for which MISOCP and 3P can find a solution) that cannot be solved by ERA-

H. Note that in one case (entry “***” in Table 6) not a single flow was feasible,

and therefore this fraction had no meaning. Moreover, note that we do not report

gaps for ERA-H since we can estimate them to be very close to these of 3P; the

latter are bound to be slightly smaller, because 3P solves more instances than

ERA-H and these in the difference set are solved with guaranteed zero gap, but

the difference is negligible.

The results show that, for γ = 0, 3P is not much faster than the MISOCP on

the GARR instances; this is not surprising, because the failure rate of ERA-H in

these is very large, meaning that for more than 75% of the flows one actually ends

up performing both approaches. However, on the same instances 3P is significantly

faster than P for γ > 0: this is due to the fact that the percentage of unfeasible

instances increases with γ, and these are quickly identified by ERA-I without a

need to invoke neither of the other two components (although, infeasible instances

are quickly identified by the general-purpose solvers as well, as it is easy to see

since their running time also decreases).

On the SNDlib instances and on the Waxman-100 one, 3P most often requires

a substantially smaller average running time than MISOCP (typically one order

of magnitude less), while obtaining a very low average gap (less than 1%) in spite

of the occasionally substantial (but, clearly, very rare) maximum gaps. For the

SNDlib instances, the running time of ERA-H is significantly smaller; however,

the heuristic fails in a significant number of cases. Furthermore, while for γ = 0

ERA-H is still two orders of magnitude faster on the Waxman-100 instance, when
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γ > 0 the difference is much smaller. This should be expected in view of the fact

that its running time depends on |C|, and while for γ = 0 we have |C| = 3 in our

instances, in the other (more realistic) cases |C| ≈ m. We remark that these re-

sults are strongly dependent on using the SPT.L.Queue approach in implementing

ERA-H (and therefore 3P), since otherwise the approaches would be significantly

less competitive: using the Bellman-Ford algorithm typically results in increased

running times by two orders of magnitude, especially as the load of the network

increases.

The effect of network load is even more apparent in the Waxman-200 instance:

indeed, while for γ = 0 ERA-H requires about 0.01 seconds, for γ > 0 its average

running time is about 8 seconds, and the maximum about 10. For GUROBI this is

actually larger than the mean running time, so that 3P turns out to be actually

slower than P on average, although it is still significantly faster when the maximum

is taken into account; things are different with Cplex only because for this instance

it is significantly slower than GUROBI. Yet, all this is scarcely relevant: none of the

proposed techniques can solve SFSP-DCR instances of that size efficiently enough.

6 Conclusions

Routing under QoS constraints is a new, interesting application that motivates

the development of MINLP models with novel structures. In particular, the SFSP-

DCR problem is an interesting optimization model that shows both a “classical”

flow/path structure and a pretty uncommon nonlinear (albeit, fortunately, con-

vex) resource constraint. This peculiar combination allows for the development of

specialized approaches, largely based on shortest paths computations, for the case
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where the “nonlinear” features of the problem can be dealt with easily, such as

when one restricts all the resource allocations to be equal; however, the general

case gives rise to complex MISOCP models that require sophisticated reformula-

tion techniques to be solved efficiently enough with general-purpose tools.

Our computational results show that one can solve SFSP-DCR with high ef-

ficiency for networks of realistic size, in particular if it is possible to cope with

occasional (but very rare) suboptimal solutions; in this case, the “three pronged”

approach that combines combinatorial heuristics and the use of MISOCP models

seems to be a promising option. Let us mention that split-second running times

on ordinary hardware is feasible for practical applications, because routing de-

cisions can nowadays be demanded to a specialized Path Computation Element

(PCE) [26] that, unlike ordinary routers, can be computationally powerful and run

a significant amount of non-routing-related software such as a general-purpose op-

timization solver. Besides, only one PCE per network is required, thus hardware,

software and maintenance costs would not be a serious issue. Thus, the approaches

presented in the paper could, at least in principle, be feasibly implemented in a

real-world operating environments.

