
MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 000–000
S 0025-5718(XX)0000-0

IMPLICIT QR FOR COMPANION-LIKE PENCILS

P. BOITO, Y. EIDELMAN, AND L. GEMIGNANI

Abstract. A fast implicit QR algorithm for eigenvalue computation of low

rank corrections of unitary matrices is adjusted to work with matrix pencils

arising from polynomial zerofinding problems . The modified QZ algorithm
computes the generalized eigenvalues of certain N ×N rank structured matrix

pencils using O(N2) flops and O(N) memory storage. Numerical experiments

and comparisons confirm the effectiveness and the stability of the proposed
method.

1. Introduction

Computing the roots of a univariate polynomial is a fundamental problem that
arises in many applications. One way of numerically computing the roots of a
polynomial is to form its companion matrix (pencil) and compute the (generalized)
eigenvalues.

In a paper on polynomial root–finding [13], Jónsson and Vavasis present a com-
parative analysis of the accuracy of different matrix algorithms. The conclusion is
that computing the roots of a polynomial by first forming the associated compan-
ion pencil A − λB and then solving Ax = λBx using the QZ algorithm provides
better backward error bounds than computing the eigenvalues of the associated
companion matrix by means of the QR algorithm. The analysis does not take into
account the possible use of balancing which would have the effect of allineating the
accuracy of the two approaches [18, 2]. However, it is worth noting that this use is
not allowed if the customary QR and QZ algorithms are modified at the aim of re-
ducing their complexity by one order of magnitude by exploiting the rank structure
of the initial companion matrix (pencil). Thus, the use of the QZ algorithm applied
to the companion pencil achieves the potential best score in terms of accuracy and
efficiency among matrix methods for polynomial root–finding.

Another interesting appearance of the pencil approach is in the design of numer-
ical routines for computing the determinant hence the zeros of polynomial matrices
[17]. A classical technique is the interpolation of the determinant of the poly-
nomial matrix A(λ) at the roots of unity via FFT. This gives a representation
of p(λ) := detA(λ) in the basis of Lagrange polynomials generated from the set
of nodes. The main stumbling step in this process is the presence of undesirable
infinite zeros or, equivalently, zero leading coefficients of p(λ). This makes the com-
panion matrix approach fully unusable. On the contrary, a companion pencil can
still be formed whose generalized eigenvalues are the finite roots of the polynomial.
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If the pencil is A− λB directly constructed from the coefficients of the polynomial
expressed in the Lagrange basis then A is a unitary plus rank–one matrix and B is
a rank–one perturbation of the identity matrix. By a preliminary reduction using
the algorithm in [6] the matrices A and B can be transformed in upper Hessenberg
and triangular form, respectively.

This paper undertakes the task of developing an efficient variant of the QZ algo-
rithm applied to a generalized companion pair (A,B), where A is upper Hessenberg,
B is upper triangular and A and B are rank–one modifications of unitary matrices.
These assumptions imply suitable rank structures in both A and B. We show that
each matrix pair generated by the QZ process is also rank-structured. By exploiting
this property a novel, fast adaptation of the QZ eigenvalue algorithm is obtained
which requires O(n) flops per iteration and O(n) memory space only. Numerical
experiments confirm that the algorithm is stable.

The paper is organized as follows. In Sect. 2 we introduce the computational
problem and describe the matrix structures involved. Sect. 3 and Sect. 4 deal
with basic issues and concepts concerning the condensed representation and the
invariance of these structures under the QZ process, whereas the main algorithm
is presented in Sect. 5. Sect. 6 gives a backward error analysis for the QZ method
applied to the companion pencil. In Sect. 7 we present an implementation of our
fast variant of the QZ algorithm together with the results of extensive numerical
experiments. Finally, the conclusion and a discussion are the subjects of Sect. 8.

2. The Problem Statement

Companion pencils and generalized companion pencils expressed in the Lagrange
basis at the roots of unity are specific instances of the following general class.

Definition 2.1. The matrix pair (A,B), A,B ∈ CN×N , belongs to the class PN ⊂
CN×N × CN×N of generalized companion pencils iff:

(1) A ∈ CN×N is upper Hessenberg;
(2) B ∈ CN×N is upper triangular;
(3) There exist two vectors z ∈ CN and w ∈ CN and a unitary matrix V ∈

CN×N such that

(2.1) A = V − zw∗;

(4) There exist two vectors p ∈ CN and q ∈ CN and a unitary matrix U ∈
CN×N such that

(2.2) B = U − pq∗.

In order to characterize the individual properties of the matrices A and B we
give some additional definitions.

Definition 2.2. We denote by TN the class of upper triangular matrices B ∈ CN×N
which are rank one perturbations of unitary matrices, i.e., such that (2.2) holds for
a suitable unitary matrix U and vectors p, q.

Since B is upper triangular the strictly lower triangular part of the unitary
matrix U in (2.2) coincides with the corresponding part of the rank one matrix
pq∗, i.e.,

(2.3) U(i, j) = p(i)q∗(j), 1 ≤ j < i ≤ N,
where {p(i)}i=1,...,N and {q(j)}j=1,...,N are the entries of p and q, respectively.
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Definition 2.3. We denote by UN the class of unitary matrices U ∈ CN×N which
satisfy the condition (2.3), i.e., for which there exist vectors p, q such that the
matrix B = U − pq∗ is an upper triangular matrix.

Observe that we have

U ∈ UN ⇒ rankU(k + 1: N, 1: k) ≤ 1, k = 1, . . . , N − 1.

From the nullity theorem [11], see also [9, p.142] it follows that the same property
also holds in the strictly upper triangular part, namely,

(2.4) U ∈ UN ⇒ rankU(1 : k, k + 1: N) ≤ 1, k = 1, . . . , N − 1.

Definition 2.4. We denote by HN the class of upper Hessenberg matrices A ∈
CN×N which are rank one perturbations of unitary matrices, i.e., such that (2.1)
holds for a suitable unitary matrix V and vectors z,w.

Definition 2.5. We denote by VN the class of unitary matrices V ∈ CN×N for
which there exist vectors z,w such that the matrix A = V − zw∗ is an upper
Hessenberg matrix.

We find that

V ∈ VN ⇒ rankV (k + 2: N, 1: k) ≤ 1, k = 1, . . . , N − 2.

Again from the nullity theorem it follows that a similar property also holds in the
upper triangular part, namely,

(2.5) V ∈ VN ⇒ rankV (1 : k, k : N) ≤ 2, k = 1, . . . , N.

The QZ algorithm is the customary method for solving generalized eigenvalue
problems numerically by means of unitary transformations (see e.g. [12] and [20]).
Recall that the Hessenberg/triangular form is preserved under the QZ iteration; an
easy computation then yields

(2.6) (A,B) ∈ PN , (A,B)
QZ step→ (A1, B1)⇒ (A1, B1) ∈ PN .

