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The aim of this paper is to propose a solution method for the minimization of a class of
generalized linear functions on a flow polytope. The problems will be solved by means of a
network algorithm, based on graph operations, which lies within the class of the so called
“optimal level solutions” parametric methods. The use of the network structure of flow poly-
topes, allows to obtain good algorithm performances and small numerical errors. Results of a
computational test are also provided.
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1. Introduction

In this paper the following class of generalized linear problems is considered:

P :

{
inf f(x) = φ(cTx+ c0, d

Tx+ d0)
x ∈ X

where c, d ∈ <m, with c and d linearly independent, c0, d0 ∈ < and X 6= ∅ is a
flow polytope. The scalar function φ(y1, y2) is assumed to be continuous and to be
strictly increasing with respect to variable y1. This allows to solve in an unifying
framework a large class of nonconvex flow problems, including (for example) d.c.,
fractional and multiplicative ones [8–12, 14, 16], which are known to be useful from
an applicative point of view [1, 6, 13].

In the case of linear problems on flow polytopes the simplex algorithm can be
adapted to the particular structure of the feasible region, thus obtaining the so
called “network simplex algorithm” which computes directly on the graph all the
data needed for the iterations. The aim of this paper is to propose a network
algorithm, based on graph operations, which can solve the general class of problems
P .

The solution method proposed in this paper lies within the class of the so called
“optimal level solutions” methods (see [3–5, 7, 15]), parametric algorithms which
find the optimum of the problem by determining the minima of particular sub-
problems. In particular, the optimal solutions of these subproblems are obtained
by means of a sensitivity analysis which maintains the optimality conditions. The
linear subproblems turn out to be independent of function φ(y1, y2), hence a unify-
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ing method to solve all of the problems belonging to the general class of problems
P can be stated.

In Section 2 some preliminary definitions are recalled; in Sections 3 and 4 it is
shown how the optimal level solutions can be determined by means of network
operations in the primal and the dual approaches, respectively; in Section 5 a
solution algorithm is proposed and fully described, as well as some methods to
improve its overall performance; finally, in Section 6 the results of an extensive
computational test are provided and discussed.

2. Definitions and Preliminary results

Consider the following class of generalized linear programs:{
inf f(x) = φ(cTx+ c0, d

Tx+ d0)
x ∈ X

where c, d ∈ <m, with c and d linearly independent, c0, d0 ∈ < and X 6= ∅ is a
flow polytope. The scalar function φ(y1, y2) is assumed to be continuous, strictly
increasing with respect to variable y1, and defined for all the values in Ω where:

Ω = {(y1, y2) ∈ <2 : y1 = cTx+ c0, y2 = dTx+ d0, x ∈ X}

We aim to determine a solution algorithm for problem P based on graph opera-
tions and to study its efficiency. This will allow to solve large dimensional problems
with good time performances and small numerical errors.

Let G = (N,A, l, u) be a weighted graph where N (|N | = n) is the set of nodes
and A (|A| = m) is the set of arcs; with respect to the k-th arc (i, j) ∈ A we have
the lower and upper capacities lk ∈ < and uk ∈ <, respectively. Hence, problem P
results to be:

P :

{
min f(x) = φ(cTx+ c0, d

Tx+ d0)
x ∈ X = {x ∈ <m : Ex = r , l ≤ x ≤ u}

where E is the incidence matrix of the graph G, x = (xk), xk ∈ < ∀k = 1, . . . ,m,
is the vector of the flows, r = (ri), r ∈ <n (

∑n
i=1 ri = 0), is the vector of the

requirements of the nodes. Since matrix [E|r] has rank n − 1 it is useful to insert
an auxiliary variable/arc x0 corresponding to one of the nodes of the graph. In this
light, we choose to add an auxiliary variable/arc corresponding to the first node,
so that region X can be rewritten as:

X = {x ∈ <m : Ex+ e1x0 = r , l ≤ x ≤ u , 0 ≤ x0 ≤ 0}

where e1 = (1, 0, ..., 0)T ∈ <n. Finally, notice that the k-th column of E, denoted
with Ek = (Ekh), corresponding to the k-th arc (i, j) ∈ A is given by:

Ekh =

 1 if h = i
−1 if h = j
0 otherwise

(1)

The flow polytope X results to be a compact convex set. The following notations
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can then be introduced:

ξmin = d0 + min
x∈X

dTx and ξmax = d0 + max
x∈X

dTx

so that the set of all feasible levels can be defined as:

Λ =
{
ξ ∈ < : ξ = dTx+ d0, x ∈ X

}
= [ξmin, ξmax]

Given a feasible level ξ ∈ Λ the following subset of X can be introduced:

Xξ = {x ∈ X : dTx+ d0 = ξ}

which allows to introduce the following parametrical subproblem:{
min f(x) = φ(cTx+ c0, ξ)

x ∈ Xξ

Taking into account of the strict increaseness of the scalar function φ(y1, y2) with
respect to variable y1, this parametrical subproblem is equivalent to the following
one:

Pξ :

