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PULSATILE VISCOUS FLOWS IN ELLIPTICAL VESSELS AND
ANNULI: SOLUTION TO THE INVERSE PROBLEM, WITH

APPLICATION TO BLOOD AND CEREBROSPINAL FLUID FLOW∗
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Abstract. We consider the fully developed flow of an incompressible Newtonian fluid in a
cylindrical vessel with elliptical cross section, and in the annulus between two confocal ellipses.
Since flow rate can actually be derived from measurements, we address the inverse problem, namely
computing the velocity field associated with a given time-periodic flow rate. We propose a novel
numerical strategy, which is nonetheless grounded on several analytical relations and which leads to
the solution of systems of ordinary differential equations. We also report numerical results based
on measured data for human blood flow in the internal carotid artery, and cerebrospinal fluid flow
in the upper cervical region of the human spine. Our method holds promise to be more amenable
to implementation than previous ones, based on challenging computation of Mathieu functions,
especially for strongly elliptical cross sections. The main goal of this study is to provide an improved
source of initial/boundary data, as well as a benchmark solution for pulsatile flows in elliptical
sections. In addition to bio-fluid dynamics investigations, the proposed method can be applied to
many problems in the biomedical field.

Key words. pulsatile laminar flow, elliptical vessel, inverse problem, cerebrospinal fluid flow,
blood flow
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1. Introduction. Pulsatile flows are driven by a time-periodic force, which is
generally the pressure gradient. A remarkable case is that of heartbeat-driven, hu-
man physiological flows, including blood circulation [30] and, even if less directly,
cerebrospinal fluid (CSF) flow [18]. In addition to bio-fluid dynamics, time-periodic
flows are widely studied with regard to chemical-physics applications, mass and heat
transfer problems, and peristaltic pumping [26]. However, in many cases of practi-
cal interest the pressure gradient is unknown or hardly measurable, while the flux—
hereafter understood as a synonym of the flow rate—can actually be estimated through
measurements. For instance, blood and CSF flow are commonly obtained by phase-
contrast magnetic resonance imaging (MRI) or Doppler ultrasonography: Flow rate is
obtained by somehow integrating low-space-resolution velocity measurements, which,
however, are not resolved enough for determining the velocity profile. Anyway, mea-
surement issues are outside the scope of this paper; hence the flux is assumed to be
known with reasonable accuracy. Our study is mainly motivated by the fact that
many portions of the vasculature are characterized by a rather elliptical cross section,
due to the presence of surrounding organs. Moreover, the spinal subarachnoid space
can be well approximated by an elliptical annulus [18]; CSF dynamics in such a do-
main is affected by pulsatility and plays a major role in the (still poorly understood)
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pathophysiology of many high-impact diseases, like syringomyelia and Chiari malfor-
mation [10].

In order to tackle realistic three-dimensional (3D) flow conditions within patient-
specific geometries, a fully numerical approach is mandatory, which implies time-
consuming simulations [9, 21, 22, 32]. Despite inherent oversimplifications, it is pos-
sible to keep some degree of physical representativeness by adopting the hypothesis
of a fully developed flow [14]. However, even in such a setting it is necessary to solve
a nonstandard inverse problem in order to evaluate velocity and pressure, from an
assigned flux. As a further caveat, we observe that we deliberately confine our at-
tention to basic fluid mechanics effects associated with deviation from an idealized
circular cross section. Hence, despite our interest in the considered biological flows,
we do not address near-wall conditions (e.g., wall shear stress and temporal/spatial
derivatives) and transport phenomena (e.g., mixing and residence times), which play
a role in physiological investigations.

In light of the above observations, we consider fully developed flows of an incom-
pressible Newtonian fluid in a straight cylinder with elliptical cross section, either
simply connected or not. These assumptions permit us to address a simplified linear
problem, and our approach aims at obtaining a benchmark solution for the inverse
problem. More precisely, by virtue of the fully developed flow hypothesis, we pro-
vide a numerical strategy which is substantially grounded on analytical relations,
while being more amenable to implementation than previous approaches proposed
in literature. Hence, while laying no claims of generality, since we do not address
complex/deformable geometries and/or rheological effects, the method we propose is
credited to hold some value for obtaining at least an approximation to real flows,
with a contained computational effort. Furthermore, the same strategy can be used
to produce improved boundary data for more ambitious numerical approaches based
on realistic data. The numerical study of this inverse problem also seems completely
new and original.

We consider an incompressible Newtonian fluid, with constant density normalized
to unity, in a semi-infinite straight pipe P = E ×R+ ⊂ R3, where E ⊂ R2 will be
either an ellipse or an elliptical annulus. In a reference frame with z directed along
the pipe axis and x = (x1, x2) belonging to an orthogonal plane, the Navier–Stokes
equations read

∂t"u+ ("u ·∇) "u− ν∆"u+∇p = 0, (x, z) ∈ E ×R+, t ∈ R+,

∇ · "u = 0, (x, z) ∈ E ×R+, t ∈ R+,

"u = 0, (x, z) ∈ ∂E ×R+, t ∈ R+,

where "u(t, x, z) and p(t, x, z) respectively denote velocity and pressure and ν > 0
represents kinematic viscosity. We look for fully developed solutions (also named
Poiseuille-type solutions),

"u(t, x, z) = (0, 0, w(t, x)) and p(t, x, z) = −λ(t, x, z) + p0(t),

where p0(t) is an arbitrary function of time. Moreover, the flux condition
∫
E w(t, x) dx

= f(t) is assumed for some given scalar function f(t). The Poiseuille-type ansatz
implies that the convective term cancels out and that pressure is p(t, z) = −λ(t) z.
Finally, the dependence of w on the space variables x1 and x2 allows us to consider a
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problem reduced to the cross section E: Given f(t), find (w(t, x),λ(t)) such that

(1.1)






∂tw(t, x) − ν∆xw(t, x) = λ(t), x ∈ E, t ∈ R+,

w(t, x) = 0, x ∈ ∂E, t ∈ R+,∫
E w(t, x) dx = f(t), t ∈ R+,

where ∆x denotes the Laplacian with respect to the variables x1 and x2. This in-
verse problem is linked to one of the nowadays classical Leray’s problems. Results of
existence and uniqueness for (1.1) are known in cylindrical pipes with very general
cross sections, under reasonable technical assumptions; see [4, 6]. Conversely, explicit
and/or practical computation of the solutions seems hardly obtainable for general
cross sections, so that we restrict to an ellipse or to the annulus between confocal
ellipses.