However, our results also show that there is still ample room for improvement.

When the size of the network increases, all the approaches become excessively slow.

This is true not only for the MISOCP models, but also for the (otherwise very

fast) combinatorial heuristics, even in its best case of all-equal costs; while efficient

(approximated) versions could be devised for general costs, it must be expected

that their practical performances be significantly slower than these for the all-

equal case. Hence, we believe that the study of nonlinearly-constrained shortest
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path (or flow) models is a promising new research venue that can both lead to

significant methodological advances and foster practically useful applications.
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ERA-I ERA-H

instance n m k avg max avg max inf

garr 1999-01 16 36 240 0.65 0.88 0.000 0.001 0.02

garr 1999-04 23 50 506 0.57 0.94 0.000 0.001 0.75

garr 1999-05 23 50 506 0.55 0.94 0.000 0.000 0.75

garr 2001-09 22 48 462 0.60 0.94 0.000 0.000 0.74

garr 2001-12 24 52 552 0.59 0.94 0.000 0.000 0.75

garr 2004-04 22 48 462 0.56 0.94 0.000 0.000 0.75

garr 2009-08 54 136 2862 0.65 0.94 0.001 0.386 0.85

garr 2009-09 55 138 2970 0.67 0.94 0.000 0.000 0.85

garr 2009-12 54 136 2862 0.67 0.94 0.001 0.240 0.85

garr 2010-01 54 136 2862 0.67 0.94 0.001 0.241 0.85

abilene 12 15 31 0.52 0.92 0.000 0.000 0.06

atlanta 15 22 45 0.57 0.88 0.000 0.000 0.07

cost266 37 57 120 0.48 0.95 0.000 0.000 0.17

dfn-bwin 10 45 45 0.03 0.06 0.000 0.000 0.00

dfn-gwin 11 47 53 0.16 0.86 0.000 0.000 0.02

di-yuan 11 42 58 0.48 0.90 0.000 0.000 0.12

france 25 45 66 0.44 0.90 0.000 0.000 0.02

geant 22 36 63 0.46 0.89 0.000 0.001 0.06

germany50 50 88 276 0.50 0.90 0.000 0.001 0.21

giul39 39 172 1482 0.67 0.97 0.011 0.570 0.10

india35 35 80 195 0.53 0.93 0.000 0.000 0.11

janos-us 26 84 650 0.71 0.95 0.004 0.275 0.18

janos-us-ca 39 122 1482 0.68 0.95 0.010 0.289 0.23

newyork 16 49 89 0.50 0.90 0.000 0.000 0.03

nobel-eu 28 41 106 0.55 0.93 0.000 0.000 0.23

nobel-ger 17 26 51 0.49 0.93 0.000 0.000 0.10

nobel-us 14 21 24 0.35 0.90 0.000 0.001 0.00

norway 27 51 341 0.71 0.94 0.000 0.000 0.12

pdh 11 34 54 0.64 0.90 0.000 0.001 0.04

pioro40 40 89 204 0.40 0.89 0.000 0.000 0.25

polska 12 18 24 0.59 0.90 0.000 0.000 0.00

sun 27 102 702 0.76 0.95 0.008 0.431 0.06

ta2 65 108 388 0.45 0.92 0.000 0.000 0.31

w1-100-04 100 414 664 0.77 0.95 0.015 0.739 0.07

w1-200-04 200 1550 1528 0.71 0.96 0.015 0.814 0.05

Table 1 Behavior of ERA-I and ERA-H
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Cplex P Cplex bM GUROBI P GUROBI bM