Indeed if Q and Z are unitary then from (2.1) and (2.2) it follows that the matrices
A1 = Q∗AZ and B1 = Q∗BZ satisfy the relations

A1 = V1 − z1w
∗
1, B1 = U1 − p1q

∗
1

with the unitary matrices V1 = Q∗V Z, U1 = Q∗UZ and the vectors z1 = Q∗z, w1 =
Z∗w, p1 = Q∗p, q1 = Z∗q. Moreover one can choose the unitary matrices Q and Z
such that the matrix A1 is upper Hessenberg and the matrix B1 is upper triangular.
Thus, one can in principle think of designing a structured QZ iteration that, given
in input a condensed representation of the matrix pencil (A,B) ∈ PN , returns as
output a condensed representation of (A1, B1) ∈ PN generated by one step of the
classical QZ algorithm applied to (A,B). In the next sections we first introduce
an eligible representation of a rank-structured matrix pencil (A,B) ∈ PN and then
discuss the modification of this representation under the QZ process.

3. Quasiseparable Representations

In this section we present the properties of quasiseparable representations of
rank–structured matrices [8], [9, Chapters 4,5]. First we recall some general results
and definitions. Subsequently, we describe their adaptations for the representation
of the matrices involved in the structured QZ iteration applied to an input matrix
pencil (A,B) ∈ PN .
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3.1. Preliminaries. A matrix M = {Mij}Ni,j=1 is (rL, rU )-quasiseparable, with

rL, rU positive integers, if, using MATLAB1 notation,

max
1≤k≤N−1

rank(M(k + 1 : N, 1 : k)) ≤ rL,

max
1≤k≤N−1

rank(M(1 : k, k + 1 : N)) ≤ rU .

Roughly speaking, this means that every submatrix extracted from the lower tri-
angular part of M has rank at most rL, and every submatrix extracted from the
upper triangular part of M has rank at most rU . Under this hypothesis, M can be
represented using O(((rL)2 + (rU )2)N) parameters. In this subsection we present
such a representation.

The quasiseparable representation of a rank–structured matrix consists of a set
of vectors and matrices used to generate its entries. For the sake of notational
simplicity, generating matrices and vectors are denoted by a lower-case letter.

In this representation, the entries of M take the form

(3.1) Mij =


p(i)a>ijq(j), 1 ≤ j < i ≤ N,
d(i), 1 ≤ i = j ≤ N,
g(i)b<ijh(j), 1 ≤ i < j ≤ N

where:

- p(2), . . . , p(N) are row vectors of length rL, q(1), . . . , q(N − 1) are column
vectors of length rL, and a(2), . . . , a(N − 1) are matrices of size rL × rL;
these are called lower quasiseparable generators of order rL;

- d(1), . . . , d(N) are numbers (the diagonal entries),
- g(2), . . . , g(N) are row vectors of length rU , h(1), . . . , h(N − 1) are column

vectors of length rU , and b(2), . . . , b(N − 1) are matrices of size rU × rU ;
these are called upper quasiseparable generators of order rU ;

- the matrices a>ij and b<ij are defined as{
a>ij = a(i− 1) · · · a(j + 1) for i > j + 1;

a>j+1,j = 1

and {
b<ij = b(i+ 1) · · · b(j − 1) for j > i+ 1;

b<i,i+1 = 1.

From (2.4) it follows that any matrix from the class UN has upper quasiseparable
generators with orders equal one.

The quasiseparable representation can be generalized to the case where M is a
block matrix, and to the case where the generators do not all have the same size,
provided that their product is well defined. Each block Mij of size mi × nj is
represented as in (3.1), except that the sizes of the generators now depend on mi

and nj , and possibly on the index of a and b. More precisely:

- p(i), q(j), a(k) are matrices of sizes mi × rLi−1, rLj × nj , rLk × rLk−1, respec-
tively;

- d(i) (i = 1, . . . , N) are mi × ni matrices,
- g(i), h(j), b(k) are matrices of sizes mi × rUi , rUj−1 × nj , rUk−1 × rUk , respec-

tively.

1MATLAB is a registered trademark of The Mathworks, Inc..



IMPLICIT QR FOR COMPANION-LIKE PENCILS 5

The numbers rLk , r
U
k (k = 1, . . . , N − 1) are called the orders of these generators.

It is worth noting that lower and upper quasiseparable generators of a matrix are
not uniquely defined. A set of generators with minimal orders can be determined
according to the ranks of maximal submatrices located in the lower and upper
triangular parts of the matrix.

One advantage of the block representation for the purposes of the present paper
consists in the fact that N ×N upper Hessenberg matrices can be treated as (N +
1×N + 1) block upper triangular ones by choosing blocks of sizes

(3.2) m1 = · · · = mN = 1, mN+1 = 0, n1 = 0, n2 = · · · = nN+1 = 1.

Such a treatment allows also to consider quasiseparable representations which in-
clude the main diagonals of matrices. Assume that C is an N × N scalar matrix
with the entries in the upper triangular part represented in the form

(3.3) C(i, j) = g(i)b<i−1,jh(j), 1 ≤ i ≤ j ≤ N

with matrices g(i), h(i) (i = 1, . . . , N), b(k) (k = 1, . . . , N − 1) of sizes 1× ri, ri ×
1, rk×rk+1. The elements g(i), h(i) (i = 1, . . . , N), b(k) (k = 1, . . . , N−1) are called
upper triangular generators of the matrix C with orders rk (k = 1, . . . , N). From
(2.5) it follows that any matrix from the class VN has upper triangular generators
with orders not greater than two. If we treat a matrix C as a block one with entries
of sizes (3.2) we conclude that the elements g(i) (i = 1, . . . , N), h(j − 1) (j =
2, . . . , N + 1), b(k − 1) (k = 2, . . . , N) are upper quasiseparable generators of C.

Matrix operations involving zero-dimensional arrays (empty matrices) are de-
fined according to the rules used in MATLAB and described in [3]. In particular,
the product of a m× 0 matrix by a 0×m matrix is a m×m matrix with all entries
equal to 0. Empty matrices may be used in assignment statements as a convenient
way to add and/or delete rows or columns of matrices.

3.2. Representations of matrix pairs from the class PN . Let (A,B) be a
matrix pair from the class PN . The corresponding matrix A from the class HN is
completely defined by the following parameters:

(1) the subdiagonal entries σAk (k = 1, . . . , N − 1) of the matrix A;
(2) the upper triangular generators gV (i), hV (i) (i = 1, . . . , N), bV (k) (k =

1, . . . , N − 1) of the corresponding unitary matrix V from the class VN ;
(3) the vectors of perturbation z = col(z(i))Ni=1, w = col(w(i))Ni=1.