The relevance of the cross section shape deserves some discussion: For a circu-
lar cross section, by writing the Laplace operator in cylindrical coordinates, one can
obtain an explicit analytical solution for the direct problem in terms of Bessel func-
tions; cf. [31, 38] and section 3. Recently we derived in [5] an analytical solution
to the inverse problem involving regularized confluent hypergeometric functions. For
an elliptical cross section, in spite of the apparent similarity to the circular case,
the situation drastically changes: By using Mathieu functions [23], an explicit solu-
tion can be obtained only for the stationary problem, while it is necessary to resort
to numerical computations already when addressing the direct time-dependent prob-
lem [16, 27, 36, 37]. Some numerical approaches tackling the inverse problem have
been recently proposed [14], still by invoking the Mathieu functions and the determi-
nation of the Laplacian’s eigenvalues in an elliptical domain. This is not a trivial task
since severe instabilities can arise in managing the Mathieu functions, especially when
the ellipticity parameter ε = β/α (the ratio between the lengths of the minor and ma-
jor semiaxes) is small [16], and their computation has been assessed as a critical issue
in the numerical procedure; see [14].

In light of these points, we propose an alternative numerical approach which
indirectly addresses the Mathieu problem and which does not suffer from the afore-
mentioned limitations. Some numerical simulations are also reported, based on flow
rates coming from measurements of human blood flow in the internal carotid artery
and CSF flow in the upper cervical region of the human spine. The results support
the effective usability of our formulation, which is also capable of dealing with very
small ε.

2. Stationary problem. Despite being classical, the stationary solution in the
circular and elliptical cross sections is rederived in a way that is functional to the
subsequent treatment. Such a stationary problem is formulated as a Poisson problem:
Given the flux f ∈ R, find (w(x),λ) such that

(2.1)






−ν∆xw(x) = λ, x ∈ E,

w(x) = 0, x ∈ ∂E,∫
E w(x) dx = f.

2.1. Stationary flow in a circular cross section. Hagen and Poiseuille first
derived the solution in a circular domain by separation of variables; their solution is
still used as a benchmark flow, e.g., for turbulence studies or for recent biomedical
applications such as magnetic particle targeting. This is mainly due to the fact that
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Poiseuille flow represents one of the few examples of exact solutions of fluid equations
with Dirichlet boundary conditions.

2.1.1. Flow in the circle. Let E =
{
(x1, x2) ∈ R2 : |x| < R

}
be a circle cen-

tered at the origin, with radius R > 0, where |x| =
√
x2
1 + x2

2. The solution to (2.1)
is easily obtained as follows:

(2.2) w(x) =
2f

πR2

(
1− |x|2

R2

)
.

2.1.2. Flow in the circular annulus. LetE =
{
(x1, x2) ∈ R2 : R1 < |x| < R2

}

be a circular annulus delimited by radii R1 < R2. In this case the solution of the
Poisson problem (2.1) is

(2.3) w(x) =
2f

πR2
2

(
1− |x|2

R2
2

)
−
(
1− R2

1

R2
2

) log
(

|x|
R2

)

log
(

R1
R2

)

(
1− R4

1

R4
2

)
+
(
1− R2

1

R2
2

)2
1

log
(

R1
R2

)
.

Notice the limiting behavior of (2.3) for R2 = R and R1 → 0.

2.2. Stationary flow in an elliptical cross section. Original solutions for
this problem appeared in the pioneering works of Verma [37, 36], yet a previous work
by Khamrui was cited therein. Thanks to their particularly simple expression of the
external force, it is still possible to obtain an analytical solution by using Mathieu
functions (while numerics in presence of more general external forces is the subject
of ongoing research; see [20]). We introduce a derivation which will also be useful for
handling the time-dependent case later on.

2.2.1. Flow in the ellipse. Let E =
{
(x1, x2) ∈ R2 : x2

1/α
2 + x2

2/β
2 < 1

}
de-

note an ellipse, where α = a cosh(b) and β = a sinh(b) respectively indicate the
length of the major (x1-direction) and minor (x2-direction) semiaxes, while 2a =
2
√
α2 − β2 represents the interfocal distance. The two equalities defining b, namely

cosh−1 (α/a) = b = sinh−1 (β/a), imply log
(
α/a+

√
α2 − a2/a

)
= log(β/a +√

β2 + a2/a), from which we get b = log ((α+ β) /a). Then, to construct the so-
lution we introduce the natural change of variables

(2.4) x1 = a cosh(η) cos(θ) and x2 = a sinh(η) sin(θ),

with Jacobian

(2.5) J(η, θ) = a2
[
sinh2(η) + sin2(θ)

]
=

a2

2

[
−e−2iθ

2
+ cosh(2η)− e2iθ

2

]
.

By employing this change of variables we reduce to a problem in the rectangular
domain:

(2.6) E′ =
{
(η, θ) ∈ R2 : 0 < η < b and 0 ≤ θ < 2π

}
.
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The Laplace operator is still separable in these coordinates, and the Poisson equa-
tion (2.1) becomes






− ν

J(η, θ)

(
∂2u

∂η2
+

∂2u

∂θ2

)
= λ, (η, θ) ∈ E′,

u is 2π-periodic in θ

u(b, θ) = 0, θ ∈ [0, 2π[,
∫

E′
u(η, θ)J(η, θ) dη dθ = f,

where u(η, θ) simply represents w(x) in the new variables (notice also that J > 0 for
η > 0). Due to θ-periodicity, the solution can be written as a Fourier series ( ·̂ denotes
a complex Fourier coefficient):

u(η, θ) =
∑

n∈Z

ûn(η) e
inθ , where ûn(η) =

1

2π

∫ 2π

0
u(η, θ) e−inθ.

By linearity, we temporarily assume λ = 1, and we recast the problem as follows (not
assigning the flux): Find u, 2π-periodic in θ, such that





−ν

(∂2u

∂η2
+

∂2u

∂θ2

)
= J(η, θ), (η, θ) ∈ E′,

u(b, θ) = 0, θ ∈ [0, 2π[.