{
min cTx
x ∈ Xξ

An optimal solution of problem Pξ is called an optimal level solution. Given a
feasible level ξ ∈ <, the set of optimal solutions of Pξ is denoted with Sξ ⊂ Xξ, while
the set of all the optimal level solutions is denoted with S = ∪ξ∈ΛSξ ⊂ X. Notice
that for each feasible level ξ ∈ Λ there exists at least one optimal level solution in
Sξ which is a vertex or belongs to an edge of the polytope X. Obviously, an optimal
solution of problem P is also an optimal level solution and, in particular, it is the
optimal level solution with the smallest value; the idea of this approach is then to
scan all the feasible levels, studying the corresponding optimal level solutions, until
the minimizer of the problem is reached. Starting from an incumbent optimal level
solution, this can be done by means of a sensitivity analysis on the parameter ξ,
which allows us to move in the various steps through several optimal level solutions
until the optimal solution is found (see [4]).

3. Network simplex primal approach

Problem Pξ is nothing but a linear minimum cost flow problem with the additional
linear constraint dTx + d0 = ξ. There is no need to recall the wide literature on
the classical network simplex algorithm, where problems are solved by using the
particular structure of graphs and trees (see for all [2]). Our aim is to propose a
solution method which uses the network structure of the problem and implicitly
manages the additional constraint dTx+ d0 = ξ.

In this light, let us now introduce the following notations:

Ẽ = [e1|E] , x̃T = [x0, x
T ] , c̃T = [0, cT ] , d̃T = [0, dT ] , l̃T = [0, lT ] , ũT = [0, uT ].
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Subproblem Pξ can be rewritten as:

Pξ :

{
min c̃T x̃

x̃ ∈ X̃ξ = {x̃ ∈ <n+1 : Ẽx̃ = r , d̃T x̃ = ξ − d0 , l̃ ≤ x̃ ≤ ũ}

The structure of a basic matrix of problem Pξ is:

TB,k =

[
ẼB Ek

d̃TB dk

]

where ẼB is a basic matrix of Ẽ, d̃B is a vector whose elements correspond to the
columns of ẼB. Clearly, for the sake of the nonsingularity of ẼB and TB,k, the
vector e1 corresponding to the auxiliary variable x0 is always the first column of
ẼB. It is worth noticing that ẼB is nothing but the matrix associated to a spanning
tree. B is the ordered list of the n indexes of the basic variables corresponding to
the spanning tree; as it has been already explained, the first element of B is always
the index 0 corresponding to the auxiliary variable x0. k is the index of the basic
variable not included in the basic spanning tree, hence Ek is the k-th column of
E and dk is the k-th component of d. The subgraph associated to TB,k results to
be a spanning tree (rooted in the first node) plus an additional arc; such a kind of
structures are known as 1-trees.

It is known that in order to solve linear min cost problems by means of a simplex
primal approach, it is necessary to compute the inverse of the basis matrix and
the reduced costs. This can be implemented by means of network operations as
described below.

1) the inverse of ẼB can be computed by means of a proper visit of the correspond-
ing spanning tree:

all the elements of the first row of Ẽ−1
B are equal to 1; the first column of Ẽ−1

B

is e1; the h-th column of Ẽ−1
B , h > 1, can be easily computed by considering the

unique path of the spanning tree connecting node h to the root (node 1); such a
column contains values in the set {−1, 0, 1}, in particular the value 0 is assigned
to the rows corresponding to the arcs not belonging to the considered path, the
other values are assigned in order to obtain a flow balance equal to 1 in node h
and equal to 0 in the others (such assignement can be done by visiting the path
from the node h towards the root);

2) once the inverse of ẼB is known, then the inverse of TB,k is given by:

T−1
B,k =

[
Ẽ−1
B + (1/d̄k)y

kλTBd −(1/d̄k)y
k

−(1/d̄k)λ
T
Bd 1/d̄k

]
(2)

where λTBd = d̃TBẼ
−1
B , d̄k = dk − λTBdEk, yk = Ẽ−1

B Ek;
3) being Ek the k-th column of E corresponding to the k-th arc (i, j) ∈ A, then for

(1) yk can be computed as the difference between the i-th column of Ẽ−1
B and

its j-th column.

Let L = {h /∈ B, h 6= k : xh = lh} and U = {h /∈ B, h 6= k : xh = uh}. Given:

r̃ = r −
∑
h∈L

Ehlh −
∑
h∈U

Ehuh , ξ̃ = ξ − d0 −
∑
h∈L

dhlh −
∑
h∈U

dhuh

the solution x̃ associated to the basic matrix TB,k has x̃h = lh ∀h ∈ L, x̃h = uh
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∀h ∈ U , while:

x̃B,k = T−1
B,k

[
r̃

ξ̃

]
=

[
Ẽ−1
B r̃ + (1/d̄k)(λ

T
Bdr̃ − ξ̃)yk

−(1/d̄k)(λ
T
Bdr̃ − ξ̃)

]

ỹh = T−1
B,k

[
Eh

dh

]
=

[
yh − (d̄h/d̄k)y

k

d̄h/d̄k

]

c′h = ch − (c̃TB, ck)ỹ
h = c̄h − (c̄k/d̄k)d̄h (3)

where λTBc = c̃TBẼ
−1
B , yh = Ẽ−1

B Eh, c̄k = ck − λTBdEk, c̄h = ch − λTBdEh.