From (2.5) it follows that the matrix V ∈ VN has upper triangular generators with
orders not greater than two.

The corresponding matrix B from the class TN is completely defined by the
following parameters:

(1) the diagonal entries dB(k) (k = 1, . . . , N) of the matrix B;
(2) the upper quasiseparable generators gU (i) (i = 1, . . . , N − 1), hU (j) (j =

2, . . . , N), bU (k) (k = 2, . . . , N − 1) of the corresponding unitary matrix U
from the class UN ;

(3) the vectors of perturbation p = col(p(i))Ni=1, q = col(q(i))Ni=1.

From (2.4) it follows that the matrix U ∈ UN has upper quasiseparable generators
with orders equal one.

All the given parameters define completely the matrix pair (A,B) from the class
PN .
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Each step of structured QZ should update these parameters while maintaining
the minimal orders of generators. However, structured algorithms for the multipli-
cation of quasiseparable matrices may output redundant generators for the product
matrix. For this reason, we will need an algorithm that compresses generators to
minimal order. The algorithm we use derives from previous work and is described
in detail in the Appendix.

4. The QZ step via generators

4.1. Classical QZ. Let (A,B) be a pair of N × N matrices, with A = (aij)
N
i,j=1

upper Hessenberg andB = (bij)
N
i,j=1 upper triangular. The implicit QZ step applied

to (A,B) consists in the computation of unitary matrices Q and Z such that

(4.1)
the matrix A1 = Q∗AZ is upper Hessenberg;
the matrix B1 = Q∗BZ is upper triangular;

and, in addition, some initial conditions are satisfied. In the case of the single–shift
implicit QZ step, the unitary matrices Q and Z are upper Hessenberg and take the
form

(4.2) Q = Q̃1Q̃2 · · · Q̃N−1, Z = Z̃1Z̃2 · · · Z̃N−1,

where

(4.3) Q̃i = Ii−1 ⊕Qi ⊕ IN−i−1, Z̃i = Ii−1 ⊕ Zi ⊕ IN−i−1

and Qi, Zi are complex Givens rotation matrices. The first Givens matrix Q1 is
chosen so that

(4.4) Q∗1

(
a11 − α
a21

)
=

(
∗
0

)
,

where the shift α ∈ C is an approximation of the eigenvalue that is currently being
computed. The next Givens matrices Qi and Zi are computed and applied to
the pencil using a bulge-chasing technique, which we show graphically on a 4 × 4
example (see e.g., [12]):


× × × ×
× × × ×
0 × × ×
0 0 × ×

 ,


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 Q∗
1 ·−→


× × × ×
× × × ×
0 × × ×
0 0 × ×

 ,


× × × ×
× × × ×
0 0 × ×
0 0 0 ×



·Z1−→


× × × ×
× × × ×
× × × ×
0 0 × ×

 ,


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 Q∗
2 ·−→


× × × ×
× × × ×
0 × × ×
0 0 × ×

 ,


× × × ×
0 × × ×
0 × × ×
0 0 0 ×



·Z2−→


× × × ×
× × × ×
0 × × ×
0 × × ×

 ,


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 Q∗
3 ·−→


× × × ×
× × × ×
0 × × ×
0 0 × ×

 ,


× × × ×
0 × × ×
0 0 × ×
0 0 × ×


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·Z3−→


× × × ×
× × × ×
0 × × ×
0 0 × ×

 ,


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×


We provide for further reference a pseudocode description of a bulge-chasing

sweep:

(1) determine Q∗1 from (4.4) and compute A← Q∗1A
(2) for k = 1 : N − 2 do
(3) B ← Q∗kB
(4) determine Zk that eliminates bulge in B
(5) A← A ∗ Zk
(6) B ← B ∗ Zk
(7) determine Q∗k+1 that eliminates bulge in A
(8) A← Q∗k+1A
(9) end do

(10) B ← Q∗N−1B
(11) determine ZN−1 that eliminates bulge in B
(12) A← A ∗ ZN−1
(13) B ← B ∗ ZN−1.

4.2. Structured QZ. We present now a fast adaptation of the implicit single-shift
QZ algorithm for an input matrix pair (A,B) ∈ PN . The modified algorithm works
on the generators of the two matrices and this explains why it is referred to as
a structured implicit QZ iteration with single shift. More specifically, the input
pair (A,B) = (A0, B0) is first represented by means of a linear set of generators
as explained in Subsection 3.2. Then a high–level description of structured QZ
iteration goes as follows.

(1) Given the number α ∈ C, perform one step of the implicit single-shift QZ
algorithm (2.6) by computing subdiagonal entries of the matrix A1, diago-
nal entries of the matrix B1, vectors of perturbation z1,w1,p1, q1 as well
as upper triangular generators of the matrix V1 and upper quasiseparable
generators of the matrix U1 (with redundant orders).

(2) Compress the representations of V1 and U1 by using the compression algo-
rithm in the Appendix.

Let us see how the QZ computation at step 1 above is efficiently performed by
working on the set of generators. When appropriate, we will reference lines from
the classical QZ pseudocode shown above.

Structured QZ bulge-chasing algorithm
Input: the shift α ∈ C, subdiagonal entries σAk for the matrix A, upper trian-

gular generators gV (k), hV (k), bV (k) for the matrix V , diagonal entries dB(k) for
the matrix B, upper quasiseparable generators gU (k), hU (k), bU (k) for the matrix
U , and perturbation vectors p, q, z and w.

Output: subdiagonal entries σA1

k for the matrix A1, upper triangular genera-
tors gV1

(k), hV1
(k), bV1

(k) of redundant orders for the matrix V1, diagonal entries
dB1

(k) for the matrix B1, upper quasiseparable generators gU1
(k), hU1

(k), bU1
(k)
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of redundant orders for the matrix U1, perturbation vectors p1, q1, z1, w1, and, if
needed, the matrices Qk and Zk.

(1) Compute

σV1 = σA1 + z(2)w∗(1), ε1 = gV (1)hV (1)− z(1)w∗(1).

(Pseudocode line 1). Determine a complex Givens transformation matrix
Q1 from the condition

Q∗1

(
ε1 − α
σA1

)
=

(
∗
0

)
.

Compute

Γ2 = Q∗1

(
gV (1)hV (1) gV (1)bV (1)

σV1 gV (2)

)
.

and determine the matrices g̃V (2), βV2 , f
V
2 , φ

V
2 of sizes 1×(rV2 +1), 1×(rV2 +

1), 1× 1, 1× rV2 from the partitions

Γ2 =

[
g̃V (2)
βV2

]
, βV2 =

(
fV2 φV2

)
.