Employing Fourier variables, we also require û−n = ûn to have a real-valued velocity
( ·̄ denotes complex conjugacy). Denoting by ) and * the real and imaginary parts,
respectively, it follows that *(û0) = 0. Then, by using the axes reflection symmetries
of the solution, it follows that ûn = 0 for n odd. Moreover, to have a smooth solution
at η = 0, we impose ∂ηu(0, θ) = 0. By observing that J possesses only three nonzero
modes (associated with n = −2, 0, 2), we obtain the following identity corresponding
to a system of three complex ordinary differential equations, where “prime” ( · ′)
denotes the derivative with respect to η:

−ν
∑

n=−2,0,2

[û′′
n(η)− n2ûn(η)] e

inθ =
a2

2

[
−e−2iθ

2
+ cosh(2η)− e2iθ

2

]
.

Then, enforcing conditions at η = 0, b, we must solve the following boundary value
problems in [0, b]:





û′′
±2(η) − 4û±2 =

a2

4ν
,

û±2(b) = )(û′
±2(0)) = *(û±2(0)) = 0,

and





û′′
0(η) = − a2

2ν
cosh(2η),

û0(b) = û′
0(0) = 0.

By explicitly solving these uncoupled linear differential equations, we get

û0(η) = − a2

8ν
(cosh(2η)− cosh(2b)) , û±2(η) = − a2

16ν

1 + e4b − e2b−2η − e2b+2η

1 + e4b
.

Then, after some algebraic manipulations, the solution to the Poisson problem with
λ = 1 is

u(η, θ) =
a2

8ν
(cosh(2b)− cos(2θ)) (cosh(2b)− cosh(2η)) sech(2b),
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with corresponding flux
∫

E′
u(η, θ)J(η, θ) dη dθ = a2

∫ b

0

∫ 2π

0
u(η, θ) [sinh2(η) + sin2(θ)] dθ dη

=
πa4

32ν
sinh2(2b) tanh(2b).

The solution to the original problem (2.1) with assigned flux f is finally obtained as
(λu(η, θ),λ), where

λ = f
32ν

πa4
[
sinh2(2b) tanh(2b)

]−1
.

Finally, by mapping back to Cartesian coordinates, we get

(2.7) w(x1, x2) =
2f

παβ

[
1− x2

1

α2
− x2

2

β2

]
.

It is interesting to note how (2.7) derives from Poiseuille solution (2.2) by an anisotropic
scaling of the variables. Thus, the elegant expression (2.7), which appears in [16] but
is missing in many related works, could have been obtained through simpler deriva-
tions. We decided to follow this path, which will be used later on for the solution of
the time-dependent problem, since a simple scaling of the variables is not suitable in
that case. In fact, it should be noticed how—despite separation of variables—elliptical
domains per se create a new situation already in the stationary case: Contrarily to the
solution in the circle, even in presence of a constant force there appear three active
modes. Such a difference persists and is somehow magnified in the time-dependent
case; see section 3.

2.2.2. Flow in the elliptical annulus. We consider now the motion between
two confocal ellipses; only in this setting, the annulus is still mapped in a rectangular
domain by (2.4). More precisely, given the outer ellipse semiaxes α2,β2, the interfocal
semidistance is a =

√
α2
2 − β2

2 . Once assigned the minor semiaxis β1 < β2 of the inner

ellipse, necessarily α1 =
√
α2
2 − β2

2 + β2
1 . Then, the annulus between the two ellipses

is mapped into the rectangle E′ =
{
(η, θ) ∈ R2 : b1 < η < b2 and 0 ≤ θ < 2π

}
, where

bi = log((αi + βi)/a). Vanishing Dirichlet boundary conditions are imposed at η =
b1, b2 and, to have real-valued velocities, we impose û−n = ûn, ending up with the
following auxiliary boundary value problems with λ = 1:





û′′
±2(η)− 4û±2 =

a2

4ν
,

û±2(b1) = û±2(b2) = 0,
and





û′′
0(η) = − a2

2ν
cosh(2η),

û0(b1) = û0(b2) = 0.

By explicit calculations, the solutions read

û0(η) =
a2

8ν

[
(η − b1) cosh(2b2)− (η − b2) cosh(2b1)

(b2 − b1)
− cosh(2η)

]
,

û±2(η) =
a2

16ν

[
e2(η−b2) − e−2(η−b2) − e2(η−b1) + e−2(η−b1)

e2(b1−b2) − e−2(b1−b2)
− 1

]
,

so that the following stationary solution for the auxiliary problem is obtained (cf. [36]):

u(η, θ) =
a2

8ν

[
(η − b1) cosh(2b2)− (η − b2) cosh(2b1)

(b2 − b1)

+
sinh(2(η − b1))− sinh(2(η − b2))

sinh(b2 − b1)
cos(2θ)− (cosh(2η) + cos(2θ))

]
.
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By reasoning as in section 2.2.1, the solution to (2.1) is given by (λu(η, θ),λ), with
(cf. [14])

λ = f
16ν

πa4

[
(sinh(4b2)− sinh(4b1))

4
− (cosh(2b2)− cosh(2b1))2

2(b2 − b1)

− cosh(2(b2 − b1))− 1

sinh(2(b2 − b1))

]−1

.

It is worth remarking that the solution in the ellipse cannot be obtained as a limit
case from the annulus, due to the constraint of confocality. Indeed, for b1 → 0 the
inner boundary of the annulus (with Dirichlet condition) degenerates to the interfocal
segment, and one obtains the flow field in an ellipse which also contains a plate.

3. Time-dependent problem. We now address the time-periodic elliptical
case, by proposing a novel numerical method for its solution. We first recall the
Womersley solution as well as that of the inverse problem in the circular case, to keep
some degree of symmetry with section 2. We then address the elliptical case, and we
accurately report the solution method for the simply connected elliptical cross section,
while full details for the elliptical annulus between two confocal ellipses are skipped,
since they can easily be derived by the interested reader. We just remark that the
proposed method does not apply to nonconfocal ellipses, because in the general case
separation of variables is not viable.

3.1. Flow in the circle: Direct and inverse problem. Let us preliminarily
introduce the following T -periodic functions:

(3.1)

λ(t) =
∑

m∈Z

λ̂meiωmt, f(t) =
∑

m∈Z

f̂meiωmt,

w(x, t) =
∑

m∈Z

ŵm(x) eiωmt, ωm =
2πm

T
.

We then recall that the direct problem ∂tw(t, x) − ν∆xw(t, x) = λ(t), with assigned

λ(t) = λ̂m eiωmt (a single Fourier mode) has been considered by Womersley [38].