average maximum average maximum average maximum average maximum

t n t n t n t n t n t n t n t n

0.022 0.017 0.13 1 0.09 0.21 0.33 1 0.034 0.5 0.09 9 0.096 6.6 0.38 17

0.029 0.000 0.07 0 0.10 0.07 0.45 3 0.016 1.9 0.11 26 0.115 2.7 0.55 35

0.029 0.004 0.09 1 0.10 0.08 0.40 3 0.018 2.0 0.08 25 0.139 3.5 0.79 36

0.030 0.000 0.10 0 0.11 0.10 0.44 3 0.020 2.0 0.09 19 0.156 4.0 0.97 29

0.029 0.000 0.08 0 0.09 0.16 0.32 3 0.015 0.0 0.04 0 0.116 0.1 0.31 17

0.028 0.000 0.18 0 0.09 0.05 0.31 3 0.021 3.0 0.06 14 0.128 3.5 0.57 27

0.087 0.005 0.46 2 0.57 0.47 1.99 27 0.070 7.6 0.72 124 0.776 18.8 5.39 164

0.089 0.011 0.62 4 0.60 0.61 2.19 36 0.071 7.6 0.59 202 0.918 21.8 4.85 212

0.090 0.013 0.78 4 0.60 0.59 2.47 44 0.071 7.6 0.55 123 0.920 22.7 6.21 352

0.093 0.013 0.50 4 0.61 0.57 2.32 32 0.073 7.6 0.68 114 0.916 22.8 5.76 339

0.011 0.000 0.03 0 0.02 0.03 0.09 1 0.011 0.0 0.03 0 0.032 0.1 0.06 3

0.015 0.044 0.18 1 0.03 0.07 0.17 1 0.012 0.5 0.03 8 0.044 1.6 0.08 15

0.015 0.017 0.06 1 0.05 0.03 0.26 1 0.012 0.4 0.05 11 0.099 0.8 0.30 27

0.012 0.000 0.03 0 0.05 0.02 0.11 1 0.007 0.0 0.01 0 0.068 0.0 0.08 0

0.020 0.151 0.10 1 0.05 0.00 0.16 0 0.017 0.0 0.04 0 0.104 0.1 0.31 4

0.051 1.190 0.34 18 0.11 1.36 0.62 31 0.028 2.0 0.21 46 0.116 4.9 0.46 74

0.014 0.000 0.05 0 0.04 0.02 0.16 1 0.011 0.3 0.03 6 0.079 1.2 0.18 17

0.011 0.016 0.06 1 0.03 0.03 0.19 1 0.011 0.7 0.04 11 0.062 1.2 0.17 22

0.024 0.025 0.10 1 0.09 0.06 0.70 1 0.016 1.1 0.26 34 0.166 2.5 0.93 52

0.245 0.547 0.99 13 1.27 15.33 6.68 610 0.424 67.6 6.69 1308 1.795 138.5 30.02 2212

