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Abstract

We give a notion of BV function on an oriented manifold where a volume form and
a family of lower semicontinuous quadratic forms Gp : TpM → [0,∞] are given. When
we consider sub-Riemannian manifolds, our definition coincides with the one given in
the more general context of metric measure spaces which are doubling and support a
Poincaré inequality. We focus on finite perimeter sets, i.e., sets whose characteristic
function is BV, in sub-Riemannian manifolds. Under an assumption on the nilpotent
approximation, we prove a blowup theorem, generalizing the one obtained for step-2
Carnot groups in [24].1
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‡Dipartimento Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy magnani@dm.unipi.it
§The original version of the paper is available at the Annales de l’Institut Henri Poincar C, Analyse non
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1 Introduction

Sub-Riemannian manifolds are a class of length spaces of non-Euclidean type having a
differentiable structure. Our interest in studying functions of bounded variation in this
framework arises from the aim of understanding the structure of finite perimeter sets in
the general sub-Riemannian setting. This clearly requires suitable notions of “intrinsically
regular” hypersurfaces, rectifiability, reduced boundary and blowups.

Sobolev and BV functions have been investigated in Rn endowed with the Lebesgue
measure and with the Carnot–Carathéodory distance dcc associated with a family of vec-
tor fields. Under the assumption that the family is Lie bracket generating, the Lebesgue
measure is doubling with respect to the Carnot–Carathéodory distance [37], a Poincaré
inequality holds [30] and (Rn, dcc) is complete [16]. These are the main assumptions which
enable the authors in [25] to establish Sobolev and isoperimetric inequalities as well as an
approximation theorem of Meyers–Serrin type (see also [22] for a related result with weaker
regularity assumptions on the vector fields).

Our main goal is to develop a systematic theory of BV functions and sets of finite
perimeter in manifolds with suitable structures. To this aim, one needs two ingredients:
first a volume measure (with respect to which an integration by parts formula will hold);
second a notion of length of tangent vectors (along which one calculates distributional
derivatives). For the volume measure, when a manifold M is oriented, it suffices to take
a non-degenerate n-form ω which induces the orientation of M (where n = dimM) and
consider the measure m defined on Borel sets B ⊂M by m(B) =

´
B ω. Given an open set

Ω ⊂ M and a vector field X, a function u ∈ L1(Ω,m) has distributional derivative along
X if there exists a Radon measure DXu on Ω such that

ˆ
Ω
ϕdDXu = −

ˆ
Ω
uϕdivωXω −

ˆ
Ω
u(Xϕ)ω ∀ϕ ∈ C∞c (Ω),

where divωX is defined in (5). To define the length of tangent vectors, we use a family of
lower semicontinuous quadratic forms Gp : TpM → [0,∞] defined on the tangent bundle
of M . Note that the dimension of the vector space D(p) = {v ∈ TpM | Gp(v) < ∞} may
vary with respect to the point. Taking this into account, it is natural to say that a function
u ∈ L1(Ω,m) has bounded variation in Ω if, for every smooth vector field X such that
Gp(X(p)) ≤ 1, p ∈ Ω, the distributional derivative DXu is a Radon measure of finite total
variation in Ω and

‖Dgu‖(Ω) := sup |DXu|(Ω) <∞, (1)

the supremum being taken among all smooth vector fields such that G(X) ≤ 1 on Ω.
Thus, we write u ∈ BV (Ω, g, ω), where g is the scalar product associated with G. More
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precisely, for each p ∈ M we have that gp(·, ·) is the unique scalar product on D(p) such
that gp(v, v) = Gp(v) for every v ∈ D(p), Section 2.3 for more information.

In this quite general setting, distributional derivatives can be weakly approximated by
derivatives of smooth functions, that is, a Meyers–Serrin theorem holds (see Theorem 2.4).
Moreover, the fact that DXu is a Radon measure with finite bounded variation is charac-
terized in terms of difference quotients along the flow generated by X (see Theorem 2.5).
Using G, one can define the Carnot–Carathéodory distance dcc between points of M as
the infimum of lengths of absolutely continuous curves connecting the two points, where
length of tangent vectors is computed with respect to G. When dcc is finite, (M,dcc,m)
is a metric measure space. It is then natural to compare the space BV (Ω, g, ω) with the
notion of BV function in a metric measure space developed in [7, 36] (see also [6]). Without
further assumptions, we can only show that BV (Ω, dcc,m) is embedded in BV (Ω, g, ω) (see
Theorem 2.7).

Oriented sub-Riemannian manifolds, where G is induced locally by bracket generating
families of vector fields, cast in the framework above. In this case, on coordinate charts, G
is given by

Gp(v) = inf

{
m∑
i=1

c2
i | v =

m∑
i=1

ciXi(p)

}
,

(with the convention inf ∅ = ∞) where X1, . . . , Xm play the role of orthonormal frame
and dim(X1(p), . . . , Xm(p)) may vary with respect to p. In particular, the aforementioned
notion of BV space encompasses the classical one in oriented Riemannian manifolds, the one
associated with a Lie bracket generating family of vector fields in Rn and it also includes the
rank-varying case, e.g. the Grushin case and almost-Riemannian manifolds (see Section 3.1).

In this setting, the approximation result (Theorem 2.4) allows to show that the met-
ric and differential notion of bounded variation coincide and the corresponding spaces
BV (Ω, g, ω) and BV (Ω, dcc,m) are isometric (Theorem 3.1). A first consequence of this fact
is that the set function ‖Dgu‖ defined on open sets as in (1) is a Borel measure. Moreover,
the Riesz theorem of Euclidean setting (see for instance [20, Theorem 1 page 167]) can be
generalized. More precisely, if u ∈ BV (Ω, g, ω), then there exists a Borel vector field νu
satisfying G(νu) = 1 ‖Dgu‖-a.e. in Ω. Moreover, for every smooth vector field X such that
G(X) ≤ 1 in Ω, the distributional derivative of u along X can be represented as

DXu = g(X, νu)‖Dgu‖ . (2)

Without assumptions on the dimension of D(p), even if a local basis X1, . . . , Xm inducing
G is given, some care is needed, due to the fact that a smooth vector field X satisfying
G(X) ≤ 1 is in general a linear combination of the Xi with coefficient in L∞ only.

When we consider sets of finite perimeter, i.e., sets whose characteristic function has
bounded variation, this result provides a notion of geometric normal (which corresponds to
its Euclidean analogue) and which is a horizontal Borel vector field of G-length 1.

In Euclidean metric spaces, the structure of finite perimeter sets has been completely
understood since De Giorgi’s seminal works [18, 19]. In this context, if E has finite perime-
ter, then the perimeter measure of E is concentrated on a set which is rectifiable and it
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has codimension one. The main step behind this result is a blowup theorem, showing that
when p belongs to the reduced boundary of E, the sequence of blowups Er = δ1/r(E + p)
converges to a halfspace in L1

loc.
In non-Euclidean metric spaces, after [31], rectifiability theory has been developed in

Banach spaces [12, 13], and in Carnot groups [23, 35, 38], which are Lie groups whose algebra
admits a stratification with respect to a one parameter group of dilations δr. More precisely,
in [24] the authors generalize De Giorgi’s theorem in Carnot groups of step 2. Their proof is
inspired by the one in the Euclidean case. Moreover, Carnot groups are homogeneous and
this makes the perimeter measure both homogeneous with respect to dilations and invariant
by translations. Joining these properties with isoperimetric inequalities along with the
compact embedding in BV shows that bounded sequences of rescaled sets have converging
subsequences and the blowups are both monotone along a horizontal direction and invariant
along all orthogonal directions. The techniques of [24] have been further extended in [17]
to a special class of Lie groups that do not possess dilations, see Example 3.3, where the
“linearization” of the left invariant vector fields is obtained by the Rothschild-Stein lifting
theorem, [39].

As a first step toward a generalization of De Giorgi’s theorem in sub-Riemannian mani-
folds, in this paper we show a blowup theorem which generalizes the one [24, Theorem 3.1]
in Carnot groups of step 2. Again, the proof of Theorem 4.2 is inspired by the corresponding
one in the Euclidean case. However, the rationale behind our proof is somehow different
from the one in [24]. Without a Carnot group structure, the main idea is to exploit two well
known facts in sub-Riemannian geometry [15]: a metric tangent cone to the manifold at a
point p always exists; the quasi-isometry between dilated balls centered at p and balls in
the metric tangent cone can be given explicitly by a system of suitable coordinates (called
privileged, see Definition 3.3) centered at p and, in particular, it is a diffeomorphism ϕp. In
this coordinate system, there exists a subgroup of dilations δr intrinsically associated with
the sub-Riemannian structure (and centered at p). Hence, given a finite perimeter set E
and p in its reduced boundary (see Definition 3.2), reading E through ϕp, it makes sense
to consider the blowups Er = δ1/rϕp(E). Our result states that if the metric tangent cone
to (M,dcc) at p is a Carnot group of step 2 then

L1
loc- lim

r↓0
1Er = 1F ,

where F is the vertical halfspace in the Carnot group associated with the geometric normal
νE(p) (for the precise statement, see Theorem 4.2.) In particular, we are able to show that
the sequence of blowups {1Er}r>0 is compact in L1

loc and that if 1F̃ is a L1
loc-limit then F̃

is monotone along the geometric normal νE(p) and invariant along orthogonal directions
to νE(p), in the distributional sense. To prove compactness, we exploit the fact that the
distance in the metric tangent cone is the limit of Carnot–Carathéodory distances associ-
ated with a sequence of “perturbed” vector fields (see Theorem 3.5). Properties of limits
are consequences of the definition of geometric normal and of the asymptotically doubling
property of the perimeter measure. Finally, it is only at this stage of the proof that we
invoke the fact that the metric tangent cone at p is a Carnot group of step 2, to show that
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the limit of the rescaled sets actually exists. The latter assumption is fulfilled of course
when the manifold itself is a Carnot group of step 2 but also in more general case, e.g. in
the step 2 equiregular case (see also Example 3.7). This hypothesis is essential as it was
shown in [24] that in Carnot groups of step higher than 2 the blowup at a point in the
reduced boundary need not be a vertical hyperplane. Without bounds on the step, the only
result available so far is [14], where it has been proved that at almost every point (with
respect to the perimeter measure) there exists a subsequence of blowups converging to a
vertical halfspace.

Let us mention an application of our result in the rank-varying case. As we see in
Example 3.5, there exist sub-Riemannian manifolds with the property: for every point p
the metric tangent cone at p is either the Euclidean space or a Carnot group of step 2.
For these manifolds, which are also called almost-Riemannian, the horizontal distribution is
rank-varying and it has full rank at points where the tangent cone is the Euclidean space.
Combining our theorem with the one in the Euclidean case, we obtain that, for sets of finite
perimeter in these manifolds, the blowups at points in the reduced boundary converge to a
halfspace.

Another important corollary of our blowup theorem is that, setting h(Br(p)) = m(Br(p))
r

where Br(p) is the open ball for dcc, the density

lim
r↓0

‖Dg1E‖(Br(p))
h(Br(p))

(3)

exists and equals to the perimeter of F in the unit ball in the Carnot group divided by the

Lebesgue measure of the unit ball. This improves the weaker estimates on
‖Dg1E‖(Br(p))

h(Br(p))

which have been proved in [7, Theorem 5.4] in the metric setting. Moreover, denoting by
Sh the spherical measure build by the Carathéodory’s construction (see [21, 2.10.1]) with
h as gauge function, the existence of the limit in (3) implies upper and lower bounds on
the Radon-Nikodym of ‖Dg1E‖ with respect to Sh (restricted to the reduced boundary of
E). As the Radon–Nikodym derivative of the perimeter measure ‖Dg1E‖ with respect to
Sh has been shown to exist in the metric context (see [7, Theorem 5.3]), an open question
is whether this derivative coincides with (3) for ‖Dg1E‖-almost every p. In the constant
rank (equiregular) case, a related result in [2] computes the density of the spherical top-
dimensional Hausdorff measure SQdcc (where Q is the Hausdorff dimension of any ball) with
respect to m in terms of the Lebesgue measure of the unit ball in the metric tangent cone.