In cylindrical variables it becomes ŵ′′
m(r) + ŵ′

m(r)/r − iωm ŵm(r)/ν = −λ̂m/ν, with
r =

√
x2
1 + x2

2. The explicit solution can be expressed through the zeroth order Bessel
functions J0, as follows:

(3.2) w(r, t) = ŵm(r) eiωmt =

(
1−

J0
(
(−1)3/4 Wor,m

)

J0
(
(−1)3/4 WoR,m

)
)

λ̂m

iωm
eiωmt,

where Wor,m = r
√

ωm
ν is a nondimensional parameter, with a notation which slightly

generalizes that introduced by Womersley. Given w, one can evaluate the flux. Con-
versely, starting from a given flux f̂m eiωmt, the explicit map between ŵm and f̂m has
been recently obtained in [5]:

f̂m = πR2

(
1− 0F̃1

(
; 2; iWo2R,m /4

)

0F̃1

(
; 1; iWo2R,m /4

)
)

λ̂m

iωm
,

ŵm(r) =

(
1−

J0
(
(−1)3/4Wor,m

)

J0
(
(−1)3/4 WoR,m

)
)

λ̂m

iωm
,
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where 0F̃1(; ·; ·) denotes the regularized confluent hypergeometric function. Since the
problem is linear, superposition can be invoked and, under the assumptions on f
in [4], the series

∑
m∈Z ŵm(r) eiωmt converges to the solution of (1.1).

3.2. Flow in the ellipse: The auxiliary direct problem. The explicit solu-
tion for the direct problem in an elliptical vessel was originally derived by Verma [37],
following the same approach of Womersley, although some details were missing. In
particular, given a single harmonic pressure gradient λ = eiωmt, with m ∈ Z, the
solution in elliptical coordinates is

(3.3) u(η, θ) =
∞∑

n=0

C2n Ce2n(η,−q) ce2n(θ,−q) with q =
i a2 ωm

4 ν
,

where Ce2n and ce2n are the ordinary and modified Mathieu functions [23] while
C2n represent suitable constants, determined from the no-slip boundary condition.
Mathieu functions were introduced in the 19th century to study the vibration of an
elliptical membrane, but they still deserve attention from a computational viewpoint,
since their evaluation is prone to severe numerical instabilities [33]. Moreover, in
order to get a 2π-periodic solution in θ through the Mathieu functions, one needs to
evaluate the eigenvalues of the Laplacian: This involves infinite tridiagonal matrices
and is very expensive. Furthermore, practical limitations on the ellipticity parameter
ε arise when directly using these special functions, and numerical instabilities are
reported for ε < 0.3 in [16]. In light of these points, the quest for robust numerical
methods to efficiently compute the Mathieu functions is still an open issue. A stepwise
procedure has been proposed in [14], in correspondence to large complex arguments
typically associated with viscous flows, with a proper blend of backward and forward
recurrence techniques, aimed at enhancing convergence.

To circumvent the aforementioned limitations, we propose a novel numerical strat-
egy, in the spirit of Fourier analysis, which involves the Mathieu functions only in an
indirect way, and we extend methods from [20] for the stationary case. Our approach
is based on Fourier analysis in the variables θ and t, while η is kept in the physical
space. With the change of variables (2.4), we recast the problem as

(3.4) ut(t, η, θ)J(η, θ) − ν

(
∂2u(t, η, θ)

∂η2
+

∂2u(t, η, θ)

∂θ2

)
= J(η, θ)λ(t).

Since we look for T -time-periodic and 2π-θ-periodic solutions, we make the ansatz

(3.5) u(t, η, θ) =
∑

m,n∈Z

ûm,n(η) e
inθeiωmt,

and to have real-valued solutions we impose λ̂−m = λ̂m, f̂−m = f̂m, and û−m,−n =
ûm,n. (The latter relation implies, in particular, *(û0,0(η)) = 0.)

We start by addressing a direct problem, with given pressure gradient. Within
this section, to stress the fact that we temporarily turn our attention to a direct
problem, we denote the pressure gradient by σ(t) =

∑
m∈Z σ̂meiωmt. By plugging (3.5)

into (3.4), we get: Solve, for each m ∈ Z,

(3.6)






∑

n∈Z

iωmûm,n(η) e
inθJ(η, θ)− ν

(
û′′
m,n(η)− n2ûm,n(η)

)
einθ = J(η, θ) σ̂m,

ûm,n(b) = 0, n ∈ Z,
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with (η, θ) ∈ E′ and E′ defined as in (2.6). System (3.6) can be simplified by invoking
symmetry: Velocity must be unchanged by the transformations θ +→ −θ and θ +→ π−θ,
i.e., by reflection over the ellipse axes of symmetry. By also recalling the conditions
on conjugacy, this provides

(3.7)
ûm,n = 0 for n odd and

ûm,−n = ûm,n, û−m,n = ûm,−n = ûm,n for n even, m ∈ Z.

Hence, we need to evaluate only the Fourier modes ûm,n, with 0 < n,m ∈ Z, and n
even. This reduces by a factor eight the computational burden. By plugging (2.5)
into (3.6) and by equating the corresponding even n-modes (at fixed m), we obtain
the following infinite family of ordinary differential equations:

(3.8)

û′′
m,0 −

[
iWo2a,m

2 cosh(2η)

]
ûm,0 +

iWo2a,m

2 ûm,2 =− a2

2ν cosh(2η) σ̂m,

û′′
m,2 −

[
22 +

iWo2a,m

2 cosh(2η)

]
ûm,2 +

iWo2a,m

4 (ûm,4 + ûm,0) =
a2

4ν σ̂m,

û′′
m,4 −

[
42 +

iWo2a,m

2 cosh(2η)

]
ûm,4 +

iWo2a,m

4 (ûm,6 + ûm,2) = 0,

...
...

...

û′′
m,2n −

[
(2n)2 +

iWo2a,m

2 cosh(2η)

]
ûm,2n

+
iWo2a,m

4 (ûm,2n+2 + ûm,2n−2) = 0,
...

...
...

where, for brevity, we use ûm,n in place of ûm,n(η) and Woa,m is a generalized Womer-
sley number based on the interfocal semidistance a, defined as in (3.2) and consistent
with [14, 16]; cf. (3.3) with q = iWo2a,m/4. Furthermore, to have a well-posed system
we assign another condition at the singular point η = 0 of the change of coordinates,
enforcing symmetry for the velocity-profile (cf. [16, eq. (9)]) by ∂ηu(0, θ, t) = 0.