0.021 0.036 0.27 1 0.08 0.07 0.58 4 0.014 0.4 0.12 14 0.132 1.8 0.34 29

0.093 0.108 0.63 7 0.43 2.65 1.55 30 0.150 21.2 2.14 767 0.717 85.4 16.54 1168

0.141 0.138 0.83 8 0.80 5.76 2.76 243 0.285 47.1 7.87 916 1.741 158.4 25.93 1595

0.018 0.034 0.14 1 0.07 0.05 0.28 1 0.013 0.8 0.04 14 0.091 2.2 0.22 22

0.016 0.009 0.08 1 0.04 0.05 0.26 1 0.013 0.2 0.09 9 0.080 0.4 0.25 31

0.011 0.020 0.04 1 0.04 0.08 0.24 3 0.012 0.4 0.04 11 0.056 1.4 0.33 38

0.015 0.083 0.10 1 0.04 0.04 0.19 1 0.012 0.8 0.05 11 0.047 0.9 0.15 11

0.035 0.079 0.32 8 0.11 0.36 0.96 8 0.033 2.8 0.44 30 0.141 7.7 0.63 55

0.042 0.444 0.38 8 0.11 0.74 0.38 13 0.023 4.6 0.09 47 0.081 7.1 0.23 45

0.019 0.039 0.27 1 0.10 0.14 0.57 6 0.015 0.6 0.09 13 0.160 2.6 0.57 44

0.020 0.042 0.11 1 0.03 0.08 0.09 1 0.010 0.5 0.03 7 0.038 1.2 0.06 9

0.165 0.587 0.89 13 0.65 7.68 2.36 257 0.189 39.6 0.76 282 0.961 126.9 5.68 583

0.020 0.015 0.13 1 0.12 0.08 0.89 4 0.018 0.6 0.12 27 0.214 1.9 1.52 33

1.854 3.176 43.14 85 8.88 164.49 43.87 2585 2.372 159.3 7.09 703 14.064 407.2 110.36 5339

24.231 25.366 413.95 4075 231.09 2714.68 9088.54 127429 9.575 241.4 63.37 1395 134.145 637.0 2384.84 10943

Table 2 Behavior of MISOCP models
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Cplex GUROBI