The paper is organized as follows. We define distributional derivatives along vector fields
in manifolds with a volume form in Section 2.2. Using a family of metrics in the tangent
bundle we then define the space of BV functions in Section 2.3 and we prove an approxi-
mation results for distributional derivatives. In Section 2.4 we show that BV (Ω, dcc,m) is
continuously embedded in BV (Ω, g, ω). Section 3 is a primer in sub-Riemannian geometry.
Even though our main results are local, we find it useful to recall the general definition of
sub-Riemannian structure that relies on images of Euclidean vector bundles and includes
the rank-varying case. In Section 3.1 we list some significative examples, including Carnot
groups. In Section 3.2 we analyze the notion of BV space in sub-Riemannian manifolds.
First, we specify its relation with the BV space defined in a metric measure space, showing
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that the two BV spaces are actually isometric. Second, we prove a Riesz theorem which
generalize the Euclidean analogue. Section 3.3 recalls the notion (and basic properties) of
privileged coordinates and nilpotent approximation (for more details we refer the reader to
[15].) In Section 3.4 we explain the relation between nilpotent approximations and metric
tangent cones to sub-Riemannian manifold at a point and, under an additional assump-
tion at the point, we recall how to show that the nilpotent approximation is isometric to a
Carnot group endowed with the control distance induced by a left invariant metric on the
horizontal bundle. In Section 4 we prove the blowup theorem. We split the proof into two
main parts. In Sections 4.1 and 4.2 we demonstrate compactness of the dilated sets and
monotone and invariance properties of limits. Then, in Section 4.3 we use the assumption
on the nilpotent approximation to provide the existence and characterize the limit of dilated
sets as a vertical halfspace.

2 Preliminaries

2.1 Basic notation and notions

Given a set A ⊂ B, we will use the notation 1A : B → {0, 1} for the characteristic function
of A, equal to 1 on A and equal to 0 on B \A. In a metric space (X, d), the notation Br(x)
will be used to denote the open ball with radius r and centre x.
Differential notions. Throughout this paper, M denotes a smooth, oriented, connected
and n-dimensional manifold, with tangent bundle TM . The fiber TxM can be read as the
space of derivations on germs of C1 functions ϕ at x, namely [vϕ](x) = dϕx(v), for v ∈ TxM .
In the same spirit, we read the action of the differential dFx : TxM → TxN of a C1 map
F : M → N as follows:

dfx(v)(ϕ) = v(ϕ ◦ F )(x) ϕ ∈ C1(N).

Any C1 diffeomorphism F : M → N between smooth manifolds induces an operator
F∗ : TM → TN , by the formula (F∗X)(F (x)) = dFx(X(x)); equivalently, in terms of
derivations, we write [

(F∗X)ϕ
]
◦ F =

[
X(ϕ ◦ F )

]
∀ϕ ∈ C1(N).

Measure-theoretic notions. If F is a σ-algebra of subsets of X and µ : F → Rm is a
σ-additive measure, we shall denote by |µ| : F → [0,∞) its total variation, still a σ-additive
measure. By the Radon-Nikodym theorem, µ is representable in the form g|µ| for some
F-measurable function g : X → Rm satisfying |g(x)| = 1 for |µ|-a.e. x ∈ X. Given a Borel
map F , we shall use the notation F# for the induced push-forward operator between Borel
measures, namely

F#µ(B) := µ(F−1(B)) for all B Borel.
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2.2 Volume form, divergence and distributional derivatives

We assume throughout this paper that M is endowed with a smooth n-form ω. We assume
also that

´
M fω > 0 whenever f ∈ C1

c (M) is nonnegative and not identically 0, so that the
volume measure

m(E) =

ˆ
E
ω, E ⊂M Borel (4)

is well defined and, in local coordinates, has a smooth and positive density with respect to
Lebesgue measure. Accordingly, we shall also call ω volume form.

The volume form ω allows to define the divergence divωX of a smooth vector field X as
the smooth function satisfying

divωX ω = LXω, (5)

where LX denotes the Lie derivative along X. Using properties of exterior derivative and
differential forms, we remark that divωX is characterized by

−
ˆ
M
ϕdivωX ω =

ˆ
M

(Xϕ)ω ∀ϕ ∈ C1
c (M). (6)

By applying this identity to a product fϕ with f ∈ C1(M) and ϕ ∈ C∞c (M), the Leibnitz
rule gives

−
ˆ
M
fϕdivωX ω −

ˆ
M
f(Xϕ)ω =

ˆ
M
ϕ(Xf)ω ∀ϕ ∈ C∞c (M). (7)

We can now use this identity to define Xf also as a distribution on M , namely DXf = g
in the sense of distributions in an open set Ω ⊂M means

−
ˆ

Ω
fϕdivωX ω −

ˆ
Ω
f(Xϕ)ω =

ˆ
Ω
ϕg ω ∀ϕ ∈ C∞c (Ω). (8)

Our main interest focuses on the theory of BV functions along vector fields. For this
reason, we say that a measure with finite total variation in Ω, that we shall denote by DXf ,
represents in Ω the derivative of f along X in the sense of distributions if

−
ˆ

Ω
fϕdivωX ω −

ˆ
Ω
f(Xϕ)ω =

ˆ
Ω
ϕdDXf ∀ϕ ∈ C∞c (Ω). (9)

By (4) and (7), when f is C1 we have DXf = (Xf)m.
We can now state a simple criterion for the existence of DXf , a direct consequence of

Riesz representation theorem of the dual of Cc(Ω). In order to state our integrations by
parts formulas (8), (9) in a more compact form we also use the identity

divω(ϕX) = ϕdivωX +Xϕ.

Proposition 2.1. Let Ω ⊂ M be an open set and f ∈ L1
loc(Ω,m). Then DXf is a signed

measure with finite total variation in Ω if and only if

sup

{ˆ
Ω
f divω(ϕX)ω | ϕ ∈ C∞c (Ω), |ϕ| ≤ 1

}
<∞.

If this happens, the supremum above equals |DXf |(Ω).

7



A direct consequence of this proposition is the lower semicontinuity in L1
loc(Ω,m) of

f 7→ |DXf |(Ω). We also emphasize that, thanks to (9), we have the identity

DψXf = ψDXf ∀ψ ∈ C∞(Ω), (10)

and the properties (8) and (9) need only to be checked for test functions ϕ whose support
is contained in a chart.

2.3 Distributions, metrics and BV functions on manifolds

On M we shall consider a family of lower semicontinuous quadratic (i.e. 2-homogeneous,
null in 0 and satisfying the parallelogram identity) forms Gx : TxM → [0,∞] and the
induced family D of subspaces

D(x) := {v ∈ TxM | Gx(v) <∞} .

We are not making at this stage any assumption on the dimension of D(x) (which need
not be locally constant) or on the regularity of x 7→ Gx. We shall only assume that the
map (x, v) 7→ Gx(v) is Borel. This notion can be easily introduced, for instance using local
coordinates. Obviously Gx induces a scalar product gx on D(x), namely the unique bilinear
form on D(x) satisfying

gx(v, v) = Gx(v) ∀v ∈ D(x).

For Ω ⊂M open, we shall denote by Γ(Ω,D) the smooth sections of D, namely:

Γ(Ω,D) := {X | X is smooth vector field in Ω, X(x) ∈ D(x) for all x ∈ Ω} .

We shall also denote

Γg(Ω,D) := {X ∈ Γ(Ω,D) | gx(X(x), X(x)) ≤ 1 ∀x ∈ Ω} .

Note that both D and g are somehow encoded by G. Thus the following definition of
BV space only depends on G and ω.

Definition 2.1 (Space BV (Ω, g, ω) and sets of finite perimeter). Let Ω ⊂M be an open set
and u ∈ L1(Ω,m). We say that u has bounded variation in Ω, and write u ∈ BV (Ω, g, ω),
if DXu exists for all X ∈ Γg(Ω,D) and

sup {|DXu|(Ω) | X ∈ Γg(Ω,D)} <∞. (11)

We denote by ‖Dgu‖ the associated Radon measure on Ω. If E ⊂M is a Borel set, we say
that E has finite perimeter in Ω if 1E ∈ BV (Ω, g, ω).

Remark 1. Let us point out that replacing Ω in (11) with any of its open subsets, we get
a set function on open sets. Thus, the so-called De Giorgi-Letta criterion, see for instance
[11, Theorem 1.53], allows us to extend this set function to a Radon measure on Ω.
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Equivalently, thanks to Proposition 2.1, we can write condition (11) as follows:

sup

{ˆ
Ω
udivω(ϕX)ω | X ∈ Γg(Ω,D), ϕ ∈ C∞c (M), |ϕ| ≤ 1

}
<∞. (12)

These BV classes can be read in local coordinates thanks to the following result (more
generally, one could consider smooth maps between manifolds).

Proposition 2.2. Let Ω ⊂M and U ⊂ Rn be open sets, let u ∈ L1(Ω) and let φ ∈ C∞(Ω, U)
be an orientation-preserving diffeomorphism with inverse ψ. For each y ∈ U , set

G̃y(w) := Gψ(y)(dyψ(w)) ∀w ∈ TxU ' Rn, ũ(y) := u(ψ(y)) (13)

and define D̃ in U and a metric g̃ in D̃ accordingly. Then, setting ω̃ := ψ∗ω, the following
holds

φ#(DXu) = Dφ∗X ũ ∀X ∈ Γ(Ω,D) (14)

in the sense of distributions. In particular u ∈ BV (Ω, g, ω) if and only if ũ ∈ BV (U, g̃, ω̃).

Proof. Let X be a smooth section of D with compact support contained in Ω and consider
the change of variable ˆ

Ω
u divωX ω =

ˆ
U
ũ (divωX) ◦ ψ ω̃ .

By Lemma 2.3 below, it follows thatˆ
Ω
u divωX ω =

ˆ
U
ũ divω̃(φ∗X) ω̃,

where we denote by divω̃Y the divergence of Y with respect to ω̃. If we apply this identity
to the vector field ϕX and use the relation φ∗(ϕX) = (ϕ ◦ φ−1)φ∗X we obtain (14).

Finally, since for all y ∈ U we have G̃y(φ∗X(y)) ≤ 1 if and only if

Gψ(y)(dyψ(φ∗X(y))) = Gψ(y)(X(ψ(y))) ≤ 1

the claim follows. �

Lemma 2.3. Under the assumptions of Proposition 2.2, the following formula holds

(divωX) ◦ ψ = divω̃(φ∗X). (15)

Proof. If ϕ ∈ C∞c (Ω), then a change of variable in the oriented integral yields

−
ˆ

Ω
ϕ divωX ω =

ˆ
Ω
Xϕ ω =

ˆ
U

(Xϕ) ◦ ψ ω̃ =

ˆ
U

[
(ψ∗X̃)ϕ

]
◦ ψ ω̃ ,

where the last equality is a consequence of the definition X̃ = φ∗X. The previous equalities
give

−
ˆ
U
ϕ divωX ω =

ˆ
U
X̃(ϕ ◦ ψ) ω̃ = −

ˆ
U
ϕ ◦ ψ divω̃X̃ ω̃ = −

ˆ
Ω
ϕ (divω̃X̃) ◦ φ ω .
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The arbitrary choice of ϕ proves the validity of (15). �

Distributional derivatives of L1 functions as defined in (9) can be weakly approximated
by derivatives of smooth functions as we prove in the next theorem.

Theorem 2.4 (Meyers-Serrin). Let Ω ⊂M be open, u ∈ L1(Ω,m). Then there exist un ∈
C∞(Ω) convergent to u in L1

loc(Ω,m) and satisfying Xunm→ DXu and |Xun|m→ |DXu|
weakly, in the duality with Cc(Ω), for all smooth vector fields X in Ω such that DXu exists.
The same is true if we consider vector-valued measures built with finitely many vector fields.

Proof. By a partition of unity it is not restrictive to assume that Ω is well contained in
a local chart. Then, by Proposition 2.2, possibly replacing g and ω by their counterparts
g̃ and ω̃, we can assume that Ω ⊂ Rn. In this case, writing ω = ω̄dx1 ∧ . . . ∧ dxn with
ω̄ ∈ C∞(Ω) strictly positive, we also notice that it is not restrictive to assume ω̄ ≡ 1 in Ω;
indeed, comparing (6) with the classical integration by parts formula in Ω with no weight,
we immediately see that

divωX = divX +X log ω̄,

where, in the right hand side, divX is the Euclidean divergence of X. One can then compare
the integration by parts formulas in the weighted and in the classical case to obtain that
DXu depends on ω through the factor ω̄. This is also evident in the smooth case, where
the function Xu is clearly independent of ω, but DXu = (Xu)m.

After this reductions to the standard Euclidean setting, we fix an even, smooth convo-
lution kernel ρ in Rn with compact support and denote by ρε(x) = ε−nρ(x/ε) the rescaled
kernels and by u ∗ ρε the mollified functions. We shall use the so-called commutator lemma
(see for instance [9]) which ensures

(DXv) ∗ ρε −X(v ∗ ρε)→ 0 as ε ↓ 0, strongly in L1
loc(Ω) (16)

whenever v ∈ L1
loc(Ω) and X is a smooth vector field in Ω. Since (DXu) ∗ ρεm and

|(DXu) ∗ ρε|m converge in the duality with Cc(Ω) to DXu and |DXu| respectively (see
for instance [11, Theorem 2.2]), (16) shows that the same is true for X(u ∗ ρε)m and
|X(u ∗ ρε)|m. The same proof works for vector-valued measures (convergence of total
variations, the only thing that cannot be obtained arguing componentwise, is still covered
by [11, Theorem 2.2]). �

The following result provides a characterization of |DXu| in terms of difference quotients
involving the flows generated by the vector field X (for similar results in the context of
doubling metric spaces supporting a Poincaré inequality, see [36]).