Equations (3.8) are an infinite system of nonhomogeneous Mathieu equations. In
order to get a computable system, one main idea is to use an approximation with a
finite-dimensional system. However, this cannot be achieved by simply neglecting all
equations which involve modes ûm,n for large enough |n|, since there is an infinite
coupling (the nth mode is coupled with the two closest modulo 2).

Provided that |f̂m| decays fast enough as |m| → +∞ (and this is more than rea-
sonable for realistic flows; see also section 4), the coefficients ûm,n are asymptotically
small, since they belong to a convergent Fourier series [4, 6, 12]. In practical compu-

tations, we assume that |f̂m| is negligible for |m| > M for some M ∈ N. The index
M affects the quality of the truncated flow rate, and its choice is also determined by
measurement issues beyond the present scope. Yet we assume that M is chosen large
enough to accurately reproduce the experimental flow, while also avoiding truncation
artifacts. A cut-off index N ∈ N is then chosen such that, by neglecting ûm,n for all
n ∈ Z with |n| > 2N , it does not significantly affect the solution. Obviously, it must
be N ≥ 2 to keep at least the first equations having nonzero right-hand side. This
implies that we can drop off ûm,2N+2 in the differential equation satisfied by ûm,2N ,
and solve only the equations for ûm,n with n = 0, 2, . . . , 2N . In this way, for each
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considered m, we end up with a closed tridiagonal system of linear ordinary differ-
ential equations, a differential counterpart of the tridiagonal matrix obtained when
approximating the eigenvalues of the Mathieu functions; see [1, 14].

By linearity, it is convenient to assume σ̂m = 1, and we denote the unknown
by v̂m,n to stress that we are approximating ûm,n by truncation. Then, for each
m ∈ {0, . . . ,M} we have to solve

(3.9)




v̂′′m,0 −
[

iWo2a,m

2 cosh(2η)

]
v̂m,0 +

iWo2a,m

2 v̂m,2 =− a2

2ν cosh(2η),

v̂′′m,2 −
[
22 +

iWo2a,m

2 cosh(2η)

]
v̂m,2 +

iWo2a,m

4 (v̂m,4 + v̂m,0) = a2

4ν ,

v̂′′m,4 −
[
42 +

iWo2a,m

2 cosh(2η)

]
v̂m,4 +

iWo2a,m

4 (v̂m,6 + v̂m,2) = 0,

... =
...

v̂′′m,2n −
[
(2n)2 +

iWo2a,m

2 cosh(2η)

]
v̂m,2n +

iWo2a,m

4 (v̂m,2n+2 + v̂m,2n−2) = 0,

... =
...

v̂′′m,2N−2−
[
(2N − 2)2 +

iWo2a,m

2 cosh(2η)

]
v̂m,2N−2

+
iWo2a,m

4 (v̂m,2N + v̂m,2N−4) = 0,

v̂′′m,2N −
[
(2N)2 +

iWo2a,m

2 cosh(2η)

]
v̂m,2N +

iWo2a,m

4 (v̂m,2N−2) = 0,

v̂m,n(b) = 0, n = 0, 2, . . . , 2N,
v̂′m,n(0) = 0, n = 0, 2, . . . , 2N.

It should be noted that, once the fluid viscosity and the semiaxes α and β are fixed,
the solution of (3.9) is affected only by the cut-off index N . We stress this point by

introducing the notation v̂(2N)
m,n , and we denote by N& a truncation index to be chosen

large enough to get a proper approximation. Two assets can be introduced for the
purpose: (i) accuracy, since magnitude of the cut modes must be negligible compared
to that of the kept ones; (ii) independence from N , since truncation must affect the
kept modes in only a negligible way. Recalling that the amplitude of high frequencies
is expected to be smaller than that of low ones, the accuracy asset can be formulated
by introducing the following nondimensional quantity:

(3.10) µ(m,N) =
‖v̂(2N)

m,2N‖∞
‖v̂(2N)

m,0 ‖∞
,

where ‖v̂‖∞ = max0≤η≤b∈E′
η
|v̂(η)| and the n = 0 mode is used to get a reference

value. (Such a reference was used for the numerical tests in section 4, turning out
to be nonvanishing; alternative choices can be introduced by exploiting larger values
of n.) Once we have chosen a threshold µ̄, let us define N&

µ̄ as the smallest N ∈ N
such that µ(m,N) ≤ µ̄ for all m ∈ {0, . . . ,M}. Hence, by choosing N ≥ N&

µ̄, we are
guaranteed that truncation cuts only negligible n-modes for all relevant values of m.
As regards independence fromN , the following nondimensional quantity is introduced:

(3.11) s(m,N) = max
n∈N

‖v̂(2N)
m,n − v̂(2N+2)

m,n ‖∞
‖v̂(2N)

m,0 ‖∞
,
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where N = {0, 2, . . . , 2N − 2} (the index 2N is not considered, for obvious reasons).
Once a threshold s̄ has been chosen, N&

s̄ is the smallest N ∈ N such that s(m,N) ≤ s̄
for all considered m. Hence, by choosing N ≥ N&

s̄ , we are guaranteed that truncation
only negligibly affects the kept n-modes for all relevant values of m. Finally, we define
N& = max

(
N&

µ̄, N
&
s̄

)
.

3.3. Flow in the ellipse: The inverse problem. We propose here a method,
alternative to that recently provided in [14], which is based on the Fourier approach
introduced in section 3.2. Thanks to linearity, we simply need to link the Fourier co-
efficients of the flow rate with those of the pressure gradient. The flow rate associated
with the solution coming from ansatz (3.5) is

f(t) =
∑

m∈Z

f̂m eiωmt =
∑

m∈Z

[
∑

n∈Z

∫ b

0
ûm,n(η)

(∫ 2π

0
einθ J(η, θ) dθ

)
dη

]
eiωmt.

Then, substituting J from (2.5), by explicit calculations we get

1

a2

∫ 2π

0
einθ J(η, θ) dθ =






− π/2, n = ±2,

π cosh(2η), n = 0,

0, n ∈ Z\{0,±2},

so that the following relation can be easily obtained for each m ∈ Z:

(3.12) f̂m =
a2π

2

∫ b

0

(
− ûm,−2(η) + 2 cosh(2η) ûm,0(η)− ûm,2(η)

)
dη.