SOCP 3P SOCP 3P Gaps ERA-H

avg max avg max avg max avg max avg max avg max inf

0.025 0.12 0.001 0.03 0.035 0.10 0.001 0.03 0.00 0.00 4e-5 0.01 0.02

0.030 0.08 0.022 0.06 0.017 0.12 0.016 0.10 0.00 0.00 4e-5 0.01 0.75

0.028 0.08 0.021 0.06 0.018 0.08 0.016 0.08 0.00 0.00 6e-5 0.01 0.75

0.026 0.09 0.021 0.08 0.022 0.09 0.018 0.09 0.00 0.00 4e-5 0.01 0.74

0.027 0.07 0.022 0.07 0.016 0.04 0.012 0.04 0.00 0.00 4e-5 0.01 0.75

0.026 0.17 0.020 0.05 0.022 0.06 0.019 0.06 0.00 0.00 4e-5 0.01 0.75

0.084 0.44 0.075 0.44 0.069 0.70 0.065 0.71 0.00 0.39 2e-4 0.01 0.85

0.086 0.62 0.078 0.62 0.069 0.56 0.063 0.57 0.00 0.00 2e-4 0.01 0.85

0.088 0.75 0.078 0.73 0.071 0.52 0.061 0.50 0.00 0.24 2e-4 0.01 0.85

0.087 0.46 0.076 0.45 0.074 0.61 0.066 0.59 0.00 0.24 2e-4 0.01 0.85

0.009 0.02 0.001 0.01 0.009 0.02 0.001 0.01 0.00 0.00 0.00 0.06

0.016 0.16 0.001 0.02 0.010 0.03 0.001 0.02 0.00 0.00 0.00 0.07

0.013 0.05 0.002 0.03 0.012 0.04 0.003 0.04 0.00 0.00 0.00 0.17

0.011 0.02 0.000 0.00 0.007 0.01 0.000 0.01 0.00 0.00 0.00 0.00

0.019 0.09 0.000 0.01 0.015 0.04 0.000 0.01 0.00 0.00 0.00 0.02

0.050 0.35 0.017 0.35 0.028 0.22 0.012 0.23 0.00 0.00 0.00 0.12

0.015 0.04 0.000 0.01 0.010 0.03 0.000 0.01 0.00 0.00 0.00 0.02

0.013 0.05 0.001 0.01 0.010 0.04 0.001 0.03 0.00 0.00 0.00 0.06

0.021 0.09 0.005 0.08 0.017 0.24 0.007 0.27 0.00 0.00 7e-5 0.01 0.21

0.254 1.01 0.019 0.66 0.449 7.57 0.087 6.52 0.01 0.57 3e-4 0.01 0.10

0.019 0.25 0.002 0.04 0.016 0.11 0.002 0.07 0.00 0.00 0.00 0.11

0.091 0.62 0.013 0.33 0.153 2.25 0.051 2.19 0.00 0.28 1e-4 0.01 0.18

0.144 0.84 0.026 0.49 0.298 9.59 0.118 7.70 0.01 0.29 2e-4 0.01 0.23

0.017 0.13 0.000 0.02 0.015 0.04 0.001 0.02 0.00 0.00 0.00 0.03

0.014 0.05 0.004 0.05 0.016 0.09 0.005 0.09 0.00 0.00 0.00 0.23

0.010 0.03 0.002 0.03 0.015 0.04 0.002 0.04 0.00 0.00 0.00 0.10

0.013 0.09 0.000 0.00 0.014 0.05 0.000 0.00 0.00 0.00 0.00 0.00

0.032 0.30 0.005 0.25 0.035 0.32 0.005 0.13 0.00 0.00 6e-5 0.01 0.12

0.034 0.30 0.001 0.02 0.026 0.10 0.002 0.10 0.00 0.00 0.00 0.04

0.019 0.27 0.007 0.25 0.018 0.09 0.007 0.09 0.00 0.00 5e-5 0.01 0.25

0.016 0.09 0.000 0.00 0.014 0.03 0.000 0.00 0.00 0.00 0.00 0.00

0.154 0.89 0.006 0.36 0.188 0.87 0.009 0.40 0.01 0.43 2e-4 0.01 0.06

0.019 0.12 0.008 0.05 0.020 0.13 0.009 0.13 0.00 0.00 8e-5 0.01 0.31

1.906 46.7 0.034 1.84 2.354 8.35 0.150 3.54 0.01 0.74 2e-3 0.01 0.07

23.660 357.7 0.247 54.29 9.033 63.19 0.399 12.36 0.01 0.81 1e-2 0.02 0.05

Table 3 Comparison of the P model and 3P for γ = 0
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Cplex GUROBI

