Noname manuscript No.
(will be inserted by the editor)

Distribution-aware compressed full-text indexes

Paolo Ferragina - Jouni Sirén - Rossano
Venturini

the date of receipt and acceptance should be inserted later

Abstract In this paper we address the problem of building a compressed self-index
that, given a distribution for the pattern queries and a bound on the space occupancy,
minimizes the expected query time within that index space bound. We solve this
problem by exploiting a reduction to the problem of finding a minimum weight K-
link path in a properly designed Directed Acyclic Graph. Interestingly enough, our
solution can be used with any compressed index based on the Burrows-Wheeler trans-
form. Our experiments compare this optimal strategy with several other known ap-
proaches, showing its effectiveness in practice.

Keywords Full-text Indexing - Compressed Full-text Indexes - Succinct Data
Structures - Dynamic Programming

1 Introduction

String processing and searching tasks are at the core of modern web search, IR, data
base and data mining applications. Most text operations required by these applica-
tions involve, sooner or later, searching those (long) texts for (short) patterns or ac-
cessing portions of those texts for subsequent processing/mining tasks. Despite the
increase in processing speeds of current CPUs and memories/disks, sequential text

This work was partially supported by MIUR of Italy under projects PRIN MadWeb 2008 and FIRB Lin-
guistica 2006, Yahoo! Research, the Midas EU Project, Grant Agreement no. 318786, the InGeoCloudS
EU Project, Grant Agreement no. 297300, the Finnish Doctoral Programme in Computational Sciences,
Academy of Finland, Helsinki Institute for Information Technology, and the Nokia Foundation.

Paolo Ferragina
Dipartimento di Informatica, University of Pisa, L.go B. Pontecorvo 3, 56127 Pisa, Italy.

Jouni Sirén
Department of Computer Science, University of Helsinki, Finland.
Rossano Venturini

Dipartimento di Informatica, University of Pisa, L.go B. Pontecorvo 3, 56127 Pisa, Italy.
E-mail: ferragina®@di.unipi.it, jltsiren@cs.helsinki.fi, rossano@di.unipi.it

searching long ago ceased to be a viable approach, and indexed text searching has
became mandatory.

Data compression and indexing seem “opposite approaches” because the former
aims at removing data redundancies, whereas the latter introduces extra data to sup-
port faster operations. This dichotomy was addressed starting from the year 2000 [6,
11], due to various achievements which showed how to relate Information Theory
with String-Matching concepts, in a way that index regularities that show up when
data is compressible are discovered and exploited to reduce index occupancy without
impairing query efficiency (see the surveys [5,16] and references therein). The net
result has been the design of compressed data structures for indexing texts (aka com-
pressed indexes, or compressed and searchable data formats) that take space close to
the kth order entropy of the input text, and support the powerful substring queries and
the extraction of arbitrary portions of data in efficient time. Due to this latter feature,
these data structures are sometime called self-indexes.

As experimentally shown in [5,7], these self-indexes are very space-efficient
(close to best known compressors), and most of them are particularly fast in count-
ing the number of occurrences of the input pattern. Their bottleneck is represented
by Locate queries which ask for the text positions of the pattern occurrences. Con-
sequently they are roughly two and three orders of magnitude slower than what is
achievable with the classic Suffix Array data structure. Also the Extract operation,
which returns a decompressed portion of the indexed text, is quite slow compared
with other compression methods for sufficiently long substrings to be decompressed.
In addition, for Locate and Extract, these indexes need to store some extra informa-
tion which induce a trade-off between space and time efficiency: the larger this extra
space, the faster is the resulting index. At a high level, the extra information is ob-
tained by sampling entries of the suffix array at regular distance ss4. This parameter
governs the space/time trade-off, because on the one hand, it is guaranteed that each
occurrence of the searched pattern is located in at most sg4 — 1 steps; but on the other

hand, the space required is O(%) bits, where 7 is the length of the indexed text.