Clearly, without an explicit knowledge of ûm,n(η) it is not possible to evaluate the flux
by means of (3.12). Nevertheless, by the approximate solution v̂m,n from section 3.2,
it is straightforward to exploit (3.12) in order to approximate the Fourier coefficients

λ̂m in terms of f̂m as follows:

(3.13) λ̂m
∼= f̂m

1

πa2

[∫ b

0

(
cosh(2η) v̂m,0(η)− v̂m,2(η)

)
dη

]−1

, m ∈ N ∪ {0}.

The bracketed quantity must be nonvanishing for such an expression to be meaning-
ful. For the exact solution ûm,n the map between f̂m and λ̂m is one-to-one, implying
a nonvanishing denominator in (3.13). Such a condition is not perfectly guaranteed
when considering an approximate solution v̂m,n, but, if the numerical approximation
is accurate enough (i.e., for a cut-off index N large enough), the approximate denom-
inator is close enough to the exact one, thus being nonzero. Observe that the same
potentially critical issue occurs when directly using the Mathieu functions, as in [14];
in that case the degree of the involved Mathieu functions must be large enough, in
analogy with the present one.

Let us summarize the basic steps of the method we propose for solving the inverse
problem. Given ν, a, b and given the T -periodic flow rate f(t), we proceed as follows:

(S1) We consider an integer M such that the Fourier spectrum of f(t) is suitably

approximated by f̂m for m ∈ {0, 1, . . . ,M}. To assess the accuracy of this
choice it is possible to use popular metrics, such as the Pearson correlation
coefficient; see [14].
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(S2) Given M , we fix desired (small enough) thresholds µ̄, s̄, and we determine
N& as in section 3.2. By the end of this step, the accurate and truncation-
independent computation of the modes v̂m,n is achieved for m ∈ {0, 1, . . . ,M}
and n ∈ {0, 2, . . . , 2N&}.

(S3) Given v̂m,n, we use (3.13) to compute λ̂m; by the end of this step, the coeffi-

cients λ̂m are available, for m ∈ {0, 1, . . . ,M}.
(S4) We compute the sought approximate solution by replacing (3.5) with the

following summation:

(3.14)

u(t, η, θ) ∼=
∑

m∈M̄

λ̂m ϕm(η, θ) eiωmt, with ϕm(η, θ) =
∑

n∈N̄"

v̂m,n(η) e
inθ ,

where M̄ = {−M,−M + 1, . . . ,M − 1,M} and N̄ & = {−2N&,−2N& +
2, . . . , 2N& − 2, 2N&}, where the modes associated with negative values of
m and n are evaluated by conjugacy.

We observe that at step (S2) we need to solve system (3.9) for several values of N .
However, this burden is not peculiar to our strategy: It is necessary to iterate com-
putations also when directly using the Mathieu functions, to reach a proper accuracy
level [14]. Next, let us remark that if one addresses multiple flow rates fi(t) on the
same cross section, it suffices to determine N& by considering M = maxi{Mi}, thus
performing step (S2) only once, to reduce the computational burden. Indeed, once the
“basis” v̂m,n is built, it is immediate to explore many solutions, by simply iterating

steps (S3)–(S4) on the given sets of coefficients f̂m.

4. Numerical results. The proposed method was tested on blood and cere-
brospinal fluid (CSF) flow, with the main aim of assessing its computational gain
versus numerical approaches based on commercial codes, as well as its capability to
deal with strongly elliptical cross sections. Both these aspects are discussed in sec-
tion 5, based on the results from the present section. We remark that, although
considering physiological data, we do not claim our tests to be very representative
from a physiological viewpoint, since fully developed flows can hardly occur in real
situations.

4.1. Blood flow in the internal carotid artery. A flow rate waveform for
blood flow within the human internal carotid artery (ICA) was adapted from [17] (see
Figure 4.1); the period is T = 0.95 (s), and the period-averaged flow rate is f0 =
4.11 (cm3/s). Following [19], an average radius for such a vessel is 0.25 (cm). By as-
suming ε = 0.6, we introduced an elliptical cross section with semiaxes α = 0.25 (cm)
and β = 0.15 (cm), so that η ∈ E′

η = [0, b] with b = 0.69. A characteristic diameter

for the section is then δ̃ = α + β = 0.4 (cm), while the section-averaged speed is
w̄ = f0/A = 34.9 (cm/s), where A = παβ is the cross-sectional area. Moreover, the
flux was approximated by M = 15 modes suitably replacing the data (see Figure 4.1),
since the associated Pearson correlation coefficient differs from 1 by less than 10−3.
By introducing a characteristic speed w̃ = A−1 maxt/T∈[0,1] f(t) = 58.2 (cm/s) and
by assuming ν = 3.5 ·10−2 (cm2/s), as in [30], we label the considered blood flow with
a Reynolds number Re = w̃δ̃/ν ∼= 665. In addition, once a characteristic frequency

ω̃ =
(∑M

m=0 |f̂m|ωm

)
/
(∑M

m=0 |f̂m|
)
is defined, we introduce a characteristic Wom-

ersley number Wo = (δ̃/2)
√
ω̃/ν ∼= 2.5. Despite the scarcity of results on stability

for pulsatile flows, which seem to be contradictory already for the circular cross sec-
tion [34], the above values suggest that the flow at hand is laminar. This was derived
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Fig. 4.1. Blood flow within the ICA. Normalized flow rate f/f0: Data, adapted from [17], are
plotted against a Fourier reconstruction with M = 15 modes (left). Contour plots for µ(m,N): It
is necessary to choose 2N = 26 for the relative magnitude of discarded modes to be below 10−12 for
all considered m (middle). Contour plots for s(m,N): It is necessary to choose 2N = 22 to get a
relative sensitivity to truncation below 10−12 for all considered m (right).