Given a smooth vector field X in Ω ⊂ M open, we denote by ΦX
t the flow generated

by X on M . By compactness, for any compact set K ⊂ Ω the flow map starting from
K is smooth, remains in a domain Ω′ b Ω and is defined for every t ∈ [−T, T ], with
T = T (K,X) > 0. Recall that the Jacobian JΦX

t of the flow map x 7→ ΦX
t (x) is the smooth

function JΦX
t satisfying (ΦX

t )∗ω = JΦX
t ω, so that the change of variables formula

ˆ
φω =

ˆ
φ ◦ ΦX

t JΦX
t ω

10



holds. By smoothness, there is a further constant C depending only on X (and T ) such
that JΦX

t satisfies∣∣JΦX
t (x)− 1| ≤ C|t|,

∣∣JΦX
t (x)− 1− tdivωX(x)

∣∣ ≤ Ct2 ∀x ∈ K, t ∈ [−T, T ]. (17)

Estimate (17) is a simple consequence of Liouville’s theorem, showing that the time deriva-
tive of t 7→ log(JΦX

t (x)) equals (divωX)(ΦX
t (x)).

Theorem 2.5. Let Ω ⊂ M be an open set and let u ∈ L1(Ω,m). Then DXu is a signed
measure with finite total variation in Ω if and only if

sup
K ⊂ Ω compact

{ˆ
K

|u(ΦX
t )− u|
|t|

ω | 0 < |t| ≤ T (K,X)

}
<∞. (18)

Moreover, if DXu is a signed measure with finite total variation in Ω, it holds

|DXu|(Ω) = sup

{
lim inf
t→0

ˆ
Ω′

|u(ΦX
t )− u|
|t|

ω | Ω′ b Ω

}
. (19)

Proof. Let us prove that the existence of DXu implies (18). For 0 < |t| < T (K,X) we will
prove the more precise estimate

ˆ
K

|u(ΦX
t )− u|
|t|

ω ≤ (1 + C|t|)|DXu|(Ωt) with Ωt :=
⋃

r∈[0,|t|]

ΦX
r (K), (20)

which also yields the inequality ≥ in (19). In order to prove (20) we can assume with no
loss of generality, thanks to Theorem 2.4, that u ∈ C∞(Ω). Under this assumption, since
the derivative of t 7→ u(ΦX

t (x)) equals Xu(ΦX
t (x)) we can use Fubini’s theorem and (17) to

get, for t > 0 (the case t < 0 being similar)

ˆ
K
|u(ΦX

t )− u|ω ≤
ˆ t

0

ˆ
K
|Xu|(ΦX

r )ω dr ≤
ˆ t

0
(1 + Cr)

ˆ
Ωt

|Xu|ω dr.

Estimating (1 + Cr) with (1 + Ct) we obtain (20).
Let us prove the inequality ≤ in (19). By the lower semicontinuity on open sets of

the total variation of measures under weak convergence and the inner regularity of |DXu|,
it suffices to show that for all Ω′ b Ω the difference quotients t−1(u(ΦX

t ) − u)m weakly
converge, in the duality with Cc(Ω

′), to DXu. By the upper bound (18) we need only
to check the convergence on C∞c (Ω′) test functions. This latter convergence is a direct
consequence of the identity (which comes from the change of variables x = ΦX

−t(y))

ˆ
Ω′

u(ΦX
t )− u
t

ϕ dω(x) = −
ˆ

Ω′

ϕ(ΦX
−t)JΦX

−t − ϕ
−t

u dω(y) ϕ ∈ C∞c (Ω′),

of the expansion (17) and of the very definition of DXu. The same argument can be used
to show that finiteness of the supremum in (18) implies the existence of DXu.
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2.4 BV functions in metric measure spaces (X, d,m)

Let (X, d) be a metric space, and define for f : X → R the local Lipschitz constant (also
called slope) by

|∇f |(x) := lim sup
y→x

|f(y)− f(x)|
d(y, x)

. (21)

If we have also a reference Borel measure m in (X, d), we can define the spaceBV (Ω, d,m)
as follows.

Definition 2.2. Let Ω ⊂ X be open and u ∈ L1(Ω,m). We say that u ∈ BV (Ω, d,m) if
there exist locally Lipschitz functions un convergent to u in L1(Ω,m), such that

lim sup
n

ˆ
Ω
|∇un| dm < +∞ .

Then, we define

‖Du‖(Ω) := inf

{
lim inf
n→∞

ˆ
Ω
|∇un| dm | un ∈ Liploc(Ω), lim

n

ˆ
Ω
|un − u| dm = 0

}
.

In locally compact spaces, in [36] (see also [10] for more general spaces) it is proved
that, for u ∈ BV (Ω, d,m), the set function A 7→ ‖Du‖(A) is the restriction to open sets
of a finite Borel measure, still denoted by ‖Du‖. Furthermore, in [36] the following inner
regularity is proved:

u ∈ L1(Ω) ∩BVloc(Ω, d,m), sup
Ω′bΩ

‖Du‖(Ω′) <∞ =⇒ u ∈ BV (Ω, d,m). (22)

In the next sections we shall use a fine property of sets of finite perimeters, proved within
the metric theory in [7] (see also [6] for the Ahlfors regular case) to be sure that the set of
“good” blow-up points has full measure with respect to ‖Dg1E‖. The basic assumptions
on the metric measure structure needed for the validity of the result are (in local form):

(i) a local doubling assumption, namely for all K ⊂ X compact there exist r̄ > 0 and
C ≥ 0 such that m(B2r(x)) ≤ Cm(Br(x)) for all x ∈ K and r ∈ (0, r̄);

(ii) a local Poincaré inequality, namely for all K ⊂ X compact there exist r̄, c, λ > 0 such
that ˆ

Br(x)
|u− ux,r| dm ≤ cr

ˆ
Bλr(x)

|∇u| dm (23)

for all u locally Lipschitz, x ∈ K and r ∈ (0, r̄), with ux,r equal to the mean value of
u on Br(x).

Proposition 2.6. [7] Assume that (i), (ii) above hold and let E ⊂ Ω be such that 1E ∈
BV (Ω, d,m). Then

lim inf
r↓0

min{m(Br(x) ∩ E),m(Br(x) \ E)}
m(Br(x))

> 0, lim sup
r↓0

‖D1E‖(Br(x))

h(Br(x))
<∞ (24)

for ‖D1E‖-a.e. x ∈ Ω, where h(Br(x)) = m(Br(x))/r.
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In order to apply Proposition 2.6 for our blow-up analysis, we need to provide a bridge
between the metric theory outlined above and the differential theory described in Section 2.3.
As a matter of fact, we will see that in the setting of Section 2.3, under mild assumptions,
we have always an inclusion between these spaces, and a corresponding inequality between
‖Dgu‖ and ‖Du‖. First, given a function G : TM → [0,∞] in a smooth manifold M as in
Section 2.3, we define the associated Carnot–Carathéodory distance by

dcc(x, y) := inf

{ˆ T

0

√
Gγt(γ̇t) | T > 0, γ0 = x, γT = y

}
, (25)

where the infimum runs among all absolutely continuous curves γ. Notice that since Gx is
infinite on TxM \ D(x), automatically the minimization is restricted to horizontal curves,
i.e. the curves γ satisfying γ̇ ∈ D(γ) a.e. in [0, T ]. We will often use, when convergence
arguments are involved, an equivalent definition of dcc(x, y) in terms of action minimization:

d2
cc(x, y) := inf

{ˆ 1

0
Gγt(γ̇t) | γ0 = x, γ1 = y

}
. (26)

Notice also that we cannot expect dcc to be finite in general, hence we adopt the con-
vention inf ∅ = +∞. However, any X ∈ Γg(Ω,D) induces, via the flow map ΦX

t , admissible
curves γ in (25) with speed G(γ̇) less than 1, for initial points in Ω and |t| sufficiently small.
It follows immediately that for Ω′ b Ω and |t| sufficiently small, depending only on Ω′ and
X, it holds:

dcc(Φ
X
t (x), x) ≤ |t| ∀x ∈ Ω′. (27)

Theorem 2.7. Let m be defined as in (4) and assume that the distance dcc defined in (25)
is finite and induces the same topology of M . Then for any open set Ω ⊂ M we have the
inclusion BV (Ω, dcc,m) ⊂ BV (Ω, g, ω) and ‖Dgu‖(Ω) ≤ ‖Du‖(Ω).

Proof. Take a locally Lipschitz function u in Ω (with respect to dcc) with
´

Ω |∇u| dm finite,
X ∈ Γg(Ω,D) and apply (27) to obtain that |u(ΦX

t (x))− u(x)|/|t| is uniformly bounded as
|t| ↓ 0 on compact subsets of Ω and

lim sup
t↓0

|u(ΦX
t (x))− u(x)|
|t|

≤ |∇u|(x) ∀x ∈ Ω.

By integrating on Ω′ b Ω we get from Theorem 2.5 that DXu is a measure with finite total
variation in Ω and that

|DXu|(Ω) ≤
ˆ

Ω
|∇u| dm.

Eventually, we apply the very definition of BV (Ω, dcc,m) to extend this inequality to all
u ∈ BV (Ω, dcc,m), in the form |DXu|(Ω) ≤ ‖Du‖(Ω). We can now use the arbitrariness of
X to get the conclusion. �

13



Remark 1. The main obstacle to the inclusion BV (Ω, g, ω) ⊂ BV (Ω, dcc,m) is that,
whenever u ∈ BV (Ω, g, ω), the smooth approximation un of u given in Theorem 2.4 need not
satisfy the weak convergence ‖Dgun‖ → ‖Dgu‖. This is due to the fact that the supremum
in (11) is taken over a possibly infinite set of generators X. Nevertheless, while the general
validity of the inclusion BV (Ω, g, ω) ⊂ BV (Ω, dcc,m) is still an open problem, this difficulty
can be bypassed for a large class of metrics G, namely the one of sub-Riemannian structures
on manifolds. Indeed in Theorem 3.1 we prove that in the sub-Riemannian context the
equality BV (Ω, g, ω) = BV (Ω, dcc,m) holds along with ‖Dgu‖(Ω) = ‖Du‖(Ω).

3 Sub-Riemannian manifolds

A frame free approach to describe sub-Riemannian structures locally generated by families
of vector fields [37] relies on images of Euclidean vector bundles. Recall that a Euclidean
vector bundle is a vector bundle whose fiber at a point x is equipped with a scalar product
〈·, ·〉x which depends smoothly on x (in particular smooth orthonormal bases locally exist).

Definition 3.1 (Sub-Riemannian structure). A sub-Riemannian structure on M is a pair
(U, f) where U is a Euclidean vector bundle over M and f : U → TM is a morphism of
vector bundles (i.e., a smooth map, linear on fibers, such that f(Ux) ⊂ TxM , where Ux

denotes the fiber of U over x) such that

Liex(D) = TxM, ∀x ∈M, (28)

where we have set
D := {f ◦ σ | σ ∈ Γ(U)} , (29)

and Γ(U) := {σ ∈ C∞(M,U) | σ(x) ∈ Ux}).
Given a sub-Riemannian structure on M , we denote by D(x) the vector space f(Ux) ⊂

TxM and we define the quadratic forms Gx : TxM → [0,∞] by

Gx(v) =

{
min{|u|2x | u ∈ Ux, f(u) = v}, v ∈ D(x)

+∞, v /∈ D(x).
(30)

Notice that in general the dimension of D(x) need not be constant and (x, v) 7→ Gx(v) is
lower semicontinuous. Let gx : D(x)×D(x)→M be the unique scalar product satisfying

gx(v, v) = Gx(v) ∀v ∈ D(x).

We shall denote by Px : D(x) → Ux the linear map which associates with v the unique
vector u ∈ f−1(v) having minimal norm. It can be computed intersecting f−1(v) with the
orthogonal to the kernel of f |Ux .

We will often computeG in local coordinates as follows: let σ1, . . . , σm be an orthonormal
frame for U|Ω (where m = rankU) in an open set Ω ⊂M . Then, defining Xj = f ◦ σj , for
every x ∈ Ω and v ∈ D(x) we have

Gx(v) = min

{
m∑
i=1

c2
i | v =

m∑
i=1

ciXi(x)

}
. (31)
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In this case we shall also view Px as an Rm-valued map. Notice that, by polarization, it
holds

gx(v, w) = 〈Px(v),Px(w)〉 v, w ∈ D(x). (32)

Remark 2. The above definition includes the cases (see also Section 3.1 for more examples):

• U is a subbundle of TM and f is the inclusion. In this case the distribution D has
constant rank, i.e., dimD(x) = dim Ux = rank U. When U = TM and f is the
identity, we recover the definition of Riemannian manifold.