SOCP 3P SOCP 3P Gaps ERA-H

0.024 0.11 0.001 0.05 0.032 0.11 0.001 0.03 0.00 0.00 3e-4 0.01 0.05

0.040 0.12 0.003 0.05 0.003 0.09 0.003 0.07 0.00 0.00 5e-4 0.01 0.79

0.037 0.12 0.004 0.05 0.004 0.05 0.003 0.04 0.00 0.00 5e-4 0.01 0.82

0.046 0.15 0.004 0.08 0.005 0.07 0.003 0.06 0.00 0.00 4e-4 0.01 0.73

0.035 0.12 0.004 0.06 0.003 0.04 0.003 0.03 0.00 0.00 5e-4 0.01 0.76

0.035 0.11 0.003 0.05 0.003 0.04 0.002 0.04 0.00 0.00 4e-4 0.01 0.73

0.132 0.89 0.033 0.29 0.024 0.31 0.027 0.34 0.00 0.00 7e-3 0.02 0.74

0.134 0.96 0.035 0.37 0.025 0.36 0.029 0.37 0.00 0.00 7e-3 0.02 0.76

0.129 0.76 0.035 0.51 0.026 0.33 0.028 0.34 0.00 0.24 7e-3 0.02 0.76

0.131 0.80 0.036 0.51 0.026 0.30 0.031 0.33 0.00 0.24 7e-3 0.02 0.76

0.010 0.04 0.000 0.01 0.005 0.02 0.001 0.02 0.00 0.00 0.00 0.04

0.015 0.10 0.001 0.02 0.009 0.04 0.001 0.03 0.00 0.00 0.00 0.05

0.014 0.06 0.002 0.04 0.010 0.06 0.002 0.06 0.00 0.00 3e-4 0.01 0.10

0.021 0.05 0.000 0.00 0.001 0.01 0.001 0.01 0.00 0.00 2e-4 0.01 0.00

0.032 0.08 0.001 0.02 0.011 0.03 0.001 0.02 0.00 0.00 2e-4 0.01 0.05

0.044 0.19 0.011 0.18 0.026 0.20 0.012 0.21 0.00 0.00 2e-4 0.01 0.15

0.019 0.06 0.001 0.01 0.008 0.03 0.000 0.01 0.00 0.00 3e-4 0.01 0.00

0.014 0.04 0.000 0.01 0.007 0.04 0.001 0.01 0.00 0.00 0.00 0.02

0.025 0.12 0.004 0.12 0.013 0.09 0.005 0.10 0.00 0.00 1e-3 0.01 0.13

0.257 1.21 0.057 1.02 0.424 7.08 0.100 7.07 0.01 0.57 2e-2 0.03 0.11

0.025 0.20 0.002 0.05 0.015 0.11 0.004 0.04 0.00 0.00 1e-3 0.01 0.09

0.103 0.50 0.018 0.33 0.155 1.84 0.041 1.84 0.00 0.28 2e-3 0.01 0.16

0.170 0.78 0.044 0.81 0.274 3.34 0.113 3.30 0.01 0.26 6e-3 0.02 0.22

0.020 0.10 0.001 0.06 0.014 0.05 0.002 0.03 0.00 0.00 4e-4 0.01 0.03

0.015 0.06 0.003 0.03 0.014 0.07 0.004 0.07 0.00 0.00 2e-4 0.01 0.17

0.013 0.04 0.000 0.01 0.011 0.04 0.001 0.02 0.00 0.00 0.00 0.03

0.013 0.07 0.001 0.02 0.007 0.03 0.001 0.02 0.00 0.00 0.00 0.08

0.032 0.26 0.006 0.27 0.034 0.27 0.008 0.26 0.00 0.00 7e-4 0.01 0.12

0.034 0.17 0.001 0.03 0.023 0.07 0.003 0.08 0.00 0.00 0.00 0.04

0.020 0.09 0.003 0.08 0.013 0.06 0.004 0.07 0.00 0.00 1e-3 0.01 0.18

0.017 0.08 0.001 0.02 0.013 0.04 0.002 0.04 0.00 0.00 0.00 0.05

0.154 0.82 0.013 0.42 0.187 1.45 0.020 0.57 0.00 0.23 4e-3 0.01 0.08

0.025 0.11 0.007 0.11 0.013 0.13 0.008 0.13 0.00 0.00 2e-3 0.01 0.25

1.48 46.0 0.42 3.5 2.286 10.51 0.52 3.62 0.01 0.65 0.17 0.26 0.09

31.38 291.1 16.66 208.5 9.772 97.03 16.50 33.57 0.01 0.83 8.29 10.18 0.07

Table 4 Comparison of the P model and 3P for γ = 0.2
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Cplex GUROBI