Compute (
z(1)(1)
χ2

)
= Q∗1

(
z(1)
z(2)

)
with the numbers z(1)(1), χ2.

Compute

fA2 = fV2 − χ2w
∗(1), ϕA2 = φV2 .

(2) Set

γ1 = w(1), c1 = p(1), θ1 = q(1).

Compute

dU (1) = dB(1) + p(1)q∗(1)

and set

fU1 = dU (1), φU1 = gU (1),

fB1 = dB(1), ϕ1 = gU (1).

(3) For k = 1, . . . , N − 2 perform the following.
(a) (Pseudocode line 3). Compute the numbers

εk = ϕkhU (k + 1)− ckq∗(k + 1),

εk+1 = ϕAk hV (k + 1)− χkw∗(k + 1),

dU (k + 1) = dB(k + 1) + p(k + 1)q∗(k + 1)

and the 2× 2 matrix Φk by the formula

Φk = Q∗k

(
fBk εk
0 dB(k + 1)

)
.
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(b) (Pseudocode line 4). Determine a complex Givens rotation matrix Zk
such that

Φk(2, :)Zk =
(

0 ∗
)
.

Compute the 2× 2 matrix Ωk by the formula

Ωk =

(
fAk+1 εk+1

0 σAk+1

)
Zk

(c) (Pseudocode line 7). Determine a complex Givens rotation matrix

Qk+1 and the number σA1

k such that

Q∗k+1Ωk(:, 1) =

(
σA1

k

0

)
.

(d) (Pseudocode lines 5 and 8). Compute

Γ′k+2 = Q∗k+1

(
fVk+1 φVk+1hV (k + 1) φVk+1bV (k + 1)

z(k + 2)γ∗k σVk+1 gV (k + 2)

)
,

Γk+2 = Γ′k+2

(
Zk 0
0 IrVk+2

)
,

Ck+2 =

(
1 0 0
0 hV (k + 1) bV (k + 1)

)(
Zk 0
0 IrVk+2

)
.

and determine the matrices d̃V1(k + 2), g̃V1(k + 2), βVk+2, f
V
k+2, φ

V
k+2 of

sizes 1×1, 1×(rVk+2+1), 1×(rVk+2+1), 1×1, 1×rVk+2 from the partitions

Γk+2 =

[
d̃V1(k + 2) g̃V1(k + 2)
∗ βVk+2

]
, βVk+2 =

[
fVk+2 φVk+2

]
and the matrices h̃V1

(k+ 2), b̃V1
(k+ 2) of sizes (rVk+1 + 1)× 1, (rVk+1 +

1)× (rVk+2 + 1) from the partition

Ck+2 =
(
h̃V1

(k + 2) b̃V1
(k + 2)

)
(e) (Pseudocode lines 3 and 6). Compute

Λk+1 =

Q∗k

(
fUk φUk hU (k + 1) φUk bU (k + 1)

p(k + 1)θ∗k dU (k + 1) gU (k + 1)

)(
Zk 0
0 IrUk+1

)
,

Dk+1 =

(
1 0 0
0 hU (k + 1) bU (k + 1)

)(
Zk 0
0 IrUk+1

)
,

and determine the matrices d̃U1
(k), g̃U1

(k), βUk+1, f
U
k+1, φ

U
k+1 of sizes 1×

1, 1× (rUk+1 + 1), 1× (rUk+1 + 1), 1× 1, 1× rUk+1 from the partitions

Λk+1 =

(
d̃U1

(k) g̃U1
(k)

∗ βUk+1

)
, βUk+1 =

(
fUk+1 φUk+1

)
and the matrices h̃U1(k+ 1), b̃U1(k+ 1) of sizes (rUk + 1)×1, (rUk + 1)×
(rUk+1 + 1) from the partition

Dk+1 =
(
h̃U1

(k + 1) b̃U1
(k + 1)

)
.
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(f) (Update perturbation vectors for A). Compute(
z(1)(k + 1)
χk+2

)
= Q∗k+1

(
χk

z(k + 1)

)
,(

w(1)(k)
γk+1

)
= Z∗k

(
γk

w(k + 1)

)
with the numbers z(1)(k + 1), w(1)(k), χk+2, γk+1.

(g) (Update perturbation vectors for B). Compute(
q(1)(k)
θk+1

)
= Z∗k

(
θk

q(k + 1)

)
,

(
p(1)(k)
ck+1

)
= Q∗k

(
ck

p(k + 1)

)
with the numbers q(1)(k), p(1)(k), θk+1, ck+1.

(h) Compute

fAk+2 = fVk+2 − χk+2γ
∗
k+1, ϕAk+2 = φVk+2.

Compute

fBk+1 = fUk+1 − ck+1θ
∗
k+1, ϕk+1 = φUk+1.

(4) (Pseudocode line 10). Compute the numbers

εN−1 = ϕN−1hU (N)− cN−1q∗(N), dU (N) = dB(N) + p(N)q∗(N)

and the 2× 2 matrix ΦN−1 by the formula

ΦN−1 = Q∗N−1

(
fBN−1 εN−1

0 dB(N)

)
.

(5) (Pseudocode line 11). Determine a complex Givens rotation matrix ZN−1
such that

ΦN−1(2, :)ZN−1 =
(

0 ∗
)
.

(6) (Pseudocode line 12. Compute

ΓN+1 =
(
fVN φVNhV (N)

)
ZN−1,

CN+1 =

(
1 0
0 hV (N)

)
ZN−1, h̃

(1)
V (N) = 1.

and determine the numbers d̃V1
(N + 1), g̃V1

(N + 1) from the partition

ΓN+1 =
[
d̃V1

(N + 1) g̃V1
(N + 1)

]
.

and rVN + 1-dimensional columns h̃V1
(N + 1), b̃V1

(N + 1) from the partition

CN+1 =
(
h̃V1(N + 1) b̃V1(N + 1)

)
.

(7) (Pseudocode line 13). Compute

ΛN = Q∗N−1

(
fUN−1 φUN−1hU (N)

p(N)θ∗N−1 dU (N)

)
ZN−1,

DN =

(
1 0
0 hU (N)

)
ZN−1, h̃

(1)
U (N) = 1

and determine the numbers d̃U1
(N − 1), g̃U1

(N − 1), d̃U1
(N) from the par-

tition

ΛN =

[
d̃U1

(N − 1) g̃U1
(N − 1)

∗ d̃U1(N)

]
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and rUN−1 + 1-dimensional columns h̃U1
(N), b̃U1

(N) from the partition

DN =
(
h̃U1

(N) b̃U1
(N)

)
.