• U is the trivial bundle of rank m on M , i.e., U is isomorphic to M × Rm and D
is globally generated by m vector fields f ◦ e1, . . . , f ◦ ek, where ej(x) = (x, ēj) and
ē1, . . . , ēm is the canonical basis of Rm; in particular, we recover the case when M =
Ω ⊂ Rn and we take m vector fields satisfying the Hörmander condition.

The finiteness of the Carnot–Carathéodory distance d(·, ·) induced by G as in (25) (note
that we will drop from now on the cc in (25) and (26)) is guaranteed by the Lie bracket
generating assumption on D (see [5]), as well as the fact that d induces the topology of M
as differentiable manifold. The metric space (M,d) is called a Carnot–Carathéodory space.

Since D is Lie bracket generating, at every point x ∈ M there exists kx ∈ N such that
the flag at x associated with D stabilizes (with step kx), that is,

{0} ( D1(x) ⊂ D2(x) ⊂ · · · ⊂ Dkx(x) = TxM, (33)

where D1(x) = D(x) and Di+1(x) = (Di + [D,Di])(x). The minimum integer kx such
that (33) holds is called degree of non-holonomy at x. With the flag (33) we associate two
nondecreasing sequences of integers defined as follows. The growth vector is the sequence
(n1(x), . . . , nkx(x)), where ni(x) = dimDi(x). Notice that for every x ∈M , nkx(x) = n. To
define the second sequence, let v1, . . . , vn ∈ TxM be a basis of TxM linearly adapted to the
flag (33). The vector of weights is the sequence (w1(x), . . . , wn(x)) defined by wj(x) = s
if vj ∈ Ds(x) \ Ds−1(x). Notice that this definition does not depend on the choice of the
adapted basis, and that 1 = w1(x) ≤ · · · ≤ wn(x) = kx.

We say that a point x ∈M is regular if the growth vector is constant in a neighborhood
of x, otherwise we say that x is singular. If every point is regular, we say that the sub-
Riemannian manifold is equiregular.

3.1 Examples

In this section we mention some examples of sub-Riemannian manifolds. A first fundamental
class of examples is provided by Carnot groups.

Example 3.1 (Carnot groups). Let us consider a connected, simply connected and nilpotent
Lie group G, whose Lie algebra g admits a step s stratification

g = V1 ⊕ V2 ⊕ · · · ⊕ Vs,
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namely [V1, Vj ] = Vj+1 for every j = 1, . . . , s − 1 and [V1, Vs] = {0}. Every layer Vj of g
defines at each point x ∈ G the following fiber of degree j at x

Hj
x = {Y (x) ∈ TxG | Y ∈ Vj} .

All fibers of degree j are collected into a subbundle Hj of TG for every j = 1, . . . , s. Fix
a scalar product 〈·, ·〉e on H1

e . Then this canonically defines a scalar product 〈·, ·〉x on H1
x

by left invariance. In this way we endow the vector bundle H1 with a Euclidean structure.
In the language of Definition 3.1, the inclusion i : H1 → TG defines a left invariant sub-
Riemannian structure on G. According to (29), the corresponding module D is precisely
made by all smooth sections of H1, the so-called horizontal vector fields and D(x) = H1

x for
every x ∈ G. The validity of (28) is ensured by the assumption that g is stratified. Note
that different choices of scalar product on H1

e define Lipschitz equivalent sub-Riemannian
structures on G.

The group G equipped with a left invariant sub-Riemannian structure is called Carnot
group. Let m be the dimension of V1, n the dimension of G, and let (y1, . . . , yn) be a system
of graded coordinates on G. An equivalent way to define a left invariant sub-Riemannian
structure on G is the following. Fix a basis X1, . . . , Xm of V1 with the following form

Xj(y) = ∂j +
n∑

i=m+1

aji(y) ∂i for every j = 1, . . . ,m,

where aji is a homogeneous polynomial such that aji(δry) = rωi−1aji(y) for every y ∈ G
and r > 0, where δry =

∑n
j=1 r

ωjej and the degree ωj is defined by the condition ej ∈ Vωj
for every j = 1, . . . , n. Under these coordinates, we take the Euclidean vector bundle
U = G× Rm and

f : G× Rm → TG, f(y, ξ) =
(
y,

m∑
j=1

ξj Xj(y)
)
.

Example 3.2 (Heisenberg group). The Heisenberg group is a special instance of a step 2
Carnot group. It can be represented in the language of Definition 3.1 as R3 equipped with
the left invariant vector fields

X1 = ∂1 −
x2

2
∂3, X2 = ∂2 +

x1

2
∂3,

with respect to some polynomial group operation. We have V1 = span{X1, X2} ⊂ h and
V2 = span{X3} ⊂ h, where h is the 3-dimensional Lie algebra of left invariant vector fields
and X3 = ∂3. Following the previous general case of Carnot groups, we set U = R3 × R2,
equipped by the morphism f defined by

f(x, (1, 0)) = X1(x), f(x, (0, 1)) = X2(x),

for every x ∈ R3. In this case, we have D = {b1X1 + b2X2 : b1, b2 : R3 → R smooth}.
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Example 3.3. Let us consider a connected Lie group G with Lie algebra g equipped with
a linear subspace g1 = span{X1, . . . , Xm} that satisfies

g = g1 ⊕ g2 and [g1, g1] = g2.

We notice that here g need not be nilpotent and G is not necessarily simply connected,
hence the exponential mapping might not be invertible. This cannot occur for Carnot
groups, where the exponential mapping is always bianalytic. The main point is that the
groups G in general need not have dilations. Here the Euclidean vector bundle defining
their sub-Riemannian structure is given by

f : G× Rm → TG, f(y, ξ) =
(
y,

m∑
j=1

ξj Xj(y)
)
.

The foremost example of these groups is the rototranslation group R2×S1, m = 2, equipped
with vector the fields

X1 = cos θ∂x + sin θ∂y and X2 = ∂θ.

In the next examples, we refer the reader to Sections 3.3, 3.4 for notions of nilpotent
approximations and privileged coordinates.

Example 3.4 (Rank-varying sub-Riemannian structure - Grushin plane). Consider the
sub-Riemannian structure on R2 defined by U = R2 × R2, and f((x1, x2), (1, 0)) = X1,
f((x1, x2), (0, 1)) = X2, where

X1 = ∂1, X2 = x1∂2.

Then D(x) = span{X1(x), X2(x)} and n1(x1, x2) = 2 if x1 6= 0, whereas n1(0, x2) = 1. The
growth vector at points in the vertical axis Σ = {(x1, x2) | x1 = 0} is equal to (1, 2). On
the other hand, at points of R2 \ Σ, the growth vector is equal to (2). In other words, Σ is
the set of singular points and the varying dimension is n1(x). Given v = v1∂1 + v2∂2, the
sub-Riemannian metric in this case is

Gx(v) =


v2

1 +
v22
x21
, x1 6= 0

v2
1, x1 = 0, v2 = 0

∞, x1 = 0, v2 6= 0.

As a consequence, the scalar product is

gx(v, w) = v1w1 +
v2w2

x2
1

, v, w ∈ D(x), v = v1∂1 + v2∂2, w = w1∂1 + w2∂2.

At (0, 0) (and at any point in the vertical axis), the nilpotent approximation (and thus the
metric tangent cone) is the sub-Riemannian structure itself. Indeed, since the degree of
non-holonomy at (0, 0) is 2 and since coordinates (x1, x2) are linearly adapted to the flag
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of D at (0, 0), they are also privileged. The weights at (0, 0) are w1(0, 0) = 1, w2(0, 0) = 2.
Hence both X1, X2 are homogeneous of non-holonomic order −1 at (0, 0). Geodesics can be
computed explicitly and the Carnot–Carathéodory distance is homogeneous with respect to
the dilation δλ(x1, x2) = (λx1, λ

2x2).

Example 3.5 (Singular point at which the metric tangent cone is a Carnot group). Consider
the sub-Riemannian structure on R3 given by U = R3 × R3 and f(x, (1, 0, 0)) = X1,
f(x, (0, 1, 0)) = X2, f(x, (0, 0, 1)) = X3, where

X1 = ∂1 −
x2

2
∂3, X2 = ∂2 +

x1

2
∂3, X3 = x2

3∂3.

Set D(x) = span{X1(x), X2(x), X3(x)}. Then n1(x1, x2, x3) = 3 if x3 6= 0, whereas
n1(x1, x2, 0) = 2. The growth vector at points in the plane Σ = {(x1, x2, x3) | x3 = 0}
is equal to (2, 3). On the other hand, at points of R3 \ Σ, the growth vector is equal to
(3). In other words, Σ is the set of singular points and the varying dimension is n1. The
sub-Riemannian metric is

Gx(v) =


v2

1 + v2
2 +

(v3+
x2v1

2
−x1v2

2
)2

x43
, x3 6= 0

v2
1 + v2

2, x3 = 0, 2v3 + x2v1 − x1v2 = 0

∞, x3 = 0, 2v3 + x2v1 − x1v2 6= 0.

Coordinates (x1, x2, x3) are linearly adapted to the flag of D at (0, 0, 0) and the degree of
non-holonomy of the structure at (0, 0, 0) is 2. Hence (x1, x2, x3) are privileged at (0, 0, 0).
A simple computation shows that ord0X1 = ord0X2 = −1 whereas ord0X3 = 1. Therefore,
the truncated vector fields are X̂1 = X1, X̂2 = X2 and X̂3 = 0 and the metric tangent cone
at (0, 0, 0) is isometric to the Heisenberg group (see Example 3.2).

Example 3.6 (Generalized Grushin plane). Let us consider a generalization of Example 3.4
where we replace X2 with

Xα
2 (x) = xα2∂2,

with α > 1. The sub-Riemannian metric becomes

G(x,y)(v) =


v2

1 +
v22
x2α1

, x1 6= 0

v2
1, x1 = 0, v2 = 0

+∞, x1 = 0, v2 6= 0,

from which we deduce that the map Px : D(x)→ R2 is given by

Px(v) =

{
(v1,

v2
xα1

), x1 6= 0

(v1, 0) x1 = 0, v2 = 0.

The growth vector is (1, 2) at points in the vertical axis and it is (2) outside the vertical axis.
Set X(x1, x2) = x1∂2. Then X(x) ∈ D(x) for every point x but x 7→ Gx(X(x)) explodes at
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points in the vertical axis. Indeed,

Px(X(x)) =


(

0, 1
xα−1
1

)
, x1 6= 0

(0, 0) x1 = 0,

whence

Gx(X(x)) = |Px(X(x))|2 =

{
1

x4α−2
1

, x1 6= 0

0 x1 = 0.

Notice however that x 7→ Px(X(x)) is measurable.

The sub-Riemannian structures of examples 3.4, 3.5, 3.6 are also called almost-Riemannian,
see [3, 4].

Example 3.7 (corank-1 or contact distributions [26]). Let M be a smooth manifold and
β be a completely non-integrable one-form on M . Set U = kerβ. Then U is a vector
bundle in M of rank dimM −1. Choosing any Euclidean structure on U, we can define the
sub-Riemannian structure (U, i) on M where i is the inclusion. The growth vector of the
distribution is constantly equal to (dimM−1,dimM) and the structure is equiregular. This
class of sub-Riemannian manifolds satisfies at each point the assumptions of our blow-up
theorem below, see Section 4.

3.2 BV functions on sub-Riemannian manifolds

In this section we provide characterizations for BV functions in sub-Riemannian manifolds
and prove the Riesz theorem. First of all, we notice that in a sub-Riemannian manifold one
can locally fix an orthonormal frame

X1 = f ◦ σ1, X2 = f ◦ σ2, . . . , Xm = f ◦ σm (34)

where σ1, . . . , σm is a local orthonormal frame of U. The frame (34) defines the vector
measure

Xu := (DX1u, . . . ,DXmu). (35)

Theorem 3.1. Let Ω ⊂ M be an open set and let u ∈ L1(Ω). Then, the following three
conditions are equivalent:

(i) sup {|DXu|(Ω) | X = f ◦ σ, σ ∈ Γ(U|Ω), |σ| ≤ 1} <∞;

(ii) u ∈ BV (Ω, d,m);

(iii) u ∈ BV (Ω, g, ω).

Furthermore, if one of the previous conditions holds, then we have

‖Dgu‖(Ω) = ‖Du‖(Ω) = sup {|DXu|(Ω) | X = f ◦ σ, σ ∈ Γ(U|Ω), |σ| ≤ 1} .

If Ω has an orthonormal frame (34), then ‖Dgu‖(Ω) = |Xu|(Ω), where Xu is the vector
measure (35) defined on Ω.
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Proof. For every open set A ⊂ Ω, we define the set function

s(A) = sup {|DXu|(A) | X = f ◦ σ, σ ∈ Γ(U|A), |σ| ≤ 1} .