SOCP 3P SOCP 3P Gaps ERA-H

0.025 0.18 0.002 0.04 0.029 0.07 0.002 0.06 0.00 0.00 2e-4 0.01 0.07

0.010 0.09 0.001 0.03 0.001 0.04 0.001 0.04 0.00 0.00 2e-4 0.01 0.62

0.010 0.08 0.001 0.04 0.002 0.04 0.001 0.04 0.00 0.00 2e-4 0.01 0.68

0.011 0.08 0.001 0.04 0.002 0.03 0.001 0.03 0.00 0.00 2e-4 0.01 0.53

0.009 0.08 0.001 0.04 0.002 0.03 0.001 0.03 0.00 0.00 2e-4 0.01 0.65

0.010 0.12 0.001 0.03 0.002 0.04 0.001 0.05 0.00 0.00 2e-4 0.01 0.48

0.039 0.36 0.008 0.18 0.010 0.29 0.009 0.28 0.00 0.00 3e-3 0.02 0.57

0.037 0.42 0.009 0.13 0.010 0.25 0.010 0.25 0.00 0.00 3e-3 0.02 0.60

0.036 0.38 0.008 0.32 0.010 0.21 0.010 0.21 0.00 0.24 3e-3 0.01 0.58

0.036 0.37 0.008 0.32 0.010 0.23 0.010 0.24 0.00 0.24 3e-3 0.02 0.58

0.009 0.03 0.000 0.00 0.007 0.03 0.000 0.00 0.00 0.00 0.00 0.00

0.012 0.05 0.001 0.02 0.009 0.04 0.002 0.04 0.00 0.00 0.00 0.06

0.011 0.04 0.001 0.02 0.007 0.04 0.001 0.03 0.00 0.00 3e-4 0.01 0.09

0.007 0.03 0.000 0.00 0.000 0.01 0.000 0.00 0.00 0.00 0.00 0.00

0.014 0.05 0.001 0.02 0.004 0.02 0.000 0.01 0.00 0.00 2e-4 0.01 0.07

0.027 0.12 0.003 0.12 0.014 0.06 0.002 0.06 0.00 0.00 0.00 0.09

0.015 0.07 0.001 0.01 0.007 0.03 0.001 0.01 0.00 0.00 3e-4 0.01 0.00

0.012 0.03 0.001 0.01 0.007 0.04 0.000 0.01 0.00 0.00 2e-4 0.01 0.03

0.019 0.08 0.003 0.05 0.010 0.09 0.005 0.09 0.00 0.00 9e-4 0.01 0.16

0.241 1.02 0.053 1.05 0.365 9.72 0.089 8.41 0.00 0.34 1e-2 0.03 0.13

0.018 0.07 0.001 0.06 0.011 0.09 0.002 0.04 0.00 0.00 7e-4 0.01 0.06

0.093 0.44 0.013 0.35 0.121 1.40 0.023 1.42 0.00 0.24 2e-3 0.01 0.15

0.141 0.63 0.030 0.56 0.223 3.88 0.063 3.95 0.00 0.24 5e-3 0.01 0.22

0.016 0.08 0.001 0.02 0.012 0.04 0.001 0.03 0.00 0.00 2e-4 0.01 0.06

0.013 0.04 0.002 0.03 0.010 0.07 0.003 0.06 0.00 0.00 9e-5 0.01 0.14

0.009 0.03 0.001 0.02 0.009 0.04 0.001 0.03 0.00 0.00 0.00 0.11

0.010 0.06 0.000 0.00 0.006 0.04 0.000 0.00 0.00 0.00 0.00 0.00

0.029 0.32 0.006 0.26 0.032 0.24 0.010 0.23 0.00 0.00 5e-4 0.01 0.17

0.032 0.21 0.000 0.02 0.024 0.11 0.001 0.03 0.00 0.00 0.00 0.02

0.015 0.13 0.003 0.13 0.010 0.08 0.003 0.08 0.00 0.00 6e-4 0.01 0.19

0.014 0.06 0.000 0.01 0.012 0.03 0.000 0.00 0.00 0.00 0.00 0.00

0.140 0.63 0.017 0.50 0.186 0.85 0.025 0.65 0.00 0.59 3e-3 0.01 0.11

0.016 0.11 0.003 0.10 0.009 0.05 0.004 0.05 0.00 0.00 1e-3 0.01 0.18

1.86 53.2 0.42 4.3 2.30 11.0 0.55 4.84 0.01 0.54 0.17 0.26 0.12

23.57 332.5 16.22 145.2 10.41 131.5 15.99 40.51 0.01 0.84 7.97 9.65 0.10

Table 5 Comparison of the P model and 3P for γ = 0.4
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SOCP 3P SOCP 3P Gaps ERA-H