Fig. 4.2. Blood flow within the ICA. Example solution components: Real part of ϕ1 (left) and
ϕ2 (right).

by considering available experimental thresholds for the circular cross section [15], due
to the lack of more appropriate available criteria for the elliptical case. Step (S2) of
the method was then addressed, thus obtaining the contours shown in Figure 4.1 for
µ(m,N) and s(m,N). For this purpose, we coded the boundary value problem (3.9)
within a MATLAB environment and solved it by a shooting technique. As a result,
by choosing µ̄ = s̄ = 10−12, it is immediate to get N&

µ̄ = 13 and N&
s̄ = 11 from

Figure 4.1, so as to finally choose N& = 13. Please also notice how, for any fixed m,
‖v̂m,n‖∞ ≥ ‖v̂m,n+2‖∞ for n = 0, . . . , 2N−2, thus confirming the decreasing influence
of higher n-modes. Furthermore, Figure 4.2 shows the real part of ϕ1 and ϕ2, defined
in (3.14), for the sake of illustration.

We then compared our numerical results with those achieved by means of the
commercial finite element (FE) solver ADINA 8.8.1 (ADINA R&D Inc., MA, USA).
Such a solver uses a standard Galerkin formulation (stabilized by upwinding for higher
Reynolds numbers [3]), while time-advancing is implemented by a first order Euler
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Fig. 4.3. Blood flow within the ICA. Normalized velocity profiles w/w̄ along the major (left)
and minor (right) semiaxes, for selected nondimensional times t/T . Results obtained by the proposed
method (solid curves) are compared with those achieved by a commercial FE solver (filled circles).

backward method. In FE simulations, a pipe with length / = 160δ̃ was defined, to
obtain a fully developed flow in the central portion of the domain. (Such a condition
was checked a posteriori.) Furthermore, the flow rate shown in Figure 4.1 was imposed
at the inlet cross section, the no-slip boundary condition was enforced on the vessel
wall, and a reference pressure value was imposed at the outlet cross section. (Such a
value is immaterial, due to the incompressible formulation.) In addition, both space-
and time-discretization were incrementally refined, up to obtaining discretization-
independent results. In particular, the pipe domain was discretized by nearly 8.2 ·105
second order accurate brick elements, namely 20, 32, and 1280 elements along the
radial, circumferential, and axial directions, respectively. Moreover, seven pulsation
periods were simulated (time-periodicity was obtained after four periods); the time-
step was internally set, based on the chosen 10−5 relative tolerance on residuals.
Finally, all simulations were run on a single core of a PC with Intel Core i7-960
3.20 GHz CPU and 24 GB RAM. As expected, a very good agreement was achieved
between the considered approaches; see Figure 4.3. In particular, the root-mean-
square (RMS) difference between the corresponding velocities was ∆w ∼= 4.2 · 10−3 w̃.
Associated computational times were noticeably different: Roughly 3 minutes for the
proposed method, versus 9 days for the FE run.

4.2. Cerebrospinal fluid flow in the upper cervical spinal region. A flow
rate waveform for CSF in the upper cervical human spinal region [18] was adapted
from [14]. The period-averaged flow rate is f0 = −0.11 (cm3/s). (Negative sign
indicates that it is directed towards the lumbar region.) The period T = 0.95 (s)
was assumed equal to that of the cardiac cycle; see section 4.1. The cross section can
be approximated by the annulus between two confocal ellipses with α2 = 1.11 (cm),
β2 = 0.93 (cm), and β1 = 0.43 (cm) (from which a = 0.61 (cm) and α1 = 0.74 (cm)),
so that η ∈ E′ = [b1, b2] with b1 = 0.66 and b2 = 1.21. A characteristic thickness
for the cross section is τ̃ = (α2 − α1 + β2 − β1) /2 = 0.43 (cm), while the section-
averaged speed is w̄ = f0/A = −0.047 (cm/s), where A represents the cross-sectional
area. The flux was approximated by M = 15 modes suitably replacing the data
(see Figure 4.4), since the associated Pearson correlation coefficient differs from 1 by
less than 10−6. Moreover, by proceeding as in section 4.1 with τ̃ in place of δ̃, and
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Fig. 4.4. CSF flow in the upper cervical spinal region. Normalized flow rate f/f0: Data adapted
from [14] are plotted against Fourier reconstruction based on M = 15 modes (left). 3D Reconstruc-
tion of a patient-specific CSF domain, as obtained from MRI, showing cranial sub-arachnoid space
and upper cervical spinal region (right). Location of the considered annulus is highlighted in the
inset.

Fig. 4.5. CSF flow in the upper cervical spinal region. Example solution components: Imagi-
nary parts of ϕ1 (left) and ϕ2 (right).

by assuming ν = 10−2 (cm2/s), as in [22], we label the considered blood flow with a
Reynolds number Re = w̃τ̃/ν ∼= 65 and aWomersley number Wo = (τ̃/2)

√
ω̃/ν ∼= 7.5.

The above values suggest that the flow at hand is laminar, yet also in this case
more consolidated results are needed for a stronger statement on stability (available
data do not consider annular sections [34]). We then determined N& = 13, once
µ̄ = s̄ = 10−12 was chosen. Figure 4.5 shows the imaginary part of ϕ1 and ϕ2, for the
sake of illustration. We then compared our numerical results with those achieved by
the commercial solver ADINA. For such FE simulations, a pipe with length / ∼= 100τ̄
was defined, in order to obtain a fully developed flow in the central portion of the
domain. The flow rate shown in Figure 4.4 was imposed at the inlet cross section,
the no-slip boundary condition was enforced on vessel walls, and a reference pressure
value was imposed at the outlet cross section. Also in this case space- and time-
discretization were incrementally refined. The pipe domain was finally discretized by
nearly 3.8 ·105 second order accurate brick elements, namely 40, 32, and 300 elements
along the radial, circumferential, and axial directions, respectively. Moreover, seven
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Fig. 4.6. CSF flow in the upper cervical spinal region. Normalized velocity profiles w/w̄ along
the major (left) and minor (right) semiaxes of the annulus, for selected nondimensional times t/T .
Results obtained by the proposed Fourier-based approach (solid curves) are compared with those
achieved by a commercial FE solver (filled circles).

pulsation periods were simulated (time-periodicity was obtained after two periods),
and a time-step was internally set, once a 10−5 relative tolerance on the residuals was
chosen. Also in this case, a very good agreement was achieved between the considered
approaches (see Figure 4.6), the RMS difference between the corresponding velocities
being ∆w ∼= 4.5 · 10−3 w̃. Associated computational times were noticeably dissimilar:
Roughly 3 minutes for the proposed method, versus 4 days for the FE run (the latter
being shorter than in the blood test-case, thanks to lower average speeds).