The vectors ỹh and the reduced costs c′h can be computed by means of Ẽ−1
B . If

c′h ≥ 0 ∀h ∈ L and c′h ≤ 0 ∀h ∈ U then the basic solution x̃ is an optimal solution.
Let s ∈ L such that c′s < 0; the variable xs must be increased (if possible) of a

positive value δ from ls to us. The following conditions must be verified:

l̃B,k ≤ x̃B,k − ỹsδ ≤ ũB,k, xs = ls + δ ≤ us, 0 ≤ δ ≤ us − ls (4)

The maximun value δ̄ for δ is obtained from (4) as follows:


δ1 =

x̃(B,k)r−ũ(B,k)r

ỹsr
= min

h∈(B,k) : ỹsh<0

{
x̃(B,k)h−ũ(B,k)h

ỹsh

}
δ2 =

x̃(B,k)p−l̃(B,k)p
ỹsp

= min
h∈(B,k) : ỹsh>0

{
x̃(B,k)h−l̃(B,k)h

ỹsh

}
δ̄ = min{δ1, δ2, us − ls}

(5)

Let s ∈ U such that c′s > 0; the variable xs must be decreased (if possible) of a
positive value δ from us to ls. The following conditions must be verified

l̃B,k ≤ x̃B,k + ỹsδ ≤ ũB,k, xs = us − δ ≥ ls, 0 ≤ δ ≤ us − ls (6)

The maximun value δ̄ for δ is obtained from (6) as follows:


δ1 =

ũ(B,k)r−x̃(B,k)r

ỹsr
= min

h∈(B,k) : ỹsh>0

{
ũ(B,k)h−x̃(B,k)h

ỹsh

}
δ2 =

l̃(B,k)p−x̃(B,k)p

ỹsp
= min

h∈(B,k) : ỹsh<0

{
l̃(B,k)h−x̃(B,k)h

ỹsh

}
δ̄ = min{δ1, δ2, us − ls}

(7)

If δ̄ = us − ls the variable xs goes from L to U (or from U to L) and the basic
matrix TB,k is unchanged. Otherwise, the non basic variable xs enters into the basis
and by (5) or (7) the basic variable xv leaving the basis is detected, where:

v =

{
Br if δ̄ = δ1

Bp if δ̄ = δ2
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(a) Case v = k (b) Case v 6= k with s provid-
ing a spanning tree

(c) Case v 6= k with s not pro-
viding a spanning tree

Figure 1. How the one-tree structure can be maintained

Three cases can occur:

• case v = k. The additional arc k leaves the 1-tree, the spanning tree is untouched
and the entering arc s becomes the new additional arc (see Figure 1.a). The basic
matrix results:

TB,s =

[
ẼB Es

d̃TB ds

]

• case v 6= k and vectors Eh with h ∈ {s} ∪ (B \ {v}) are linearly independent.
The entering arc s provides a spanning tree, arc k remains the additional one
and s substitutes the leaving arc v in the spanning tree (see Figure 1.b). The
basic matrix results:

TB′,k =

[
ẼB′ Ek

d̃TB′ dk

]

where B′ is obtained from B by substituting v with s, ẼB′ is the new basic
matrix of Ẽ where column s substitutes column v, d̃B′ is a subvector of d̃ whose
elements correspond to the columns of ẼB′ ;

• case v 6= k and vectors Eh with h ∈ {s}∪ (B \ {v}) are linearly dependent. The
entering arc s does not provide a spanning tree, s becomes the new additional arc
and arc k substitutes v in the spanning tree (see Figure 1.c). The basic matrix
results:

TB′,s =

[
ẼB′ Es

d̃TB′ ds

]

where B′ is obtained from B by substituting v with k, ẼB′ is the new basic
matrix of Ẽ where column k substitutes column v, d̃B′ is a subvector of d̃ whose
elements correspond to the columns of ẼB′ .

If ẼB is changed, then the inverse of ẼB′ must be computed. It is worth noticing
that the inverse Ẽ−1

B′ can be obtained by just updating Ẽ−1
B .
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Procedure Primal(inputs: a feasible basis (B, k, L, U), ξ, Ẽ−1
B ; outputs: Opt,

OptV al)
Compute x̃, c′h ∀h ∈ L ∪ U as in (3);
Let NL = {h ∈ L : c′h < 0}, PU = {h ∈ U : c′h > 0};
while NL ∪ PU 6= ∅ ;

Let c′s = min{minh∈NL{c′h};minh∈PU{−c′h}};
Compute ỹs and determine δ̄ by (5) or (7) ;
Update B, k, L, U and compute (if necessary) Ẽ−1

B by (8) ;
Compute x̃, c′h ∀h ∈ L ∪ U as in (3);
Update NL = {h ∈ L : c′h < 0}, PU = {h ∈ U : c′h > 0};

end while;
Opt := x̃; OptV al := c̃T x̃;

end proc.