The simple inequality s(Ω) ≤ ‖Dgu‖(Ω) is a consequence of the fact that a larger class of
vector fields is considered in the definition of ‖Dgu‖, hence the implication from (iii) to (i)
follows. From Theorem 2.7, we get ‖Dgu‖(Ω) ≤ ‖Du‖(Ω), hence the implication from (ii)
to (iii) follows. Next, we prove the implication from (i) to (ii), that follows by establishing
the inequality

‖Du‖(Ω) ≤ s(Ω).

By a partition of unity, we can assume with no loss of generality that in Ω the vector fields
Xi = f ◦ σi are globally given. We assume first that u ∈ C1(Ω). In this case we prove first
the inequality (where the left hand side should be understood as the slope (21) w.r.t. d),
in local coordinates

|∇u|2(x) ≤
m∑
i=1

(Xiu(x))2. (36)

In order to prove this inequality, if c ∈ L2([0, 1];Rm), γ̇ =
∑

i ciXi(γ), γ0 = x and γ1 = y,
we have

|u(x)− u(y)| = |
ˆ 1

0
dγtu(γ̇t) dt| = |

ˆ 1

0

m∑
i=1

ci(t)Xiu(γt) dt| ≤ ‖c‖2 sup
t∈[0,1]

√√√√ m∑
i=1

(Xiu(γt))2 .

Minimizing with respect to c gives

|u(x)− u(y)|
d(x, y)

≤ sup


√√√√ m∑

i=1

(Xiu(z))2 | d(x, z) ≤ 2d(x, y)

 .

Then, taking the limit as y → x provides (36). Now, considering the vector-valued measure
Xu in (35), whose total variation |Xu| is equal to

√∑
i(Xiu)2m, we may write

ˆ
Ω
|∇u| dm ≤ |Xu|(Ω).

We can now invoke the definition of BV (Ω, d,m) and Theorem 2.4 to obtain the inequality

‖Du‖(Ω) ≤ |Xu|(Ω) . (37)

The estimate |Xu|(Ω) ≤ s(Ω) immediately follows observing that for each ϕ ∈ C1
c (Ω,Rm)

with |ϕ| ≤ 1 there holds ˆ
Ω
u divω

( m∑
i=1

ϕiXi

)
ω ≤ s(Ω) .

Collecting all previous inequalities, we achieve

s(Ω) ≤ ‖Dgu‖(Ω) ≤ ‖Du‖(Ω) ≤ |Xu|(Ω) ≤ s(Ω) ,

20



that establishes all the claimed equalities. �

From now on, in view of Theorem 3.1, the measures ‖Dgu‖ and ‖Du‖ will be identified,
and we will use their local representation as total variation of the vector-valued measure Xu
in (35). We also notice that due to Proposition 2.2 and the Poincaré inequality with respect
to vector fields in Rn, see for instance [30] and [32], a local Poincaré inequality also holds in
our framework. This implies that we can apply Proposition 2.6 to obtain the inequalities

lim inf
r↓0

min{m(Br(x) ∩ E),m(Br(x) \ E)}
m(Br(x))

> 0, lim sup
r↓0

‖Dg1E‖(Br(x))

h(Br(x))
<∞ (38)

(recall that h(Br(x)) = m(Br(x))/r) for ‖Dg1E‖-a.e. x ∈ Ω, whenever 1E ∈ BV (Ω, g, ω).

Definition 3.2 (Dual normal and reduced boundary). Write, in polar decomposition,
X1E = ν∗E‖Dg1E‖, where ν∗E : Ω → Rm is a Borel vector field with unit norm. We
call ν∗E dual normal to E.
We denote by F∗gE the reduced boundary of E, i.e. the set of all points x in the support of
‖Dg1E‖ satisfying (38) and

lim
r↓0

1

‖Dg1E‖(Br(x))

ˆ
Br(x)

|ν∗E(y)− ν∗E(x)|2 d‖Dg1E‖(y) = 0. (39)

It is simple to check that, while the dual normal ν∗E depends on the choice of the
orthonormal frame, the reduced boundary F∗gE does not.

We notice that (38) and the relative isoperimetric inequality give

0 < lim inf
r↓0

‖Dg1E‖(Br(x))

h(Br(x))
≤ lim sup

r↓0

‖Dg1E‖(Br(x))

h(Br(x))
<∞ (40)

Then, the doubling property of h implies the asymptotic doubling property:

lim sup
r↓0

‖Dg1E‖(B2r(x))

‖Dg1E‖(Br(x))
<∞ for ‖Dg1E‖-a.e. x ∈ Ω.

We shall use the following proposition, a direct consequence of the Lebesgue continuity
theorem in all metric measure spaces with an asymptotically doubling measure: here our
measure is ‖Dg1E‖.

Proposition 3.2. If E has locally finite perimeter in Ω, then ‖Dg1E‖-a.e. point of Ω
belongs to F∗gE.

Now, we are in the position to establish Riesz theorem in sub-Riemannian manifolds,
compare with Remark 4. As a byproduct, applying Riesz theorem to a characteristic func-
tion 1E , we can identify a geometric normal νE , image of the dual normal under the mor-
phism f .
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Theorem 3.3 (Riesz theorem in sub-Riemannian manifolds). Let u ∈ BV (Ω, g, ω). There
exists a Borel vector field νu satisfying G(νu) = 1 ‖Dgu‖-a.e. in Ω and

DXu = g(X, νu)‖Dgu‖ ∀X ∈ Γg(Ω,D). (41)

If E is a set of finite perimeter and u = 1E, νE := ν1E is given in a local frame Xi = f ◦σi
by f(

∑
i ν
∗
E,iσi) and it will be called geometric normal.

Proof. By a partition of unity, we can assume that in Ω an image of an orthonormal frame
X1 = f ◦σ1, . . . , Xm = f ◦σm is globally given and, taking into account Proposition 2.2, we
can assume with no loss of generality that Ω ⊂ Rn and that ω = ω̄dx1 ∧ . . . ∧ dxn. Let Xu
be as in (35) and write, in polar decomposition, Xu = w|Xu| = w‖Dgu‖ for some Borel
w : Ω→ Rm with |w| = 1. If X =

∑
i ciXi with ci smooth, obviously

DXu =
m∑
i=1

ciDXiu =
m∑
i=1

ciwi‖Dgu‖. (42)

Assume now that X ∈ Γg(Ω,D). By a measurable selection theorem we can write X =∑
i ciXi with ci Borel and

∑
i c

2
i ≤ 1. If we define, as in the proof of Theorem 2.4, Xε =∑m

i=1 ci ∗ ρεXi, the commutator theorem and the distributional identity divω Y = divY +
Y log ω̄ give (notice indeed that divω(ciXi) makes sense only as a distribution)

vε = divω(ci ∗ ρεXi)−
[
divω(ciXi)

]
∗ ρε → 0 strongly in L1

loc(Ω) ∀i = 1, . . . ,m. (43)

Hence, adding with respect to i gives divωX
ε → divωX strongly in L1

loc(Ω). Recall that the
distribution div(ciXi) satisfies

ˆ
Ω
ψ(y) ddiv(ciXi)(y) = −

ˆ
Ω
ci(y)Xiψ(y)dy ∀ψ ∈ C1

c (Ω),

whence

divω(ciXi) ∗ ρε(x) =

ˆ
Ω
ρε(x− y) ddiv(ciXi)(y) +

ˆ
Ω
ρε(x− y)ci(y)Xi log ω̄ dy.

Thus, a direct computation shows that

|vε(x)| ≤
n∑
j=1

|∂jXij(x)|
ˆ

Ω
|ci(y)ρε(x− y)|dy

+

ˆ
Ω
|ci(y)

n∑
j=1

∂jρε(x− y)(Xij(x)−Xij(y))|dy,

where Xij are smooth functions such that Xi =
∑n

j=1Xij∂j . The first summand is locally
uniformly bounded since |ci| ≤ 1 and Xij is smooth. As for the second term, changing
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variable we obtain

ˆ ∣∣∣ci(y)
n∑
j=1

∂jρε(x− y)
(
Xij(x)−Xij(y)

)∣∣∣ dy
≤

n∑
j=1

||ci∂jρ||L∞
1

ε

ˆ
|Xij(x− εy)−Xij(x)|dy .

It follows that vε is locally uniformly bounded, and the convergence in (43) holds in the
weak∗ sense in L∞loc as well. Therefore, up to subsequences, divωX

ε → divωX weakly∗ in
L∞loc(Ω). Since u ∈ L1(Ω), we can pass to the limit into (42) with X = Xε to obtain that
(42) holds for any smooth vector field X =

∑
i ciXi with ci just bounded Borel.

Now, let us prove (41) with νu = f(w) =
∑

iwiXi. To this aim, we notice that in the
representation X =

∑
i ciXi we can always assume that c(y) is orthogonal to the kernel of

f |Uy . Recalling that
m∑
i=1

aibi = gy
( m∑
i=1

aiXi(y),

m∑
i=1

biXi(y)
)

for all a orthogonal to the kernel of f |Uy and all b ∈ Rm, we apply the previous equality
with a = c and b = w, to obtain (41). Notice that it has been essential the estabilishment
of (42) with non-smooth c’s: even if the initial c’s were smooth, their pointwise projection
on the orthogonal to the kernel of f might be not smooth (see Example 3.6).

By construction, G(νu) ≤ 1, because |w| = 1; the converse inequality can be proved
noticing that on any Borel set A it holds |DXu|(A) ≤

´
A

√
G(νu) d‖Dgu‖, for all X ∈

Γg(Ω,D). Choosing A open and maximizing with respect to X gives

‖Dgu‖(A) ≤
ˆ
A

√
G(νu) d‖Dgu‖.

Since A is arbitrary, we have
√
G(νu) ≥ 1 ‖Dgu‖-a.e. in Ω. �

Remark 3. A byproduct of the previous proof (just take w = ν∗E in the previous proof,
and notice that we proved that G(

∑
iwiXi) = 1) is the fact that the dual normal ν∗E is

orthogonal ‖Dg1E‖-a.e. to the kernel of f .

Remark 4. It is rather natural to ask whether Theorem 3.3 holds in the general framework
of Section 2.3, where G is only Borel and we consider general smooth sections of D. More
precisely, in this setting, for u ∈ BV (Ω, g, ω), it would be interesting to find a positive finite
measure σ in Ω and a Borel vector field νu in Ω with G(νu) = 1 ‖Dgu‖-a.e., satisfying:

DXu = g(X, νu)σ ∀X ∈ Γg(Ω,D). (44)

A good candidate for the measure σ would be the supremum of |DXu|, in the lattice of
measures, as X varies in Γg(Ω,D).
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3.3 Privileged coordinates and nilpotent approximation

In this section we recall the notion of privileged coordinates and of nilpotent approximation
of a sub-Riemannian manifold at a point.

Let (U, f) be a sub-Riemannian structure on M and fix p ∈M . Let Ω be a neighborhood
of p and let σ1, . . . , σm be a local orthonormal frame for the U|Ω, where m = rankU. Define
Xj = f ◦ σj .

Given a function ψ ∈ C∞(M), for i ∈ {1, . . . ,m} we call Xiψ a first non-holonomic
derivative of ψ. Similarly, if i, j ∈ {1, . . . ,m}, XiXjψ is a non-holonomic derivative of
order 2. With this terminology, we say that ψ has non-holonomic order at p greater than
s if all non-holonomic derivatives of ψ of order σ ≤ s − 1 vanish at p. If moreover there
exists a non-holonomic derivative of order s of ψ which does not vanish at p we say that ψ
has non-holonomic order s at p.

By duality, given a differential operator Q, we say that Q has non-holonomic order ≥ s
at p if Qψ has order ≥ s + η at p whenever ψ ∈ C∞(M) has order ≥ η at p. Clearly, the
non-holonomic order (of a function or of a differential operator) is an intrinsic object, i.e.,
it does not depend on the chosen vector fields X1, . . . , Xm.

Definition 3.3 (Privileged coordinates). Let ϕ = (ϕ1, . . . , ϕn) : Ω → Rn be a coordinate
system centered at p, i.e., ϕ is a smooth diffeomorphism and ϕ(p) = 0. We say that ϕ is a
system of privileged coordinates if

• the canonical basis (∂z1 , . . . , ∂zn) of T0Rn is linearly adapted to the flag associated
with ϕ∗D at 0;

• for every i = 1, . . . , n the non-holonomic order of the i-th coordinate function z 7→ zi
at 0 is equal to wi(p).

Existence of privileged coordinates at points of sub-Riemannian manifolds have been
proved in a constructive way in several works [15, 27, 29, 39]. Moreover, if the non-holonomy
degree kp is 2 at a point p (see Example 3.7), each coordinate system satisfying the first
property in Definition 3.3 directly satisfies the second one.