0.029 0.08 0.003 0.04 0.018 0.11 0.005 0.12 0.00 0.00 2e-4 0.01 0.22

0.004 0.07 0.000 0.02 0.001 0.06 0.000 0.04 0.00 0.00 8e-5 0.01 0.50

0.004 0.06 0.000 0.02 0.001 0.05 0.000 0.03 0.00 0.00 1e-4 0.01 0.57

0.004 0.06 0.000 0.01 0.001 0.02 0.000 0.02 0.00 0.00 9e-5 0.01 0.28

0.003 0.03 0.000 0.02 0.001 0.03 0.000 0.02 0.00 0.00 9e-5 0.01 0.43

0.004 0.05 0.000 0.02 0.001 0.03 0.000 0.02 0.00 0.00 9e-5 0.01 0.38

0.016 0.20 0.002 0.14 0.005 0.27 0.004 0.26 0.00 0.00 1e-3 0.01 0.54

0.016 0.23 0.003 0.25 0.005 0.17 0.004 0.18 0.00 0.00 1e-3 0.01 0.56

0.014 0.20 0.003 0.12 0.005 0.16 0.004 0.15 0.00 0.00 1e-3 0.02 0.57

0.014 0.19 0.003 0.12 0.005 0.22 0.004 0.21 0.00 0.00 1e-3 0.02 0.57

0.007 0.02 0.000 0.01 0.004 0.02 0.000 0.01 0.00 0.00 0.00 0.06

0.013 0.06 0.002 0.02 0.008 0.05 0.003 0.05 0.00 0.00 0.00 0.15

0.010 0.03 0.001 0.03 0.005 0.04 0.001 0.04 0.00 0.00 2e-4 0.01 0.13

0.003 0.01 0.000 0.00 0.000 0.01 0.000 0.00 0.00 0.00 0.00 ***

0.007 0.04 0.000 0.00 0.001 0.01 0.000 0.00 0.00 0.00 0.00 0.00

0.019 0.06 0.000 0.02 0.007 0.05 0.001 0.04 0.00 0.00 0.00 0.04

0.013 0.05 0.001 0.02 0.004 0.02 0.001 0.03 0.00 0.00 2e-4 0.01 0.09

0.010 0.04 0.001 0.01 0.005 0.04 0.000 0.01 0.00 0.00 0.00 0.03

0.017 0.15 0.004 0.15 0.006 0.05 0.003 0.05 0.00 0.00 6e-4 0.01 0.22

0.270 1.61 0.070 1.66 0.285 2.28 0.090 2.40 0.01 0.69 1e-2 0.03 0.27

0.015 0.07 0.002 0.04 0.008 0.04 0.002 0.03 0.00 0.00 5e-4 0.01 0.13

0.092 0.61 0.017 0.55 0.090 0.43 0.023 0.40 0.01 0.41 2e-3 0.01 0.24

0.142 1.08 0.039 1.08 0.150 0.85 0.065 0.89 0.01 0.77 4e-3 0.02 0.38

0.013 0.05 0.001 0.03 0.008 0.04 0.002 0.04 0.00 0.00 1e-4 0.01 0.10

0.010 0.05 0.001 0.02 0.005 0.06 0.001 0.06 0.00 0.00 9e-5 0.01 0.12

0.008 0.03 0.002 0.03 0.007 0.04 0.003 0.04 0.00 0.00 0.00 0.26

0.009 0.08 0.000 0.00 0.005 0.03 0.000 0.00 0.00 0.00 0.00 0.00

0.027 0.23 0.007 0.23 0.024 0.23 0.010 0.24 0.00 0.27 4e-4 0.01 0.24

0.026 0.15 0.001 0.02 0.018 0.07 0.001 0.03 0.00 0.00 0.00 0.05

0.010 0.06 0.002 0.04 0.006 0.05 0.003 0.04 0.01 0.30 3e-4 0.01 0.25

0.010 0.02 0.000 0.00 0.008 0.02 0.000 0.00 0.00 0.00 0.00 0.00

0.139 0.82 0.023 0.56 0.162 0.90 0.037 0.74 0.01 0.57 3e-3 0.01 0.21

0.012 0.06 0.002 0.04 0.005 0.05 0.003 0.04 0.00 0.00 6e-4 0.01 0.26

1.82 38.3 0.55 21.5 2.126 17.2 0.67 6.71 0.02 0.60 0.17 0.25 0.21

28.83 373.6 15.48 206.6 9.670 136.5 15.00 49.36 0.03 0.74 7.73 9.24 0.36

Table 6 Comparison of the P model and 3P for γ = 0.8