Let us define the vector yinv = −ys/ysr , yinvr = 1/ysr (case δ̄ = δ1) or the vector
yinv = −ys/ysp, yinvr = 1/ysp (case δ̄ = δ2), and let Elr (Elp) an identity matrix

except for the column r-th (p-th) given by yinv. The inverse of ẼB′ is then:

Ẽ−1
B′ =

{
ElrẼ−1

B if δ̄ = δ1

ElpẼ−1
B if δ̄ = δ2

(8)

Procedure “Primal()” shows how the optimal solution of Pξ can be stated start-
ing from the feasible basic solution represented by the index partition B, k, L, U .

4. Network simplex dual approach

Let x̃ the basic solution associated to the basic matrix TB,k. If c′h ≥ 0 ∀h ∈ L and
c′h ≤ 0 ∀h ∈ U then the basic solution x̃ is a dual feasible solution. In particular,
if x̃ is also a feasible solution then it is an optimal solution. If x̃ is unfeasible then
the dual simplex algorithm can be used to find an optimal solution. In this section
we propose a dual solution method which uses, as in the previous section, the
network structure of the problem and implicitly manages the additional constraint
dTx + d0 = ξ. As it is known, in the dual simplex algorithm, first the leaving
variable (from the basis) is chosen and then the entering variable (into the basis)
is detected in order to maintain the optimality of the reduced costs. The leaving
variable is chosen among the basic variables out of the bounds (i.e variables having
a value smaller than the lower bound or higher than the upper bound).

Let x̃(B,k)v be the v-th component of x̃B,k and suppose x̃(B,k)v < l̃(B,k)v . Our aim

is to increase variable x(B,k)v up to its lower bound l̃(B,k)v . In this way, variable
x(B,k)v leaves the basis and enters in L. In order to detect the entering variable,

the v-th component of vector ỹh must be computed for all h ∈ L ∪ U . Let αv be
the v-th row of T−1

B,k, then the v-th component of vector ỹh, h ∈ L∪U , is obtained
by

ỹhv = αv

[
Eh

dh

]
(9)

If ỹhv ≥ 0 ∀h ∈ L and ỹhv ≤ 0 ∀h ∈ U then region Xξ is empty; otherwise, the
entering variable xs is detected by
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c′s
ỹsv

= max

{
max

h∈L : ỹhv<0

{
c′h
ỹhv

}
, max
h∈U : ỹhv>0

{
c′h
ỹhv

}}
(10)

Let x̃(B,k)v be the v-th component of x̃B,k and suppose x̃(B,k)v > ũ(B,k)v . Our
aim is to decrease variable x(B,k)v down to its upper bound ũ(B,k)v . In this way,
variable x(B,k)v leaves the basis and enters in U . Just as in the previous case, the

v-th component of vector ỹh must be computed for all h ∈ L∪U . If ỹhv ≤ 0 ∀h ∈ L
and ỹhv ≥ 0 ∀h ∈ U then region Xξ is empty; otherwise the entering variable xs is
detected by

c′s
ỹsv

= min

{
min

h∈L : ỹhv>0

{
c′h
ỹhv

}
, min
h∈U : ỹhv<0

{
c′h
ỹhv

}}
(11)

The basic variable x(B,k)v leaves the basis and by (10) or (11) the non basic
variable xs enters into the basis.

Three cases can occur:

• case v = n + 1. The spanning tree is untouched while the additional arc is
substituted by the entering arc. The basic matrix results:

TB,s =

[
ẼB Es

d̃TB ds

]
• case v ≤ n and vectors Eh with h ∈ {s} ∪ (B \ {Bv}) are linearly independent.

The basic matrix results:

TB′,k =

[
ẼB′ Ek

d̃TB′ dk

]
where B′ is obtained from B by substituting Bv with s, ẼB′ is the new basic
matrix of Ẽ where column s substitutes column Bv, d̃B′ is a subvector of d̃ whose
elements correspond to the columns of ẼB′ ;

• case v ≤ n and vectors Eh with h ∈ {s} ∪ (B \ {Bv}) are linearly dependent.
The basic matrix results:

TB′,s =

[
ẼB′ Es

d̃TB′ ds

]
where B′ is obtained from B by substituting Bv with k, ẼB′ is the new basic
matrix of Ẽ where column k substitutes column Bv, d̃B′ is a subvector of d̃ whose
elements correspond to the columns of ẼB′ .