Let ϕ : Ω → Rn be a system of privileged coordinates at p. We consider the sub-
Riemannian structure (U|Ω, ϕ∗ ◦ f) on Rn. Clearly, the vector fields ϕ∗X1, . . . , ϕ∗Xm are
global generators for ϕ∗D. Using Proposition 2.2, the order of a function ψ ∈ C∞(Ω) at p
coincides with the order of ψ ◦ ϕ−1 ∈ C∞(Rn) at 0.

Privileged coordinates allow to compute non-holonomic orders (both of functions and
of differential operators) using the following facts.

(i) A monomial function h ∈ C∞(Rn), h(z) = zα1
1 zα2

2 · · · zαnn has order w1(p)α1 + · · · +
wn(p)αn at 0.

(ii) Given i ∈ {1, . . . , n}, a vector field F (z) = zα1
1 zα2

2 · · · zαnn ∂zi has order w1(p)α1 + · · ·+
wn(p)αn − wi(p) at 0.
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Thanks to (i), the order at 0 of a function h ∈ C∞(Rn), denoted with ord0(h) is the
smallest number w1(p)α1 + · · · + wn(p)αn, such that a monomial zα1

1 zα2
2 · · · zαnn appears

with a nonzero coefficient in the Taylor expansion of h at 0. Using (ii), we have a notion of
homogeneity of vector fields. Namely, a vector field F on Rn is homogeneous of order s if

F =
n∑
i=1

fi(z)∂zi ,

where
ord0(fi)− wi(p) = s, ∀ i = 1, . . . , n.

By definition, the order of ϕ∗Xi at 0 is greater than −1. Hence, we have an expansion

ϕ∗Xi = Y
(−1)
i + Y

(0)
i + Y

(1)
i + · · · ,

where Y
(s)
i is the homogeneous component ϕ∗Xi of order s. Define m vector fields on Rn

by

X̂i = Y
(−1)
i . (45)

Denote by D̂ the distribution on Rn generated pointwise by X̂1, . . . , X̂m and define, in
analogy with (31)

Ĝx(v) =

min

{
m∑
i=1

c2
i | v =

m∑
i=1

ciX̂i(x)

}
, v ∈ D̂(x)

+∞, v /∈ D̂(x),

(46)

and ĝx the corresponding scalar product on D̂(x).

Remark 5. Take Û = Rn × Rm and f̂ : Û → TRn defined by f̂(z, v) =
∑m

i=1 viX̂i(z).

Then one can define D̂ and Ĝx as the one induced by the sub-Riemannian structure (Û, f̂)
on Rn. The fact that LiezD̂ = Rn for every z ∈ Rn follows by the Lie bracket generating
condition on ϕ∗D.

Denote by d̂ the Carnot–Carathéodory distance on Rn associated with the sub-Riemannian
structure (Û, f̂), and denote by B̂r the set {y ∈ Rn | d̂(y, 0) < r}. Given λ > 0, define the
dilation δλ : Rn → Rn by

δλ(z1, . . . , zn) = (λw1(p)z1, . . . , λ
wn(p)zn) (47)

The sub-Riemannian structure (Û, f̂) on Rn defined in Remark 5 is called a nilpotent
approximation of (U, f) at p. Let us recall some properties of nilpotent approximations
that will be useful in the sequel.

Proposition 3.4. Let (Û, f̂) be a nilpotent approximation of (U, f) at p. Then:

(i) the growth vector of ϕ∗D at 0 coincides with the growth vector of D̂ at 0;
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(ii) any vector field V ∈ Lie{X̂1, . . . , X̂m} is complete and Lie{X̂1, . . . , X̂m} is nilpotent;

(iii) the distance d̂ is homogeneous with respect to δλ, i.e., d̂(δλz, δλz
′) = λd̂(z, z′), for

every λ ≥ 0, z, z′ ∈ Rn;

(iv) given r > 0 and a smooth vector field X on Ω such that ordpX ≥ −1, the vector field
Y r on Rn defined by

Y r = r(δ1/r)∗(ϕ∗X − X̂),

where X̂ is the homogeneous component of ϕ∗X of order −1 at 0, satisfies the following
property: Y r and its divergence converge uniformly to zero on compact sets of Rn as
r tends to zero.

Proof. It is easy to see that if X has order ≥ α and Y has order ≥ β at 0 then [X,Y ] has
order ≥ α+β at 0. If X is homogeneous of order α at 0 and Y is homogeneous of order β at
0 then [X,Y ] is homogeneous of order α+ β or it is zero. Let XI = [Xik [· · · [Xi2 , Xi1 ] · · · ]],
where I = (i1, . . . , ik) ∈ {1, . . .m}k. Denote by X̂I the Lie bracket [X̂ik [· · · [X̂i2 , X̂i1 ] · · · ]].
Since X̂I is homogeneous of order −k (or it is zero), ϕ∗XI − X̂I has order ≥ −k at 0.
Therefore ϕ∗XI(0)− X̂I(0) ∈ ϕ∗Dk−1(0). As a consequence, dim D̂k(0) = dimϕ∗Dk(0) for
every k, which gives the first property.

By homogeneity, for every i = 1, . . . ,m,

X̂i =
n∑
j=1

fij(z)
∂

∂zj
,

with fij satisfying
fij(δλz) = λwj−1fij(z).

This implies that fij is a homogeneous polynomial of non-holonomic degree wj − 1, whence
it depends only on coordinates zk with k such that wk(p) < wj(p). Let j ≤ n1 (where

n1 = dim D̂(0)). Then, since fij is constant, the solution of żj = fij(z) is a linear function
of t. Take now j ∈ {n1 + 1, . . . , n2} then, since fij(z) only depends on z1, . . . , zn1 , the
solution of żj = fij(z) is a quadratic function of t. Iterating this process we obtain that the

flow of X̂i is defined for every t, that is, X̂i is complete.
Since fij is a polynomial of degree wj(p) − 1 ≤ wn(p) − 1 = kp − 1, every Lie bracket

between the X̂i of length greater than kp vanishes identically. Therefore, the Lie algebra

generated by X̂1, . . . , X̂m is nilpotent and, for every V ∈ Lie{X̂1, . . . , X̂m}, we have

V =

n∑
j=1

Vj(z)∂zj ,

where Vj is a polynomial of non-holonomic degree ≤ wj(p)− 1. Using the above argument,
one infers that the flow of V is defined for every t.

The homogeneity of d̂ is a consequence of the fact that, under the action of δλ, the
length of a curve (calculated with Ĝ) is multiplied by λ, which in turn follows by X̂j being
homogeneous of order −1.
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If X is a smooth vector field on Ω having order at p greater than −1 then ϕ∗X = X̂+R,
with X̂ homogeneous of order −1 at 0 and R having order ≥ 0 at 0. Homogeneity of order
−1 at 0 means that X̂ satisfies

(δ1/r)∗X̂(z) = r−1X̂(z),

whence
r(δ1/r)∗X̂(z) = X̂(z).

Let R =
∑n

i=1 ci(z)∂zi . Since R has positive order, there exist ρ0 > 0 and C0 > 0 such that

|ci(z)| ≤ C0(|z1|1/w1 + · · ·+ |zn|1/wn)wi , ∀z ∈ B̂ρ0 . (48)

Let K ⊂ Rn be any compact set and let ω̃ = (ϕ−1)∗ω (see Proposition 2.2). Denote by
ω̄ the density of ω̃ with respect to the Lebesgue measure, i.e., ω̃ = ω̄dz. Thanks to the
identity divω̃Y = divY + Y log ω̄, it suffices to show that the Euclidean divergence of Y r,
i.e., the divergence with respect to the Lebesgue measure, converges to zero on compact
sets. We have

Y r(z) = r[(δ1/r)∗R](z) = r
n∑
i=1

r−wici(δrz)∂zi ,

divY r(z) = r
n∑
i=1

r−wi
∂hi
∂zi

(r, z),

where hi(r, z) = ci(δrz). Hence, to prove the required convergences, it suffices to show that,
for every i = 1, . . . , n,

lim sup
r↓0

1

rwi
sup
K
|ci(δrz)| < ∞ (49)

lim sup
r↓0

1

rwi
sup
K

∣∣∣∣∂hi∂zi

∣∣∣∣ (r, z) < ∞. (50)

Assume r < ρ0/diamK. Then δrz ∈ B̂ρ0 , whence (48) implies

|ci(δrz)| ≤ C0r
wi(|z1|1/w1 + · · ·+ |zn|1/wn)wi ≤ C0r

wi max
z∈K

(|z1|1/w1 + · · ·+ |zn|1/wn)wi ,

and (49) is proved. As for (50), we have

∂hi
∂zi

(r, z) = rwi
∂ci
∂zi

(δrz),

whence

lim sup
r↓0

1

rwi
sup
K

∣∣∣∣∂hi∂zi

∣∣∣∣ (r, z) ≤ ∣∣∣∣∂ci∂zi

∣∣∣∣ (0),

since ci is smooth. �
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3.4 Nilpotent approximation and metric tangent cones

The following theorem provides an estimate between the sub-Riemannian distance d and
the distance d̂ associated with the nilpotent approximation of (U, f) at p. It has been
proved for equiregular sub-Riemannian manifolds in [34, Proposition 4.4] (see also [15] for
the general case). Our proof is inspired by the arguments in [1, Lemma 8.46, Theorem 8.49].
Just for notational simplicity, we omit the diffeomorphism ϕ and rename the vector fields
ϕ∗Xi by Xi.

Theorem 3.5. Let d and d̂ be the Carnot–Carathéodory distances associated with the family
of vector fields X1, . . . , Xm and X̂1, . . . , X̂m, respectively. Let Kr be the closure of B̂r. Then,
the following estimate holds

lim
ε↓0

1

ε
sup

x, y∈KRε
|d(x, y)− d̂(x, y)| = 0 ∀R > 0. (51)

Proof. If x, y ∈ KRε, then we write x = δεx̄, y = δεȳ, with x̄, ȳ ∈ KR, whereKR = δ1/εKRε.

Using homogeneity of d̂ (and renaming x̄, ȳ), (51) can be restated as

lim
ε↓0

sup
x, y∈KR

∣∣∣∣d(δεx, δεy)

ε
− d̂(x, y)

∣∣∣∣ = 0 ∀R > 0.

Set

dε(x, y) =
d(δεx, δεy)

ε
,

and
Xε
i = ε(δ1/ε)∗Xi, i = 1, . . . ,m.

Using the last statement in Proposition 3.4, Xε
i converges to X̂i uniformly on compact

sets. By construction, dε is the Carnot–Carathéodory distance associated with Xε
1, . . . , X

ε
m.

Recall that in [1, Formula 8.26] it has been shown the existence of a constant C depending
only the blowup point (i.e., the origin) and on the compact set KR such that if ε is small
enough

dε(x, y) ≤ C|x− y|1/k0 , ∀x, y ∈ KR, (52)

where k0 is the non-holonomy degree of the sub-Riemannian structure at 0.
Since (52) provides equicontinuity, it suffices to show that dε → d̂ pointwise on KR×KR.

We prove first the lim sup inequality. Set U = L2([0, 1],Rm) and choose c ∈ U such that
(recall the formulation (26) in terms of action minimization) d̂(x, y) = ‖c‖2 and γ(1) = y,
where γ(0) = x and γ̇ =

∑
i ciX̂i(γ). Then, if yε = γε(1), where

γ̇ε =
m∑
i=1

ciX
ε
i (γε), γε(0) = x,

standard ODE theory and the uniform convergence of Xε
i to X̂i on compact sets give yε → y.

On the other hand, the very definition of dε gives dε(x, yε) ≤ ‖c‖2. By (52) we obtain that
lim supε dε(x, y) ≤ d̂(x, y).
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In order to prove the lim inf inequality fix a sequence (εh) ↓ 0 on which the lim infε dε(x, y),
that we already know to be finite, is achieved. Choosing ch ∈ U such that

γ̇h =
m∑
i=1

chiX
εh
i (γh), γh(0) = x, γh(1) = y, ‖ch‖2 = dεh(x, y),

we can assume with no loss of generality that ch weakly converge in U to some c. Again,
standard ODE theory and the uniform convergence of Xε

i to X̂i on compact sets give

γ̇ =

m∑
i=1

ciX̂i(γ), γ(0) = x, γ(1) = y.

Hence, d̂(x, y) ≤ ‖c‖2. Since ‖c‖2 ≤ lim infh ‖ch‖2 we obtain the lim inf inequality. �

Remark 6. Notice that by the Ball-Box theorem (see [37]), there exists a constant L > 0
such that

B̂ε/L(0) ⊂ Bε(0) ⊂ B̂Lε(0) (53)

for all ε > 0 sufficiently small. Hence, (51) is equivalent to

lim
ε↓0

1

ε
sup

x, y∈BRε(0)

|d(x, y)− d̂(x, y)| = 0 ∀R > 0.

The main consequence of (51) is that (Rn, d̂) is a metric tangent cone in Gromov’s
sense (see [28]) to (M,d) at p, the quasi-isometry being the identity map (in privileged
coordinates centered at p). Note that by very definition, a metric tangent cone carries also
a homogeneous structure, relying on a 1-parameter group of dilations.