Set

h̃V1(N + 1) = 1, h̃U1(N + 1) = 1.

(8) (Update perturbation vectors). Compute(
w(1)(N − 1)
w(1)(N)

)
= Q∗N−1

(
γN−1
w(N)

)
,

(
p(1)(N − 1)
p(1)(N)

)
= Q∗N−1

(
cN−1
p(N)

)
,

(
q(1)(N − 1)
q(1)(N)

)
= Z∗N−1

(
θN−1
q(N)

)
.

Set

z(1)(N) = χN

and compute

σA1

N−1 = d̃V1
(N + 1)− z(1)(N)(w(1)(N))∗.

(9) Compute

d
(1)
B (k) = dU1(k + 1)− p(1)(k)(q(1)(k))∗.

(10) (Adjust indices). Set

gV1(k) = g̃V1(k + 1), k = 1, . . . , N, hV1(k) = h̃V1(k + 1), k = 2, . . . , N + 1,

bV1
(k) = b̃V1

(k + 1), k = 2, . . . , N ;

dV1(1), dV1(N + 1) to be the 1× 0 and 0× 1 empty matrices,

dV1
(k) = d̃V1

(k + 1), k = 2, . . . , N

and
gU1(k) = g̃U1(k + 1), k = 1, . . . , N,

hU1
(k) = h̃U1

(k + 1), k = 2, . . . , N + 1,

bU1(k) = b̃U1(k + 1), k = 2, . . . , N ;

dU1
(k) = d̃U1

(k + 1), k = 1, . . . , N.

Although the formal proof of this algorithm is done via multiplication algorithms
for matrices with quasiseparable representations (see [10, Theorem 31.4 and Theo-
rem 36.4]), the explanation can also be given via the bulge chasing process used in
the standard QZ algorithms.

For the most part, the structured update process is carried out separately on V ,
U , z and w. However, note the following correspondences between some quanti-
ties computed in the structured algorithm above and some quantities used in the
classical approach:

• The matrices Φk at step 3a correspond to the bulges created in the matrix
B and are explicitly computed in order to determine the Givens matrices
Zk;

• Analogously, the matrices Ωk at step 3b correspond to the bulges created in
the matrix A and are explicitly computed in order to determine the Givens
matrices Qk+1;
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• The diagonal entries of B and the subdiagonal entries of A are explicitly
stored in dB and σA, respectively. The diagonal entries of A, on the other
hand, can be easily computed from the generators. For instance, the quan-
tity ε1 = A(1, 1) is computed at step 1 in order to determine the first Givens
matrix Q1 that encodes the shift. Observe that the explicit computation of
diagonal and subdiagonal entries is also crucial when performing deflation.

4.3. Complexity. A complexity estimate on the structured QZ algorithm above,
applied to an N × N pencil and followed by the compression algorithm found in
the Appendix, yields:

• 143 + 4η + (N − 2)(251 + 7η) floating-point operations for the structured
QZ update,
• 33 + (N − 2)(3η + 144) operations for the compression of V ,
• 3 + (N − 2)(2η + 30) operations for the compression of U ,

which gives a total count of 179 + 4η+ (N − 2)(425 + 12η) operations per iteration.
Here η denotes the computational cost required to compute and apply a 2×2 Givens
matrix.

5. Backward error analysis for companion pencils

This section is concerned with the backward error analysis of the structured QZ
algorithm for companion pencils. The backward stability of structured QR/QZ
algorithms based on generator representations has not received much attention in
the literature so far. To our knowledge the only algorithm which is shown to be
provably backward stable is the modification of the QR iteration for a rank-one
correction of Hermitian matrices presented in [7].

This lack of works on stability analysis is probably due to the fact that generator
computations are rather involved and do not admit a compact representation in
terms of matrix manipulations. To circumvent this difficulty here we adopt the
following hybrid point of view. We assume that the fast structured QR algorithm
is backward stable. In this section based on a first order perturbation analysis we
show that the initial perturbed problem has the same structure as the given problem
and hence we derive the corresponding structured backward error expressed in terms
of perturbations of the coefficients of the polynomial whose zeros are the computed
roots. The results of a thorough numerical/experimental investigation are reported
in the next section. These results confirm that the computed a posteriori bounds
on the coefficients fit our analysis whenever we suppose that the backward error
introduced by the fast variant of the QZ iteration is a small multiple of the same
error for the customary algorithm. This is also in accordance with the conclusion
stated in [7].

The problem of determining whether the QR method applied to the Frobenius
companion matrix yields a backward stable rootfinder is examined in [5], with a
positive answer (Theorem 2.1) if the norm of the polynomial is small. Given a
monic polynomial p(x) =

∑n
j=0 ajx

j , let A be its companion matrix and E the
perturbation matrix that measures the backward error of the QR method applied
to A. Edelman and Murakami show that the coefficients of sk−1 in the polynomial
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det(sIn −A− E)− det(sIn −A) are given at first order by the expression

(5.1)

k−1∑
m=0

am

n∑
i=k+1

Ei,i+m−k −
n∑

m=k

am

k∑
i=1

Ei,i+m−k,

with an = 1.
A similar property holds for QZ applied to companion pencils. This result was

proven in [19] by using a block elimination process, and later in [14] and [4] via
a geometric approach. See also [15] for a backward error analysis that takes into
account the effects of balancing.

In this section we rely on the results in [5] to derive explicit formulas for the
polynomial backward error, at least for the case of nonsingular B. Here an is no
longer necessarily equal to 1, although it is different from 0.

We consider companion pencils of the form

(5.2) A =


−a0

1 −a1
. . .

...
1 −an−1

 , B =


1

. . .

1
an


and we will denote the perturbation pencil as (E,G), where E and G are matrices
of small norm.

First, observe that (5.1) can be generalized to the computation of det(s(In +
G)− (A+ E)). Indeed, at first order we have

s(In +G)− (A+ E) = (In +G)[sIn − (In +G)−1(A+ E)]

= (In +G)[sIn − (In −G)(A+ E)]

= (In +G)[sIn −A− E +GA]

and therefore

(5.3) det(s(In +G)− (A+ E)) = det(In +G)det(sIn −A− E +GA),

where (again at first order)

(5.4) det(In +G) = 1 + tr(G)

and det(sIn−A−E+GA) can be computed by applying (5.1) to the pencil sIn−A
with the perturbation matrix E −GA. In order to fix the notation, let us write at
first order

(5.5) det(sIn −A− E +GA) = det(sIn −A) +

n−1∑
j=0

(∆a)js
j

 .

Now, recall that B can be seen as a rank-one perturbation of the identity matrix:
we can write B = In + (an − 1)ene

T
n , with the usual notation en = [0, . . . , 0, 1]T .