July 24, 2013 Optimization Cambini-Optimization-OPTIMA2012-MinFlowRevised

9

Procedure Dual(inputs: a dual basis (B, k, L, U), ξ, Ẽ−1
B ;

outputs: Opt, OptV al, (B, k, L, U), Ẽ−1
B )

Compute x̃, c′h ∀h ∈ L ∪ U as in (3);
Let LTL = {r ∈ (B, k) : x̃r < l̃r}, GTU = {r ∈ (B, k) : x̃r > ũr};
while LTL ∪GTU 6= ∅ ;

Let v the index of (B, k) such that:
min{minr∈LTL{x̃r − l̃r};minr∈GTU{ũr − x̃r}};

Compute ỹhv ,∀h ∈ L ∪ U by (9);
if v ∈ LTL then

if ỹhv ≥ 0 ∀h ∈ L and ỹhv ≤ 0 ∀h ∈ U
then Xξ = ∅; Opt := []; OptV al := []; stop;
else Detect the entering variable xs by (10);

end if ;
else

if ỹhv ≤ 0 ∀h ∈ L and ỹhv ≥ 0 ∀h ∈ U
then Xξ = ∅; Opt := []; OptV al := []; stop;
else Detect the entering variable xs by (11);

end if ;
end if ;
Update B, k, L, U and compute (if necessary) Ẽ−1

B by (8) ;
Compute x̃, c′h ∀h ∈ L ∪ U as in (3);
Update LTL = {r ∈ (B, k) : x̃r < l̃r}, GTU = {r ∈ (B, k) : x̃r > ũr};

end while;
Opt := x̃; OptV al := c̃T x̃;

end proc.

5. Solution algorithm

As it has been introduced in Section 2, in order to find the global minimum we
just have to visit the optimal level solutions for all of the feasible levels in Λ =
[ξmin, ξmax]. In this light, we will show that it is possible to scan the feasible levels
from ξmin to ξmax by means of a finite number of iterations corresponding to
simplex pivot operations executed over the flow polytope.

In Section 3 it has been already described the structure of the optimal level
solution corresponding to a certain feasible level ξ. Assuming problem Pξ′ has been
already solved and that its optimal solution is x′ with optimal basis (B, k, L, U), our
aim is to solve the parametric problem Pξ′+θ, θ ≥ 0, such that the corresponding
optimal level solution have the same basis (B, k, L, U).

Subproblem Pξ′+θ can be rewritten as:

Pξ′+θ :


min c̃T x̃

Ẽx̃ = r

d̃T x̃ = ξ′ + θ − d0

l̃ ≤ x̃ ≤ ũ
x̃ ∈ <n+1

It can be easily verified that the reduced costs for Pξ′+θ can still be computed
with (3) and does not depend on θ, just like x′h for h ∈ L ∪ U (it is x′h(θ) = lh
∀h ∈ L and x′h(θ) = uh ∀h ∈ U). Moreover, as described in Section 3, it is:

r̃ = r −
∑
h∈L

Ehlh −
∑
h∈U

Ehuh , ξ̃ = ξ′ − d0 −
∑
h∈L

dhlh −
∑
h∈U

dhuh



July 24, 2013 Optimization Cambini-Optimization-OPTIMA2012-MinFlowRevised

10

x′B,k(θ) = T−1
B,k

[
r̃

ξ̃ + θ

]
= T−1

B,k

[
r̃

ξ̃

]
+ θT−1

B,ke
n+1

where en+1 = (0, . . . , 0, 1)T ∈ <n+1. Hence, the optimal solution of Pξ′+θ, θ ≥ 0,
results to be of the kind x′+ θ∆x, where the nonbasic components of ∆x are equal
to zero while the basic ones are given by ∆xB,k = T−1

B,ke
n+1.

The halfline x′(θ) = x′+ θ∆x, θ ≥ 0, verifies the equality constraints Ẽx′(θ) = r
and d̃Tx′(θ) = ξ′+ θ− d0, so that these points results to be optimal level solutions
whenever l̃ ≤ x′(θ) ≤ ũ, that is to say whenever they are feasible (see Section 3).
In this light, let FR = max{θ ≥ 0 : l̃≤x′ + θ∆x≤ũ}. It is worth pointing out that
x′(θ) is a vertex of the feasible region of Pξ′+θ, hence it belongs to an edge of the
flow polytope X. As a consequence, the segment [x′, x′(FR)] belongs to an edge of
X; moreover, in the case x′ is a vertex of X then x′(FR) is one of the vertices of
X adjacent to x′.

The following procedures “Main()” can then be proposed. This procedure initial-
izes the algorithm by first determining the set of feasible levels. This can be done
by means of any simplex algorithm for minimum cost flows. Then, the optimal level
solution corresponding to the starting level ξmin is computed as well as its basis.
The starting incumbent optimal solution is then initialized before the while cycle
which will allow to visit the feasible levels from ξmin to ξmax, thus obtaining the
optimal solution.

Notice that in procedure “Main()” there are two optional subprocedures. The
first one, named “ImplicitVisit()”, skips some of those feasible levels which can-
not improve the incumbent optimal solution, thus reducing the number of while
iterations needed to solve the problem and hence improving the performance of
the algorithm itself. Notice that as smaller is the value UB of the incumbent opti-
mal solution as more effective is the use of “ImplicitVisit()” subprocedure. In this
very light the second optional subprocedure, named “ImproveStartingValues()”, is
aimed just to initialize the algorithm with a good incumbent optimal solution.