Under an additional assumption, the nilpotent approximation (and thus a metric tangent
cone) is a Carnot group. To see this, let G be the group of diffeomorphisms of Rn generated
by the set2 {

Φ
X̂i1
t1
◦ Φ

X̂i2
t2
◦ · · · ◦ Φ

X̂ik
tk

, ti ∈ R, ij ∈ {1, . . . ,m}, k ∈ N
}
,

where, obviously, we take the composition as the group operation. Thanks to the Baker–
Campbell–Hausdorff formula, since Lie{X̂1, . . . , X̂m} is nilpotent, for every Φ ∈ G there
exists V ∈ Lie{X̂1, . . . , X̂m} such that Φ = ΦV

1 . Define3

Gp = {Φ ∈ G | Φ(0) = 0}. (54)

Proposition 3.6. If Gp = {IdRn} then there exists a group operation ? on Rn such that X̂i

are left invariant vector fields.

2Recall that ΦYt denotes the flow generated by a vector field Y .
3We emphasize the dependence of Gp on the point p at which the nilpotent approximation is considered.

(Recall that ϕ(p) = 0 and the vector fields X̂1, . . . , X̂m actually depend on p.)
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Proof. Define the map Ψ : Gp → Rn by Ψ(Φ) = Φ(0). Since the X̂i are bracket generating,
Ψ is surjective and, by assumption, Ψ is injective. Thus, for every x ∈ Rn there exists a
unique Φ ∈ Gp such that Φ(0) = x. Taking V ∈ Lie{X̂1, . . . , X̂m} such that Φ = ΦV

1 , we
have ΦV

1 (0) = x. Notice that V may not be unique. Define the operation ? : Rn×Rn → Rn

x ? y := ΦW
1 ◦ ΦV

1 (0).

where V ∈ Lie{X̂1, . . . , X̂m}, respectively W ∈ Lie{X̂1, . . . , X̂m}, is a vector field such that
ΦV

1 (0) = x, respectively, ΦW
1 (0) = y. Let us verify that x ? y is well-defined, i.e., it does not

depend on the choice of V and W . Let V ′,W ′ be such that ΦV ′
1 (0) = x, ΦW ′

1 (0) = y. Then,
using (ΦW

1 )−1 = Φ−W1 ,

Φ−W
′

1 ◦ ΦW
1 (0) = 0.

Thus, our assumption implies that Φ−W
′

1 ◦ ΦW
1 = IdRn , that is, ΦW

1 (z) = ΦW ′
1 (z) for every

z ∈ Rn. Then

ΦW
1 ◦ ΦV

1 (0) = ΦW
1 (x) = ΦW ′

1 (x) = ΦW ′
1 ◦ ΦV ′

1 (0).

It is easily seen that (Rn, ?) is a Lie group, where the inverse of x = ΦV
1 (0) is given by

x−1
? = Φ−V1 (0). Let lx : Rn → Rn be the left translation, i.e., lxy = x ? y. Then, by

definition of push-forward,

((lx)∗X̂i)(y) =
d

dt

∣∣∣∣
t=0

(lx(γ(t))) ,

where γ(t) = ΦX̂i
t (l−1

x y). For every t, since Ψ is bijective, there exists Z(t) ∈ Lie{X̂1, . . . , X̂m}
such that Φ

Z(t)
1 (0) = γ(t). Let V and W be such that ΦV

1 (0) = x and ΦW
1 (0) = y. We have

Φ
Z(t)
1 (0) = γ(t) = ΦX̂i

t (l−1
x y) = ΦX̂i

t (x−1
? ? y) = ΦX̂i

t ◦ ΦW
1 ◦ Φ−V1 (0).

Hence, since Ψ is injective, Φ
Z(t)
1 = ΦX̂i

t ◦ ΦW
1 ◦ Φ−V1 as diffeomorphisms. Thus

d

dt

∣∣∣∣
t=0

(lx(γ(t))) =
d

dt

∣∣∣∣
t=0

(x ? γ(t)) =
d

dt

∣∣∣∣
t=0

(
Φ
Z(t)
1 ◦ ΦV

1 (0)
)

=
d

dt

∣∣∣∣
t=0

(
ΦX̂i
t ◦ ΦW

1 ◦ Φ−V1 ◦ ΦV
1 (0)

)
=

d

dt

∣∣∣∣
t=0

(
ΦX̂i
t ◦ ΦW

1 (0)
)

= X̂i(Φ
W
1 (0)) = X̂i(y).

�
In particular, if Gp = {IdRn} the Lie group Rn equipped with the left invariant sub-

Riemannian structure associated X̂1, . . . , X̂m is a Carnot group. In other words, our as-
sumption implies that any metric tangent cone to (M,d) at p is isometric to a Carnot group.
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Notice that when p is regular it has been shown in [15] that Gp = {IdRn}. Nevertheless, as
we see in Example 3.5, the metric tangent cone may be a Carnot group even at singular
points.

A direct consequence of Proposition 3.4 is that if kp = 2 at every p ∈ M then M is
equiregular and has a step 2 Carnot group as metric tangent cone at each point.

Remark 7. Recall that n1(p) is the dimension of span{X̂1(0), . . . , X̂m(0)}. When Gp =

{IdRn} there exist j1 < j2 < ... < jn1(p) such that X̂j1 . . . , X̂jn1
is an orthonormal frame for

the Carnot group, whereas X̂k ≡ 0 for all other indexes k.

4 The blow-up theorem

In the next subsections we will always be in the following setup:

(A1) E is a set of locally finite perimeter in an open set Ω ⊂M and p ∈ F∗gE ∩ Ω;

(A2) σ1, . . . , σm is a local orthonormal frame on Ω, inducing the vector fields Xi = f ◦ σi,
ϕ : Ω → Rn is a system of privileged coordinates centered at p and X̂1, . . . , X̂m are
defined as in (45).

Note that (A2) is fulfilled by any sub-Riemannian structure (U, f) on M , provided Ω is
small enough.

In the previous setup, D̂, Ĝ, d̂ denote the corresponding objects relative to the nilpotent
approximation (see Section 3.3) and δr denote the corresponding dilations. Notice that the
Lebesgue measure on Rn is well-behaved with respect to the dilations

δλ(z1, . . . , zn) = (λw1(p)z1, . . . , λ
wn(p)zn),

the Jacobian being
Jδλ(z) = λQp , ∀z ∈ Rn

where (w1(p), . . . , wn(p)) is the vector of weights of D at p (and of D̂ at 0) and

Qp =

kp∑
i=1

idim(Di(p) \ Di−1(p)) =
n∑
i=1

wi(p).

For simplicity, in the sequel we rename Qp by Q and wi(p) by wi.
We are interested in the asymptotic behaviour of δ1/rϕ(E ∩ Ω) as r → 0. Given this

setup, we can always reduce ourselves to the case when Ω = Rn, p = 0 and ϕ is equal to
the identity, possibly replacing E by ϕ(E ∩ Ω) and Xi by ϕ∗Xi (see also Proposition 2.2).
This reduction will simplify our notation. In addition, the differential form ω̃ = (ϕ−1)∗ω
can be written as ω̄dx1 ∧ · · · ∧ dxn with ω̄ smooth and strictly positive in Rn and we are
interested in the asymptotic behaviour near the origin. Since the volume form is only used
to define the divergence, affecting DX1E in a multiplicative way (see also the more detailed
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discussion in the proof of Theorem 2.4), we can actually assume that ω̄ ≡ 1 and the measure
m associated with ω̃ coincides with the Lebesgue measure.

Before stating our main result, we recall that in a Carnot group G (see Example 3.1)
with Lie algebra g, a Borel set F is called vertical halfspace if F is invariant4 along all
vector fields X ∈ g (i.e., DX1F = 0) except a vector field X in V1, for which there is (strict)
monotonicity, namely DX1F is nonnegative and nonzero. Setting v = X(0) ∈ T0G, we say
that F is orthogonal to v.

The following result has been first proved in [24, Lemma 3.6], see also [14, Proposi-
tion 5.4] for a different proof (for Carnot groups of arbitrary steps satisfying further alge-
braic conditions see [33, Proposition 2.9]). It shows that invariance needs only to be checked
along directions in the horizontal layer.

Lemma 4.1. Let G be a Carnot group of step 2, let m be the dimension of its horizontal
layer V1 and let F ⊂ G be a Borel set. Assume that V1 contains (m− 1) independent vector
fields Yi such that DYi1F = 0 and a vector field X such that DX1F ≥ 0. Then, if DX1F is
not 0, F is a vertical halfspace.

Recall that kp is the non-holonomic degree of the sub-Riemannian structure at p and Gp
is defined in (54).

Theorem 4.2. Under the assumptions in (A1) and (A2) above, the following properties
hold:

(a) the family 1δ1/rϕ(E∩Ω) is relatively compact in the L1
loc(Rn) topology as r → 0;

(b) any limit point 1F is monotone along the direction X̂ =
∑

i ν
∗
E,i(p)X̂i, i.e.

D
X̂

1F ≥ 0,

and 0 belongs to the support of D
X̂

1F ;

(c) any limit point 1F is invariant along all directions X̂ =
∑

i ciX̂i with ci ∈ C∞,∑m
i=1 c

2
i ≤ 1 and 〈c(0), ν∗E(p)〉 = 0, i.e.

D
X̂

1F = 0.

Moreover, if Gp = {IdRn} and kp = 2, then Rn with the left invariant sub-Riemannian

structure associated with X̂1, . . . , X̂m is a Carnot group of step 2 and F is the vertical
halfspace passing through the origin, normal to νE(p) = ϕ∗f(ν∗E(p)). In particular the
whole family 1δ1/rϕ(E∩Ω) converges to 1F as r ↓ 0 and

lim
r↓0

‖Dg1E‖(Br(p))
h(Br(p))

=
‖Dĝ1F ‖(B̂1)

L n(B̂1)
(55)

with h(Br(p)) = m(Br(p))/r.
4Hereafter, on a Carnot group G we always consider distributional derivatives computed using the

Lebesgue measure in graded coordinates.
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Remark 8. Let us mention that when the sub-Riemannian manifold satisfies the condition

kp = 2 ∀ p ∈M,

then Gp = {IdRn} at every point and therefore the assumptions in the second part of
Theorem 4.2 are fulfilled by any finite perimeter set. For instance, this is the case for
corank 1 distribution (see Example 3.7).

The next remark points out an application of our results to rank-varying distributions.

Remark 9. Consider the sub-Riemannian manifold of Example 3.5. Outside the plane
Σ = {(x1, x2, x3) | x1 = x2 = 0} the structure is Riemannian, whereas at points x ∈ Σ we
have kx = 2. Hence, combining the blowup theorem in the Euclidean case with Theorem 4.2
above we obtain that any finite perimeter set in this sub-Riemannian manifold admits a
blowup at each point of its reduced boundary.

Concerning the proof of Theorem 4.2, statement (a) is proved in Theorem 4.3, statements
(b), (c) are proved in Lemma 4.4, while the second part of Theorem 4.2, which requires in
addition the assumptions on Gp and kp, is proved in Section 4.3.

4.1 Compactness

In this subsection we show that the family of rescaled sets δ1/rϕ(E∩Ω) is relatively compact
with respect to the L1

loc convergence. Here the difficulty in the proof arises from the fact
that, in some sense, not only the sets but also the metric depends on r, since the rescaled
sets have finite perimeter with respect to a family of vector fields which does depend on
r. For this reason, and also because the convergence of vector fields does not occur in
strong norms, standard compactness results relative to a fixed system of vector fields are
not applicable.

Denoting by B1 the closed unit ball relative to d̂ centered at the origin, a simple com-
pactness argument valid in general metric spaces (see for instance [8]) provides for any
η > 0 a partition of B1 in finitely many Borel sets Aη1, . . . , A

η
N(η) and points zη1 , . . . , z

η
N(η)

satisfying

{x | d̂(x, zηi ) <
η

3
} ⊂ Aηi ⊂ {x | d̂(x, zηi ) <

5η

4
} i = 1, . . . , N(η). (56)

The proof of the next result is based on the following compactness criterion. Assume that
Gh ⊂ Rn are Borel sets, and that for any R > 0 and ε > 0 there exist η = η(R, ε), h(R, ε)
and mi,h ∈ [0, 1] satisfying

R−Q
N(η)∑
i=1

ˆ
δR(Aηi )

|1Gh −mi,h| dx < ε for h ≥ h(R, ε), (57)

where Aη1, . . . , A
η
N(η) are as in (56). Then (Gh) is relatively compact in the L1

loc(Rn) con-
vergence. The proof of the criterion is elementary, since for any R > 0 and ε > 0 we can
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choose η in such a way that the map

1Gh 7→
N(η)∑
i=1

mi,h1Aηi h ≥ h(R, ε)

provides a projection on a compact set (since the mi,h are finitely many and belong to [0, 1]),
ε-close in L1(BR) norm.