5. Discussion and concluding remarks. We proposed a novel numerical
method for solving the inverse problem of fully developed pulsatile viscous flows of
an incompressible Newtonian fluid in elliptical vessels and annuli between confocal
ellipses. Under quite general assumptions, valuable approaches for problems with
flow rate conditions were proposed in the literature [11], and they are the subject of
ongoing research. Moreover, a fully numerical approach is the only one viable when
considering realistic geometries and complex rheology; nonetheless and in spite of the
linear context within which it was derived, our solution is original and nontrivial.
Indeed, it provides an easily computable benchmark, as well as an approximation,
for such a problem. We successfully applied the method to blood and CSF flows; in
both cases, the solution provided by a commercial numerical solver was accurately re-
produced in a much shorter computational time. Indeed, the corresponding speed-up
factor was over 103, and it could be enhanced by using optimized Fourier solvers [13].
Please also notice that it takes additional time to get a grid-independent, periodic,
and fully developed FE solution (such time was not considered in section 4), so that
actual computational gain was even greater.

More generally, our method corroborates some early attempts in which a proper
treatment of the inverse problem was missing [29], and it provides an alternative
to the numerical approach in [14], heavily based on Mathieu functions. As regards
computational time, our approach seems to be comparable to that in [14]. However,
to optimize computational efficiency was not our main intent (so that we did not
reproduce the computations in [14]); rather we were looking for a method able to also
deal with strongly elliptical sections, where the approach based on Mathieu functions
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is reported to face difficulties [16]. We thus challenged our strategy by varying the
cross sections adopted for the numerical test-cases in section 4. In particular, once the
given flow rate and the cross-sectional area were fixed, we considered many sections
by assigning the ellipticity parameter ε, namely β/α for the ellipse and β2/α2 for
the annulus. More precisely, for the annular case we fixed the cross-sectional area of
both ellipses, and the resulting section was completely defined also thanks to the
confocality condition. No criticalities were encountered by our method, even for
ε < 0.1. Example results are reported in Figure 5.1, where nondimensional velocity
profiles can be directly compared since w̄ was kept constant while varying ε. For
the considered blood flow within the ICA, pulsation does not play a major role (due
to a smaller Womersley number), and the velocity profiles are somehow scaled with
the flow rate (see Figure 4.3), with a slight exception around t/T = 0.1. In such a
circumstance one expects the instantaneous velocity profiles to almost behave as in the
stationary case: Ellipticity indirectly enters through the space variable scaling in (2.7),
so that the nondimensional velocity profiles are expected to be weakly dependent on ε.
This was confirmed by our simulations, and minor deviations could only be observed
for t/T = 0.1; see Figure 5.1. Conversely, pulsatility is more pronounced for the
considered CSF flow (with a larger Womersley number), and ellipticity sensibly affects
the nondimensional velocity profiles, as shown in Figure 5.1. It is easy to check that
for smaller ε both thicknesses α2−α1 and β2−β1 are decreasing in ε, so that viscosity
effects become more relevant and there is only one maximum for the velocity profiles
as in the parabolic case. In more detail, α2−α1 tends to zero, and the corresponding
velocity profile is almost completely damped, while β2 − β1 tends to a nonnull value,
so that the corresponding velocity profile is also determined by mass continuity (see
Figure 5.1 for ε = 0.1). Hence, vessel ellipticity affects the solution, and for larger
Womersley numbers it is not possible to simply scale the spatial variables. Indeed,
in those cases it is necessary to properly solve the inverse problem, e.g., by using the
approach in [14] or the one proposed in the present study, yet our method seems to
be preferable for strongly elliptical cross sections.

Fig. 5.1. Effect of the ellipticity parameter ε on fluid velocity. Example nondimensional velocity
profiles for blood (left) and CSF (middle and right) flows.
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Nonetheless, the applicability of our method to real-world test-cases is limited
by the underlying assumptions, primarily that of having a fully developed flow. The
implications of such an assumption on model usability could be addressed by quan-
tifying the degree of approximation of our solution compared to finite-length vessel
flows. In this regard, it could be of interest to study the “entrance length” for pulsatile
and for purely oscillatory flows in both elliptical pipes and annuli, also considering
outflow boundary conditions as in [35]. Furthermore, the proposed method cannot
be applied to nonconfocal elliptical annuli, and it cannot take into account relevant
features of realistic vessels such as curvature [2], twist, and taper. Further aspects,
such as the possibility of accurately measuring vessel ellipticity in patient-specific
geometries, also affects model applicability. In addition, it may be appropriate to
consider more complex fluid rheological aspects, especially for blood flow [28]. Finally
and more importantly, the proposed model does not address compliance of the vessel
walls, which can strongly affect the solution for both CSF and blood flows [8, 7].
Indeed, the relative importance of ellipticity and wall compliance should be better
studied, to obtain accurate predictions of the wall shear stress distribution along the
cross section boundary, which in turn can affect the onset and development of rele-
vant blood- and CSF-related pathologies. As anticipated, however, investigation of
physiologically relevant near-wall conditions and transport phenomena was beyond
the present scope, and it will be tackled through subsequent studies.

Despite the aforementioned limitations, the proposed method can be effectively
used for developing more ambitious numerical studies, e.g., as an improved source
of initial/boundary data, up to serving as a debugging tool for complex 3D codes.
Indeed, our benchmark solution can provide a more appropriate flow field when pul-
satility plays a role, thus improving those approaches which only scale the parabolic
velocity profile by a factor accounting for flow rate variability. Besides basic bio-
fluid dynamics investigations, our method can be applied to many problems in the
biomedical field such as targeted drug delivery [5] and controlled navigation of so-
called “medical microrobots” [24], for which blood and CSF were identified as elective
carrying fluids. In both applications, our method could provide a more precise de-
scription of the underlying flow field, still at an affordable computational cost, which
is needed to improve the accuracy of drug/microdevice release and targeting. Fur-
thermore, regarding CSF flow, improved flow description could permit us to better
assess glucose transport, which is envisioned for powering implantable miniaturized
electronic devices [25]. In conclusion, we believe that the proposed method, despite
the simplifications that we introduced for obtaining a directly computable solution,
has potential for effective applications in an interdisciplinary context.

Acknowledgments. The authors would like to thank Costanza Diversi and
Byung-Jeon Kang for the 3D reconstruction reported in Figure 4.4.
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