At the beginning of every while iterations, an optimal level solution x′ is known.
Starting from x′ we need to determine a basis (B, k, L, U) which allow to obtain a
segment of optimal level solutions x′(θ) = x′ + θ∆x, with θ ∈ [0, FR] and FR > 0.
This could be done by analyzing all of the possible basis corresponding to x′.
This leads to computational troubles, especially in the case of degeneracy. For
this very reason a more efficient numerical approach is used. By means of a real
step parameter δ > 0 small enough and any optimal basis (B, k, L, U) of x’, the
“Dual()” procedure is invoked to solve problem Pξ′+δ thus obtaining the optimal
level solution x′(δ) and its basis which guarantees a value FR > 0.

The objective function is then evaluated over the segment of optimal level solu-
tions x′(θ), θ ∈ [0, FR], in order to improve the incumbent optimal solution. Notice
that θ := arg min

θ∈[0,FR]
z(θ), where z(θ) = f(x′(θ)), can be implemented numerically,

and eventually improved for specific functions f(x) (see [3, 4, 15]).
Finally, the while iteration is closed by the updating of the current feasible level

and its corresponding optimal level solution.
From a geometrical point of view, the single while iteration allow us to move

from a vertex of the flow polytope X to another adjacent one corresponding to an
higher feasible level by means of a simplex like operation.

The correctness and convergence (finiteness) of the algorithm follow the lines
already proved in the literature of “optimal level solutions” parametric methods
(see for all [3, 5]).

In particular, the correctness of the proposed algorithm yields since all the fea-
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Procedure Main(inputs: P ; outputs: Opt, OptV al)
Solve the problem min

x∈X
dTx and let xmin ∈ X be its optimal solution with index

partition B,L,U and reduced costs d̄, let also be ξmin := dTxmin + d0;
Let k ∈ L ∪ U be such that d̄k 6= 0 and let ẼB be the basic matrix of xmin;
Solve Pξmin by means of “Procedure Primal()” starting from the basis (B, k)

and let x′ be the optimal solution of Pξmin ;
Let x̄ := x′, UB := f(x̄), ξ′ := ξmin and let δ > 0 be the step parameter;
Compute the value ξmax := d0 + max

x∈X
dTx;

# Optional : [x̄, UB] := ImproveStartingV alues();
while ξ′ < ξmax do

let [(B, k, L, U), Ẽ−1
B ] := Dual((B, k, L, U), ξ′ + δ, Ẽ−1

B );
define vector ∆x having the nonbasic components equal to zero and the basic

ones given by:

∆xB,k :=
1

dk − d̃TBẼ
−1
B Ek

[
−Ẽ−1

B Ek

1

]

set FR := max{θ ≥ 0 : l̃≤x′ + θ∆x≤ũ};
let z(θ) = φ

(
θcT∆x + cTx′ + c0, ξ

′ + θ
)
;

let θ := arg min
θ∈[0,FR]

z(θ);

if z(θ) < UB then
UB := z(θ) and x := x′ + θ∆x;

end if ;
set ξ′ := ξ′ + FR and x′ := x′ + FR∆x;
# Optional : [ξ′, x′, (B, k, L, U), Ẽ−1

B ] := ImplicitV isit();
end while;
Opt := x̄ and OptV al := UB;

end proc.

sible levels are scanned and the optimal solution is also an optimal level solution.
As regards to the convergence, first note that at every iterative step of the pro-
posed algorithm an edge of the feasible region is fully visited; note also that the
level is increased from ξ′ to ξ′ + FR > ξ′, so that it is not possible to consider an
already visited edge; the convergence then follows since in a polytope there is a
finite number of possible edges.

Remark 1 : Let us point out that problems Pξ are independent of the function
φ. This means that problems having the same feasible region, the same c, c0, d and
d0, but different function φ, they share the same set of optimal level solutions. As
a consequence, when procedure “Main()” explicitly visits all the feasible levels,
these different problems are solved by means of the same number of iterations of
the while cycle.

Let us now describe in details the optional subprocedures “ImplicitVisit()” and
“ImproveStartingValues()”. First of all, notice that function z(θ) evaluates the op-
timal level solutions for θ ∈ [0, FR] while it represents an underestimation function
for θ > FR, that is to say that:

min
x∈Xξ′+θ , θ>FR

f(x) ≥ z(θ)

since x′(θ) is a dual feasible solution being the reduced costs independent to θ. For
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this very reason, there is no need to visit the feasible levels such that z(θ) ≥ UB
since they cannot improve the incumbent optimal solution. The optional subproce-
dure “ImplicitVisit()” verifies the presence of feasible levels which cannot improve
the incumbent optimal solution and hence which can be skipped. In the case some
levels are implicitly visited a primal feasible optimal level solution is determined
by means of procedure “Dual()”.

Procedure ImplicitVisit(outputs: ξ′, x′, (B, k, L, U), Ẽ−1
B )

if ξ′ < ξmax then
let L = {θ ∈ (0, ξmax − ξ′] : φ

(
θcT∆x + cTx′ + c0, ξ

′ + θ
)
< UB};

if L = ∅ then ξ′ := ξmax
else if inf {L} > 0 then

ξ′ := ξ′ + inf {L};
[x′, (B, k, L, U), Ẽ−1

B ] := Dual((B, k, L, U), ξ′, Ẽ−1
B )

end if ;
end if ;

end if ;
end proc.