Theorem 4.3 (Compactness). Let E ⊂ Rn be a set of finite perimeter in a neighbourhood
of 0. Then, if

L := lim sup
r↓0

‖Dg1E‖(Br(0))

rQ−1
<∞, (58)

the family of sets δ1/rE is relatively compact in L1
loc(Rn) as r ↓ 0.

Proof. By a scaling argument it suffices to show that, for any R > 0 and ε > 0, there exist
η(R, ε) > 0 and r̄(R, ε) > 0 such that

(Rr)−Q
N(η)∑
i=1

ˆ
δRr(A

η
i )
|1E −mr,i| dx < ε for all r ∈ (0, r̄), (59)

with mr,i ∈ [0, 1] equal to the mean value of 1E on the set δRr(B3ηRr/2(zηi )).

We choose η ∈ (0, 1) satisfying the smallness condition 3 2Q−1cLRη < ε, where L is the
constant in (58), c is the multiplicative constant in the Poincaré inequality (23) and N̄ ,
detailed below, depends only on the (local) doubling constant of d relative to the Lebesgue
measure. Given η, because of (56) and (51), we can find r̄ > 0 such that, for all r ∈ (0, r̄),
it holds

BRηr/4(δRrz
η
i ) ⊂ δRr(Aηi ) ⊂ B3Rηr/2(δRrz

η
i ) ⊂ B2Rr(0). (60)

Let us check the first inclusion (the proof of the other ones is similar). If d(w, δRrz
η
i ) <

Rηr/4, then for r ≤ r(δ) sufficiently small from (51) (see also the equivalent formulation in
Remark 6) it holds d̂(w, δRrz

η
i ) < Rδr/3. Hence d̂(δ1/(Rr)w, z

η
i ) < δ/3, so that (56) gives

δ1/(Rr)w ∈ A
η
i and then w ∈ δRr(Aηi ). Possibly choosing a smaller r̄, we can also assume

that the Poincaré inequality (23) holds at all points δRrz
η
i with radius 3Rηr/2, for r ∈ (0, r̄).

From (60) we deduce that any point belongs to at most N̄ balls B3Rηr/2(δRrz
η
i ), with

N̄ depending only on the doubling constant of d. Indeed, setting by brevity α = Rηr/4, if
x̄ belongs the balls B6α(δRrz

η
i ) for i ∈ J , then all these balls are contained in B12α(x̄); on

the other hand, this ball contains the balls Bα(δRrz
η
i ), i ∈ J , which are pairwise disjoint by

the first inclusion in (60). Since B12α(x̄) ⊂ B18α(δRrz
η
i ) we get

L n(Bα(δRrz
η
i )) ≥ c−5

D L n(B32α(δRrz
η
i )) ≥ c−5

D L n(B12α(x̄)),

where cD is the doubling constant,5 so that J has cardinality at most c5
D, so that N̄ ≤ c5

D.

5The local doubling property of the Lebesgue measure with respect to the distance d in privileged coor-
dinates is proved in [37].
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Now, using the second inclusion in (60) and the Poincaré inequality (23) (which, by [30],
is known to hold with λ = 1 in length spaces), we can estimate the sum in (59) with

N(η)∑
i=1

ˆ
δRr(A

η
i )
|1E −mr,i| dx ≤

N(η)∑
i=1

ˆ
B3Rηr/2(δRrz

η
i )
|1E −mi,r| dx

=

N(η)∑
i=1

c
3Rηr

2
‖Dg1E‖(B3Rηr/2(δRrz

η
i ))

≤ 3cRN̄ηr‖Dg1E‖(B2Rr(0)).

By our choice of η, we obtain (59). �

4.2 Invariant and monotone directions

Lemma 4.4. Let ζ ∈ L∞(Rn) be a weak∗ limit point in L∞(Rn) of 1δ1/rϕ(E∩Ω) as r tends

to 0 and let X =
∑

i ciXi with ci ∈ C∞(Ω) and
∑

i c
2
i ≤ 1. Then, if X̂ denotes the

homogeneous component of order −1 at 0 of ϕ∗X, the following properties hold:

(i) if 〈ν∗E(p), c(p)〉 = 1, then ζ is monotone along X̂;

(ii) if 〈ν∗E(p), c(p)〉 = 0 then ζ is invariant along X̂.

Finally, the family 1δ1/rϕ(E∩Ω) is relatively compact in the L1
loc(Rn) topology as r → 0, and

therefore ζ is a characteristic function 1F . Moreover, if X is as in (i), 0 belongs to the
support of D

X̂
1F .

Proof. First of all we shall perform the preliminary reduction described at the beginning
of Section 4, so that Ω = Rn, p = 0, ϕ is equal to the identity and m = L n.

Let us start with a preliminary remark. Since DX1E =
∑

i ciDXi1E = 〈c, ν∗E〉‖Dg1E‖,
we can add and subtract ν∗E(0) in the scalar product and use the defining property (39) of
points in the reduced boundary to obtain that

lim
r↓0

∣∣‖Dg1E‖ −DX1E
∣∣(Br(0))

‖Dg1E‖(Br(0))
= 0 (61)

under the assumption on X made in (i), while

lim
r↓0

|DX1E |(Br(0))

‖Dg1E‖(Br(0))
= 0 (62)

under the assumption on X made in (ii). Thanks to property (40) valid at points in the
reduced boundary we have also ‖Dg1E‖(Br(0)) � L n(Br(0))/r as r ↓ 0, and the Ball-Box
inclusions (53) give ‖Dg1E‖(Br(0)) � rQ−1 as r ↓ 0. Hence, using once more the Ball-Box
inclusions also in the numerators of (61) and (62), we can write them in the more convenient
form

lim
r↓0

r1−Q∣∣‖Dg1E‖ −DX1E
∣∣(B̂Rr) = 0 ∀R > 0, (63)
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lim
r↓0

r1−Q|DX1E |(B̂Rr) = 0 ∀R > 0. (64)

Now we have all the ingredients to prove (i). Fix ψ ∈ C1
c (Rn) nonnegative and let R

be such that the ball B̂R contains the support of ψ. By the definition of D
X̂
ζ, we have to

prove that

−
ˆ
Rn
ζψ divX̂ dz −

ˆ
Rn
ζ(X̂ψ) dz ≥ 0. (65)

Let ρi → 0 be such that 1δ1/ρiE weak∗ converges to ζ and define

Yi := ρi(δ1/ρi)∗X.

Recalling that Yi converge to X̂ and divYi converge to div X̂ uniformly on compact sets of
Rn (see Proposition 3.4), it will be sufficient to show that

lim
i→∞

ˆ
δ1/ρiE

ψ divYi dz +

ˆ
δ1/ρiE

Yiψ dz ≤ 0.

Setting ψi(y) = ψ(δ1/ρiy) and changing variables, this is equivalent to

lim
i→∞

ρ1−Q
i

(ˆ
E
ψi divX dy +

ˆ
E
Xψi dy

)
≤ 0.

Now we can integrate by parts, and we are left to show that

lim
i→∞

ρ1−Q
i

ˆ
B̂Rρi (0)

ψi dDX1E ≥ 0.

This is an immediate consequence of (63), because ψi are nonnegative, uniformly bounded
and their support is contained in B̂Rρi . The proof of (ii) is analogous, and relies on (64).

The fact that ζ = 1F for some Borel set F follows by Theorem 4.3, which pro-
vides compactness in the stronger L1

loc(Rn) topology (finiteness of L in (58) follows by
‖Dg1E‖(Br(0)) � rQ−1). In order to prove that 0 belongs to the support of D

X̂
1F , under

assumption (i) on X, we notice that the same argument used above (with integration by
parts to justify the first equality) gives

ˆ
B̂R

χ(z) dD
X̂

1F (z) = lim
i→∞

ˆ
B̂R

χ(z) dDYi1δ1/ρiE(z) (66)

= lim
i→∞

ρ1−Q
i

ˆ
B̂Rρi

χ(δ1/ρiy) dDX1E(y)

for any χ ∈ C∞c (B̂R). If we use (63), ‖Dg1E‖(Br(0)) � rQ−1 and assume that χ is nonneg-
ative and χ ≡ 1 in a neighbourhood of 0, we get

´
χ(z)D

X̂
1F > 0, proving that 0 belongs

to the support of D
X̂

1F . �
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4.3 Characterization of F when the tangent cone is a Carnot group

Proof of the second part of Theorem 4.2. Assume Gp = {idRn}. Proposition 3.6

ensures that Rn (with the operation ?) is a Lie group such that X̂1, . . . , X̂m are left-invariant.
Since the Lie algebra Liez{X̂1, . . . , X̂m} is stratified (see Proposition 3.4), the group Rn with
the left-invariant sub-Riemannian structure associated with X̂1, . . . , X̂m is a Carnot group.

Recall that n1(p) = dim D̂(0) ≤ m. Define the left invariant vector field Ŷ1 by

Ŷ1 =

m∑
i=1

ν∗E,i(0)X̂i.

Since |ν∗E(0)| = Ĝ0(νE(0)) = 1, we have Ĝ(Ŷ1) ≡ 1. By construction, thanks to Lemma 4.4,

Ŷ1 is a monotone direction, i.e., D
Ŷ1

1F ≥ 0. Let Ŷ2, . . . , Ŷn1 be left invariant vector fields

on Rn such that Ŷ1, . . . , Ŷn1 is an orthonormal frame for the Carnot group. Then, again by
Lemma 4.4, D

Ŷj
1F = 0 for every j = 2, . . . , n1. Therefore, applying Lemma 4.1 we obtain

that F is the halfspace orthogonal to the geometric normal νE(0) = f(ν∗E(0)).
Finally, we prove (55). After our reduction to the case Ω = Rn and ω = dx1 ∧ . . . ∧ dxn

(see Proposition 2.2), both total variations ‖Dg1E‖, ‖Dĝ1F ‖ are computed using L n as
reference measure. Moreover, thanks to (51), in the left hand side of (55) we can replace
Br(p) by B̂r. Set

Y1 =

m∑
i=1

ν∗E,i(0)Xi, Yj =

m∑
i=1

cijXi, j = 2, . . . , n1

where cij are such that Ŷj =
∑m

i=1 cijX̂i. Thanks to (61), it holds

lim
r↓0

‖Dg1E‖(B̂r)
h(B̂r)

= lim
r↓0

DY11E(B̂r)

h(B̂r)
,

and, similarly, ‖Dĝ1F ‖ = D
Ŷ1

1F . Thus, (also taking (51) into account) (55) is equivalent
to

lim
r↓0

DY11E(B̂r)

rQ−1
= D

Ŷ1
1F (B̂1).

By scaling, we can read the property we want to prove as

lim
r↓0

r1−Q(δ1/r)#DY11E(B̂1(0)) = D
Ŷ1

1F (B̂1(0)). (67)

Now, by (66) the family of nonnegative measures r1−Q(δ1/r)#DY11E weakly converges to

D
Ŷ1

1F as r ↓ 0. Since ∂B̂1(0) is D
Ŷ1

1F -negligible, applying a well-known convergence
criterion (see for instance [11, Proposition 1.62(b)]) we obtain (67). �

37



References

[1] A. Agrachev, D. Barilari, and U. Boscain. Introduction to Riemannian and sub-Riemannian geometry.
Lecture notes available at http://www.cmapx.polytechnique.fr/ barilari/Notes.php, 2012.

[2] A. Agrachev, D. Barilari, and U. Boscain. On the Hausdorff volume in sub-Riemannian geometry. Calc.
Var. Partial Differential Equations, 43:355–388, 2012.

[3] A. Agrachev, U. Boscain, and M. Sigalotti. A Gauss-Bonnet-like formula on two-dimensional almost-
Riemannian manifolds. Discrete Contin. Dyn. Syst., 20(4):801–822, 2008.

[4] A. A. Agrachev, U. Boscain, G. Charlot, R. Ghezzi, and M. Sigalotti. Two-dimensional almost-
Riemannian structures with tangency points. Ann. Inst. H. Poincaré Anal. Non Linéaire, 27(3):793–
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[38] P. Pansu. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un.
Ann. of Math. (2), 129(1):1–60, 1989.

[39] L. P. Rothschild and E. M. Stein. Hypoelliptic differential operators and nilpotent groups. Acta Math.,
137(3-4):247–320, 1976.

39


	Introduction
	Preliminaries
	Basic notation and notions
	Volume form, divergence and distributional derivatives
	Distributions, metrics and BV functions on manifolds
	BV functions in metric measure spaces (X,d,m)

	Sub-Riemannian manifolds
	Examples
	BV functions on sub-Riemannian manifolds
	Privileged coordinates and nilpotent approximation
	Nilpotent approximation and metric tangent cones

	The blow-up theorem
	Compactness
	Invariant and monotone directions
	Characterization of F when the tangent cone is a Carnot group