So, the perturbed companion pencil is

(5.6) s(B +G)− (A+ E) = s(In +G)− (A+ E) + s(an − 1)ene
T
n .

The Sherman-Morrison determinant formula applied to (5.6) gives

(5.7)
det(s(B +G)− (A+ E)) =

det(s(In +G)− (A+ E))(1 + s(an − 1)eTn [s(In +G)− (A+ E)]−1en).
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We know how to compute the determinant in the right-hand side of (5.7) thanks to
the discussion above. Now we want to compute the second factor. What we need
is the (n, n) entry of the matrix [s(In +G)− (A+ E)]−1, which can be written as

[s(In +G)− (A+ E)]−1(n, n) =

= det(s(In +G)− (A+ E))−1 · det(s(In−1 + G̃)− (Ã+ Ẽ)),(5.8)

where Ã = A(1 : n−1, 1 : n−1), Ẽ = E(1 : n−1, 1 : n−1) and G̃ = G(1 : n−1, 1 :

n − 1). Observe that Ã is a companion matrix for the polynomial sn−1, so, using
(5.3), we can write

det(s(In−1 + G̃)− (Ã+ Ẽ)) = det(In−1 + G̃)

sn−1 +

n−2∑
j=0

(∆ã)js
j

 ,
where the coefficients (∆ã)j can be computed from (5.1) with the perturbation

matrix Ẽ − G̃Ã.
From (5.3), (5.5), (5.7) and (5.8) we obtain:

det(s(B +G)− (A+ E)) =

= det(s(In +G)− (A+ E)) + s(an − 1)det(s(In−1 + G̃)− (Ã+ Ẽ)) =

= det(sIn −A) +

n−1∑
j=0

(∆a)js
j + tr(G)det(sIn −A) +

+s(an − 1)

n−2∑
j=0

(∆ã)js
j + (1 + tr(G̃))sn−1

 =

= p(s) + tr(G)q(s) +

n−1∑
j=0

(∆a)js
j + s(an − 1)

n−2∑
j=0

(∆ã)js
j + tr(G̃)sn−1

 ,
where q(x) = xn +

∑n−1
j=0 ajx

j .

Finally, from det(s(B+G)−(A+E)) we subtract the quantity det(sB−A) = p(s),
and we obtain the following result:

Proposition 5.1. With the above notation, the following equality is correct at first
order:

det(s(B +G)− (A+ E))− det(sB −A) =

= tr(G)q(s) +

n−1∑
j=0

(∆a)js
j + s(an − 1)

n−2∑
j=0

(∆ã)js
j + tr(G̃)sn−1

 .(5.9)

Remark 5.2. A first-order estimate of det(A+E−s(B+G))−det(A−sB) can also
be obtained via a geometric approach, as shown in [5] for companion matrices and
in [14], [13] and [4] for pencils. Note that this approach is related to the Leverrier
rootfinding method: see [16] for an adaptation to the matrix pencil case.

6. Numerical results

In this section we test the performance of the fast QZ method presented above
and compare it to classical unstructured QZ applied to the companion pencil and to
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classical QR applied to the companion matrix. We have implemented our method
in Matlab and in Fortran 90/95; both implementations are available online.2

The first set of experiments are performed in Matlab: we use the commands
roots for classical QR and eig for classical QZ, whereas fast QZ is applied using
our Matlab implementation of the algorithm described above.

In particular, we report absolute forward and backward errors, measured in ∞-
norm. For each polynomial p(x) of degree N , the forward error is computed as

forward error = max
k=1,...,N

min
j=1,...,N

|λj − αk|,

where the λj ’s are the roots of p(x) as determined by the eigensolver that is being
studied, and the αk’s are the ”exact” roots of p(x), either known in advance or
computed in high precision using Matlab’s Symbolic Toolbox, unless otherwise
specified. The backward error is computed as

backward error = max
k=0,...,N

|p̃k − pk|,

where the pk’s are the exact coefficients of p(x), either known in advance or com-
puted in high precision from the known exact roots, and the p̃k’s are the coefficients
computed in high precision from the λj ’s.

Our aim here is to provide experimental evidence pointing to the stability of
our structured QZ method and to the better accuracy of QZ versus QR on some
classes of polynomials. We do not report timings for the various methods, since the
running times for our Matlab implementation cannot be compared to the running
times of a built-in function such as eig or roots.

Observe that the normalization of the polynomials is a crucial step for the proper
functioning of QZ. Unlike the companion matrix, which is necessarily associated
with a monic polynomial, the companion pencil allows for an arbitrary scaling of
the polynomial. Unless otherwise specified, we normalize w.r.t. the 2-norm of the
vector of coefficients. The polynomials obtained from computed roots, used for
computation of backward errors, are also normalized in 2-norm. For the purpose
of computing backward errors, we have also experimented with normalization in
a least-squares sense, as suggested in [13], but in our examples we have generally
found little difference between the 2-norm and the least-squares approach.

Example 6.1. Random polynomials.

We apply our structured QZ method to polynomials whose coefficients are ran-
dom complex numbers with real and imaginary parts uniformly chosen in [−1, 1].
Here N denotes the degree. Such test polynomials are generally well conditioned
and they are useful to study the behavior of our method as the polynomial degree
grows larger.

Table 1 shows absolute forward errors w.r.t. the roots computed by the Matlab
command roots, as well as the average number of iterations per eigenvalue, which
is consistent with the expected number of operations for the classical QZ method.
Backward errors (not shown in the table) are of the order of the machine epsilon.
For each degree, errors and the number of iterations are averaged over 10 random
polynomials.

Example 6.2. Cyclotomic polynomials zN − i.

2http://www.unilim.fr/pages perso/paola.boito/software.html
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N abs. forward error average n. iterations
50 2.60e−14 3.71
100 1.30e−13 3.59
150 4.52e−13 3.45
200 5.90e−13 3.38
300 1.69e−12 3.28
400 4.34e−12 3.22
500 6.11e−12 3.18

Table 1. Errors and number of iterations for structured QZ ap-
plied to random polynomials: see Example 6.1.

This is another set of well-conditioned polynomials for which we consider degrees
up to 500. Table 2 shows forward errors with respect to the roots computed by the
Matlab command roots, as well as the average number of iterations per eigenvalue.
Backward errors (not shown in the table) are of the order of the machine epsilon.

N abs. forward error average n. iterations
50 1.01e−14 4.16
100 1.46e−14 4.01
150 3.55e−14 3.85
200 3.85e−14 3.88
300 7.23e−14 3.69
400 1.66e−13 3.66
500 1.78e−13 3.75

Table 2. Errors and number of iterations for structured QZ ap-
plied to cyclotomic polynomials: see Example 6.2.

Example 6.3.