Subprocedure “ImproveStartingValues()” is just aimed to initialize the algorithm
with a good starting incumbent optimal solution, in order to make the use of
“ImplicitVisit()” more effective. Clearly, subprocedure “ImproveStartingValues()”
results to be useless in the case “ImplicitVisit()” is not invoked.

6. Computational results

The previously described procedures have been fully implemented with the software
MatLab 7.10 R2011b and tested on a computer having 6 Gb RAM and two Xeon
dual core processors at 2.66 GHz. The following three different objective functions
have been used in the computational test:

φ(y1, y2) f(x)

P1 y1 − y2
2

(
cTx+ c0

)
−
(
dTx+ d0

)2
P2 y1y

3
2

(
cTx+ c0

) (
dTx+ d0

)3
P3 y3

1/y
2
2

(
cTx+ c0

)3
/
(
dTx+ d0

)2
Notice that the functions considered in these problems are not quasiconvex and

hence allow the presence of many local minima. We considered problems with a
number of nodes from n = 10 to n = 100. The performance of the algorithm has
been tested with respect to the graph density, expressed by means of the variable
degree which gives the average number of leaving arcs from the nodes over the
number of nodes themselves. Clearly, degree ∈ [0, 1] and as smaller is the value
of degree as more sparse is the graph. In this light, we considered graphs with a
number of leaving arcs from the nodes equal to n ∗ degree, where degree is chosen

Procedure ImproveStartingValues(outputs: x̄, UB)
Let xmax ∈ X be the optimal solution of max

x∈X
dTx;

Solve Pξmax by means of “Procedure Primal()” starting from xmax and let x′′

be the obtained optimal solution;
if f(x′′) < UB then x̄ := x′′, UB := f(x̄) end if ;

end proc.
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to be 30% (Tables 1 and 2) and 70% (Tables 3 and 4). This means that the number
of arcs in the various graphs is m ≈ n2 ∗ degree.

The problems have been randomly created; in particular, arcs are randomly
generated with the chosen degree and avoiding repetitions, vectors c, d, l, u ∈ <m
have been generated by using the “randi()” MatLab function (c, d with components
in the interval [-10,10], l with components in the interval [0,2] and u − l with
components in the interval [5,10]). In order to guarantee the existence of a feasible
flow, it is r = 1

2E(l + u). Value c0 ∈ < is chosen equal to 0; d0 ∈ < is equal to 0

in P1 while in P2 and P3 it has been chosen in order to have function dTx + d0

positive over the feasible region.
Various instances have been randomly generated and solved. In order to check

the correctedness of the optimal global solution found, some of the instances have
been solved also with the general solution algorithm proposed in [5]. The average
number of iterations of the while cycle in procedure “Main” and the average CPU
times spent by the algorithm to solve the instances are given as the results of the
test (see Tables 1-4). These results point out the effectiveness of the improvements
proposed in Section 5.

Regarding to Tables 1-4 notice that:

• “n” represents the number of nodes in the considered problems;

• “num” represents the number of instances randomly generated and solved within
problems P1, P2 and P3, with or without the use of the improving procedures;

• “Complete Visit” represents the average Iterations or CPU time spent to solve
the instances within problem P1 when neither “ImproveStartingValues” nor “Im-
plicitVisit” are used (hence all the feasible levels are explicitly scanned); we pro-
vide only the results related to P1 since all the problems are solved in the same
number of iterations (see Remark 1);

• P1, P2 and P3, represent the average iterations or CPU times spent to solve the
instances within problems P1, P2 and P3, respectively, when just “ImplicitVisit”
is used or when both “ImproveStartingValues” and “ImplicitVisit” are used.

Complete With “ImplicitVisit” only With both “ImplicitVisit”
n num Visit and“ImproveStartingValues′′

P1 P2 P3 P1 P2 P3

10 1000 24.696 6.585 18.399 5.764 1.835 12.096 5.015
20 1000 134.24 16.447 102.07 15.411 1.998 68.145 12.98
30 1000 330.24 30.518 253.07 25.074 2.051 165.89 21.279
40 800 612.46 42.785 470.55 36.27 1.9863 331.85 30.824
50 500 984.02 67.88 758.29 42.686 2.098 517.75 36.776
60 300 1443.6 86.127 1115 51.257 2.1033 779.1 44.33
70 200 1989.4 102.48 1541.7 63.245 2.025 1068.6 54.01
80 100 2633.3 125.33 2039.9 75.52 2.06 1402.1 65.03
90 100 3373.5 162.47 2614.6 74.8 2.18 1861.3 64.67
100 100 4202 204.05 3266.3 116.29 2.2 2324.6 100.52

Table 1. Average Iterations - 30% arcs

The improvement criteria suggested in Section 3 results to be extremely effective
in making the algorithm efficient; as expected, as bigger is the graph (number of
nodes or density of arcs) as more expensive is the resolution of the problem. It is
also worth pointing out that the effectiveness of the improvements criteria depends
on the chosen objective function:

• as regards to the average number of iterations, the use of “ImplicitVisit” only
provides better results in P1 and P3 than in P2, while the additional use of
“ImproveStartingValues” provides the best further improvement in P1 and the
worse improvement in P3;
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Complete With “ImplicitVisit” only With both “ImplicitVisit”
n num Visit and“ImproveStartingValues′′

P1 P2 P3 P1 P2 P3

10 1000 0.43618 0.12375 0.33882 0.11173 0.04269 0.23142 0.10123
20 1000 2.4148 0.33409 1.9156 0.31196 0.08883 1.3136 0.27501
30 1000 6.2514 0.71993 4.9911 0.57574 0.22269 3.3823 0.51657
40 800 12.35 1.2371 9.8578 0.99246 0.49555 7.1843 0.90332
50 500 21.268 2.4122 16.996 1.5144 1.1558 12.149 1.4135
60 300 33.622 3.9388 26.882 2.3921 2.262 19.816 2.2721
70 200 50.533 6.1371 40.476 3.9943 4.0184 30.005 3.824
80 100 72.996 9.793 58.321 6.2367 7.0307 43.445 6.0313
90 100 102.07 16.782 81.499 8.4984 13.004 63.238 8.2681
100 100 139.5 25.787 111.66 13.142 20.726 87.573 12.775

Table 2. Average CPU time (secs) - 30% arcs

Complete With “ImplicitVisit” only With both “ImplicitVisit”
n num Visit and“ImproveStartingValues′′

P1 P2 P3 P1 P2 P3

10 1000 59.536 9.555 45.093 10.098 1.951 29.448 8.605
20 1000 283.16 24.427 216.41 24.564 1.971 146.28 21.052
30 1000 676.87 47.814 520.75 37.164 2.047 358.13 31.685
40 800 1249.9 74.177 965.5 47.788 2.0438 666.77 41.219
50 500 2005.7 98.04 1555.7 55.176 2.026 1088.6 47.896
60 300 2955.3 131.62 2297.4 72.873 1.98 1634.4 62.78
70 200 4084.8 175.19 3179.6 87.42 2.055 2243.8 75.485
80 100 5445.8 182.33 4257.5 92.16 1.92 2901.4 81.19
90 100 6986.5 248.26 5460.3 80.2 2.06 3944.3 70.97
100 100 8726.6 282.37 6843 116.99 2.03 4731.9 103.25

Table 3. Average Iterations - 70% arcs

Complete With “ImplicitVisit” only With both “ImplicitVisit”
n num Visit and“ImproveStartingValues′′

P1 P2 P3 P1 P2 P3

10 1000 1.0372 0.18035 0.82091 0.19186 0.05271 0.55104 0.16984
20 1000 5.1037 0.52945 4.0656 0.51315 0.15298 2.8211 0.45965
30 1000 12.936 1.2777 10.359 0.94961 0.48605 7.3623 0.86337
40 800 25.543 2.5674 20.488 1.6473 1.2733 14.77 1.5416
50 500 44.384 4.7172 35.674 2.8196 2.9184 26.342 2.7014
60 300 71.258 8.2767 57.319 5.2393 5.7376 43.443 5.0677
70 200 108.54 15.313 87.219 8.6882 11.727 66.847 8.4796
80 100 159.59 22.351 128.61 14.049 18.469 97.488 13.812
90 100 226.23 40.993 182.06 23.029 35.467 146.31 22.846
100 100 312.64 62.096 252.25 34.492 55.534 200.69 34.292

Table 4. Average CPU time (secs) - 70% arcs

• as regards to the average cpu times, the use of “ImplicitVisit” only provides
better results in P1 and P3 than in P2, while the additional use of “ImproveS-
tartingValues” provides good further improvements just in P2;

• when both “ImplicitVisit” and “ImproveStartingValues” are used for problem
P1, almost all of the feasible levels are implicitly visited and very few iterations
of the while cycle are needed to solve the problems, unfortunately the same im-
provements do not occur with respect to the cpu times since the “ImplicitVisit”
procedure becomes extremely heavy from a computational point of view.

Finally, it is worth noticing that the proposed algorithm allows to solve in a reason-
able time (about 0.5-3.5 minutes) nonconvex problems on graphs having 100 nodes
and about 7000 arcs (see Table 4). For the sake of completeness, the procedure
proposed in this paper has been compared with the “fmincon()” matlab command
which resulted to be far slower (up to 50 times with respect to the spent CPU time)
even for reaching a just local minimum (not in general global); in this light just the
cases n = 20, 30, 40, with a 70% degree, have been considered since for n ≥ 50 the
“fmincon()” command did not produce any local minimum in a reasonable CPU
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time.

7. Conclusions

The proposed algorithm allows to solve a wide range of nonconvex flow problems.
In particular, the improvement criteria suggested in Section 5 resulted to be ex-
tremely effective in making the algorithm efficient. The correctness of the method
guarantees that the global minimum is found. The use of the graph structure al-
lows to solve large dimension problems in a reasonable time and with calculations
affected by limited numerical errors given by the use of machine numbers.
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