We consider here a few examples taken from [5]:

(1) p(x) = x20 + x19 + · · ·+ x+ 1,
(2) the polynomial with roots equally spaced in the interval [−2.1, 1.9],
(3) the Chebyshev polynomial of first kind of degree 20,
(4) the Bernoulli polynomial of degree 20.

Table 3 shows forward errors for fast and classical QZ (after normalization of the
polynomial) and for classical balanced QR (before normalization), as well as the
maximum eigenvalue condition number.

polynomial fast QZ classical QZ QR max condeig
(1) 3.58e−15 1.09e−15 2.14e−15 1.38
(2) 7.87e−13 1.98e−13 5.24e−13 2.71e+4
(3) 4.16e−10 2.18e−11 3.62e−12 1.86e+296
(4) 4.00e−3 4.00e−3 4.00e−3 9.14e+6

Table 3. Forward errors for polynomials in Example 6.3
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Following [5], we also test our backward error analysis, given in Section 5, on
these examples. Table 4 shows the logarithm in base 10, rounded to an entire
number, of the computed and of the predicted backward errors for each coefficient
of each polynomial. The predicted error is computed by applying (5.9).

As for the choice of E and G, we apply the backward error analysis given in
[7], Theorem 4.1. This analysis implies that the backward error matrix for the
QR method applied to a small rank perturbation of a Hermitian N × N matrix
M is, roughly speaking, bounded by a small multiple of εN2‖M‖F , where ε is the
machine epsilon. In view of this result, each nonzero entry of E and G can be taken
as a small multiple of Nε, where N is the degree of the polynomial. For the sparsity
pattern of E and G, we follow the ideas in [5]. So, E and G are chosen here as
E=10*N*eps*triu(ones(N),-2) and G=10*N*eps*triu(ones(N),-1), with N=20,
in order to model the backward error introduced by the QZ iterations. Note that,
under these assumptions, the experimental results confirm the theoretical analysis.

(1) (2) (3) (4) Ex. 6.4
z20 −14,−15,−13 −17,−17,−13 −16,−16,−13 −19,−19,−13 −26,−27,−13
z19 −14,−15,−13 −17,−17,−15 −16,−16,−14 −18,−18,−16 −14,−15,−13
z18 −14,−15,−13 −16,−16,−14 −15,−16,−13 −17,−18,−15 −15,−15,−14
z17 −14,−15,−13 −16,−15,−14 −15,−16,−14 −17,−17,−16 −15,−15,−13
z16 −15,−15,−13 −15,−16,−13 −15,−15,−12 −17,−17,−15 −15,−15,−13
z15 −15,−15,−13 −15,−15,−14 −15,−15,−14 −16,−17,−15 −15,−15,−13
z14 −14,−16,−13 −15,−15,−13 −15,−15,−12 −16,−16,−14 −15,−15,−13
z13 −14,−15,−13 −15,−14,−14 −15,−16,−14 −15,−16,−15 −15,−15,−13
z12 −15,−15,−13 −16,−15,−12 −15,−16,−12 −16,−16,−13 −15,−15,−13
z11 −15,−15,−13 −15,−15,−14 −15,−15,−15 −15,−15,−14 −15,−15,−13
z10 −15,−15,−13 −16,−16,−12 −15,−16,−13 −16,−16,−13 −15,−15,−13
z9 −15,−15,−13 −15,−15,−14 −16,−16,−16 −14,−15,−14 −15,−15,−13
z8 −15,−37,−13 −16,−15,−13 −16,−16,−14 −15,−16,−12 −15,−15,−13
z7 −15,−15,−13 −15,−16,−15 −15,−16,−17 −14,−15,−14 −15,−15,−13
z6 −14,−15,−13 −16,−15,−13 −15,−15,−15 −16,−40,−12 −15,−16,−13
z5 −14,−16,−14 −16,−16,−16 −15,−16,−19 −14,−15,−14 −15,−15,−12
z4 −14,−16,−14 −16,−16,−14 −15,−15,−16 −16,−16,−12 −15,−15,−13
z3 −15,−15,−14 −17,−18,−17 −16,−16,−19 −15,−16,−17 −15,−14,−12
z2 −15,−15,−28 −15,−17,−15 −15,−18,−18 −16,−17,−13 −15,−15,−13
z1 −15,−15,−14 −18,−20,−17 −15,−Inf,−19 −16,−16,−15 −15,−15,−12
z0 −15,−15,−13 −17,−19,−13 −47,−Inf,−13 −16,−17,−13 −15,−27,−13

Table 4. Backward errors for polynomials in Examples 6.3 and
6.4. Each entry of the table contains the logarithm in base 10 of
the backward errors, in the following order: computed via fast QZ,
computed via classical QZ, predicted according to (5.9).

Example 6.4. QZ vs. QR.

In this example with heavily unbalanced coefficients, the (classical or structured)
QZ method applied to the companion pencil computes the roots with better ac-
curacy than QR applied to the companion matrix. We take here the polynomial
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p =
∑20
k=0 pkx

k, where pk = 106(−1)
(k+1)−3 for k = 0, . . . , 20. Table 5 shows abso-

lute forward and backward errors for several eigenvalue methods, with or without
normalizing the polynomial before the computation of its roots. See Table 4 for
backward errors.

Method Backward error Forward error
Fast QZ 2.45e−15 4.28e−15

Classical QZ 1.49e−15 3.22e−15
Balanced QR after normalization 1.22e−4 6.27e−9

Unbalanced QR after normalization 1.22e−4 1.72e−15
Balanced QR, no normalization 1.22e−4 5.86e−9

Unbalanced QR, no normalization 1.22e−4 2.72e−15

Table 5. Errors for several versions of QZ and QR applied to a
polynomial with unbalanced coefficients (Example 6.4).

N abs. forward error fast QZ time LAPACK time
50 1.73e−14 1.08e−2 7.10e−3
60 2.96e−14 1.66e−2 1.14e−2
70 3.32e−14 2.01e−2 1.76e−2
80 6.04e−14 2.43e−2 2.49e−2
90 7.74e−14 2.88e−2 3.51e−2
100 1.10e−13 3.26e−2 4.35e−2
150 1.60e−13 7.77e−2 1.35e−1
200 2.36e−13 1.29e−1 3.11e−1
300 8.44e−13 2.70e−1 9.91e−1
400 1.65e−12 4.66e−1 2.32
500 1.85e−12 7.27e−1 4.70

Table 6. Errors and running times (measured in seconds) for fast
QZ implemented in Fortran versus the LAPACK implementation.

We next show the results of experiments using the Fortran implementation of our
method. The main goal of these experiments is to show that the structured method
is actually faster than the classical LAPACK implementation for sufficiently high
degrees, and that running times grow quadratically with the polynomial degree,
as predicted by the complexity analysis. These experiments were performed on a
MacBook Pro, using the gfortran compiler.

Example 6.5. Timings for random polynomials.

We take polynomials with random coefficients as in Example 6.1. Table 6 shows
forward absolute errors with respect to the roots computed by LAPACK (subroutine
ZGEGV), as well as timings (measured in seconds). Results for each degree are
averages over 10 trials.

Figure 1 shows running times versus polynomial degrees for Lapack and for our
structured implementation. The crossover point for this experiment appears to be
located at degree about 80.
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Figure 1. Timings for our fast QZ algorithm (blue solid line) and
for LAPACK (red dashed line).
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Figure 2. Linear fit on log-log plot of running times. Polynomial
degrees go from 100 to 1000.

Figure 2 shows a log-log plot of running times for our implementation, together
with a linear fit. The slope of the fit is 1.9, which is consistent with the claim that
the structured method has complexity O(n2).
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7. Conclusions

In this work we have presented and tested a new structured version of the single-
shift, implicit QZ method. Our algorithm is designed for the fast computation of
eigenvalues of matrix pencils belonging to a class PN that includes companion and
Lagrange pencils. The quasiseparable structure of such pencils allows us to achieve
quadratic complexity.

Our numerical experience says that the fast structured implementation of the
QZ algorithm applied to a companion pencil provides a fast and provably backward
stable root-finding method.

Appendix A. The compression of generators

We present an algorithm that takes as input the possibly redundant quasisepa-
rable generators of a unitary matrix and outputs generators of minimal order. This
algorithm is justified in a similar way as the compression algorithm [9, Theorem
7.5] but with computations in the forward direction.

Let U = {Uij}Ni,j=1 be a block unitary matrix with entries of sizes mi×nj , lower
quasiseparable generators p(i) (i = 2, . . . , N), q(j) (j = 1, . . . , N − 1), a(k) (k =
2, . . . , N − 1) of orders rLk (k = 1, . . . , N − 1), upper quasiseparable generators
g(i) (i = 1, . . . , N − 1), h(j) (j = 2, . . . , N), b(k) (k = 2, . . . , N − 1) of orders
rUk (k = 1, . . . , N − 1) and diagonal entries d(k) (k = 1, . . . , N). Set

(1.1)

ρ0 = 0, ρk = min{nk + ρk−1, r
L
k }, k = 1, . . . , N − 1,

νk = nk + ρk−1 − ρk, k = 1, . . . , N − 1, νN = nN + ρN−1,

s0 = 0, sk = mk + sk−1 − νk, k = 1, . . . , N − 1.

Then all the numbers sk are nonnegative and the matrix U has upper quasisepa-
rable generators of orders sk (k = 1, . . . , N−1). A set of such upper quasiseparable
generators are obtained using the following algorithm.

Compression algorithm
Input: lower quasiseparable generators p(j), q(j), a(j) and upper quasiseparable

generators g(j), h(j), b(j) of possibly redundant orders for the matrix U .
Output: upper quasiseparable generators gs(j), hs(j), bs(j) of minimal order

for U .

(1) Set X0, Y0, z0 to be the 0×0 empty matrices and p(1), a(1), h(1), b(1), hs(1)
to be empty matrices of sizes m1×0, rL1 ×0, 0×n1, 0×rU1 , 0×n1 respectively.

(2) For k = 1, . . . , N − 1 perform the following. Determine an (nk + ρk−1) ×
(nk + ρk−1) unitary matrix Wk and an rLk × ρk matrix Xk such that(

a(k)Xk−1 q(k)
)
W ∗k =

(
0rLk×νk Xk

)
.

Wk can be computed, for instance, via the usual Givens or Householder
methods.

(3) Compute the (mk + sk−1)× (nk + ρk−1) matrix

Zk =

(
zk−1 hs(k)

p(k)Xk−1q(k) d(k)

)
W ∗k .
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(4) Determine the matrices Θk,∆k, h
′
k, h
′′
k of sizes sk−1 × νk,mk × νk, sk−1 ×

ρk,mk × ρk from the partition

Zk =

[
Θk h′k
∆k h′′k

]
.

Observe that the submatrix

(
Θk

∆k

)
has orthonormal columns.

(5) Determine an (sk−1 +mk)× (sk−1 +mk) unitary matrix Fk from the con-
dition

F ∗k

(
Θk

∆k

)
=

(
Iνk

0sk×νk

)
.

(6) Determine the matrices hF (k), dF (k), bs(k), gs(k) of sizes sk−1 × νk,mk ×
νk, sk−1 × sk,mk × sk from the partition

Fk =

[
hF (k) bs(k)
dF (k) gs(k)

]
.

(7) Compute the matrices Yk of size sk × rUk and zk of the size sk × ρk by the
formulas

Yk = g∗s (k)g(k) + b∗s(k)Yk−1b(k), zk = g∗s (k)h′′k + b∗s(k)h′k.

(8) Compute

hs(k + 1) = Ykh(k + 1).

(9) Set

FN =

[
zN−1 YN−1h(N)

p(N)XN−1 d(N)

]
.

For a matrix from the class UN we have mi = ni = 1, i = 1, . . . , N and rLk =
1, k = 1, . . . , N − 1 which by virtue of (1.1) implies ρk = sk = 1, k = 1, . . . , N − 1.

For a matrix from the class VN we determine the sizes of blocks via (3.2) and
the orders of lower generators rLk = 1, k = 1, . . . , N . Hence using (1.1) we obtain
s1 = 1, sk = 2, k = 2, . . . , N − 1.

Remark A.1. With the above hypotheses, the matrix U admits the (non-unique)
factorization

U = W · F,

where W is a block lower triangular unitary matrix with block entries of sizes
mi × νj (i, j = 1, . . . , N) and F is a block upper triangular unitary matrix with
block entries of sizes νi × nj (i, j = 1, . . . , N). Moreover one can choose the matrix
W in the form

W = W̃N−1 · · · W̃1, F = F̃1 · · · F̃N
with

W̃k = diag{Iφk
,Wk, Iηk}, k = 1, . . . , N − 1; F̃k = diag{Iφk

, Fk, Iχk
}, k = 1, . . . , N,

for suitable sizes φk, ηk and χk. Here Wk (k = 1, . . . , N − 1) are (nk + ρk−1) ×
(nk +ρk−1) and Fk (k = 1, . . . , N) are (sk−1 +mk)× (sk−1 +mk) unitary matrices.
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10. Y. Eidelman, I. Gohberg, and I. Haimovici, Separable type representations of matrices and
fast algorithms. Volume 2. Eigenvalue method, Operator Theory: Advances and Applications,
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