Even though the last years have seen a proliferation of different compressed full
text indexes [2,3,5,14-16], the above sampling strategy remains almost unchanged
since the very first proposal. This strategy implicitly assumes all text positions to have
uniform probability of being located or extracted. But uniform distributions are very
rare in practice, where we often observe (very) skewed distributions. For example, it
is very well-known that requests in IR or database systems are drawn accordingly to
power law or Zipfian distributions (e.g., see [19] and references therein).

Given these premises, in this paper we address the following question: Is it possi-
ble to build a distribution-aware compressed self-index which optimizes the expected
query-time by occupying a given space? Given the distribution of the subsequent
queries and a bound on the space occupancy, the goal is to find a sampling strat-
egy that induces the fixed space bound and minimizes the expected time required for
solving Locate/Extract queries drawn accordingly to the input distribution.

We solve this problem by exploiting a reduction to the problem of finding a mini-

mum weight K-link path in a properly designed Directed Acyclic Graph (DAG) (Sec-
tion 3). Interestingly enough, our solution provides a way to optimally select a set of

sampled positions that could be blindly used by many known compressed indexes
without changing their Locate/Extract algorithms.

In the experimental section (Section 4) we compare our optimal sampling strat-
egy against several other different strategies over two large datasets of HTML pages
and XML documents. The experiments have been performed by using RLCSA, which
is an implementation of Compressed Suffix Array (CSA). Although restricted to this
single index, our experiments will quantify some measures that are independent on
the particular implementation of compressed indexes in use, and thus can be adopted
to extrapolate conclusions that hold also for other compressed indexes. Overall we
show that our optimal sampling is from 4 to 36 times faster than the uniform sam-
pling. We also compare our optimal strategy against two heuristic approaches, show-
ing that ours is up to a factor 8 faster. One of them is the obvious strategy that “caches”
the most probably accessed positions. This heuristic results to be poor both in theory
and in practice due to the fact that it does not fully consider interdependencies among
sampled positions induced by Locate and Extract algorithms. Roughly speaking, in
many circumstances it is more convenient to sample a position whose access proba-
bility is not among the top, provided that it is followed by positions having sufficiently
high access probabilities. Discovering all these cases is a peculiarity of our optimal
solution. These considerations are explained in more details in Section 4, where we
quantify also the impact of the various heuristics by performing a significant set of
experiments.

2 Background and Related Work

The large space occupancy of (classical) full-text indexes, like Suffix Tree and Suf-
fix Array, has driven researchers to design the so-called compressed full-text in-
dexes. These indexes deploy algorithmic techniques and mathematical tools which
lie at the crossing point of three distinct fields— data compression, data structures
and databases (see e.g. [5,6,11,16]). Most of these indexes can be classified into
two families— namely, FM-indexes (shortly, FMI) and Compressed Suffix Arrays
(shortly, CSA)— and achieve efficient query times and space close to the one achiev-
able by widely used compressors, like gzip or bzip2. In theory, these indexes require
O(nH(T)) 4 o(nlog o) bits of space, where Hy(T') is the kth order empirical entropy
of a text T[1,n] drawn from an alphabet of size 6. This bound is much appealing
because it can be sublinear in nlog o, for highly compressible texts. We recall that
nH(T) is the classical Information-Theoretic lower bound to the storage complexity
of T by means of any k-th order compressor. In addition to being compressed, the
index is able to efficiently support the following three operations:

— Count(P][1, p]) which returns the number of occurrences of the pattern P in T';
— Locate(P[l1, p]) which returns the starting positions of all occurrences of P in T';
— Extract(l,r) which extracts the substring T'[1, r].

F L
abracadabra$ $ abracadabr a
bracadabra$a a $abracadab r
racadabra$ab a bra$abraca d
acadabra$abr a bracadabra $
cadabra$abra a cadabra$ab r
adabra$abrac - a dabra$abra c
dabra$abraca b ra$abracad a
abra$abracad b racadabra$ a
bra$abracada c adabra$abr a
ra$abracadab d abra$abrac a
a$abracadabr r a$abracada b
$abracadabra r acadabra$a b

Fig. 1 Example of Burrows-Wheeler transform for the string 7 = abracadabra$. The matrix on the right
has the rows sorted in lexicographic order. The output of the BWT is the column L = ard$rcaaaabb.

2.1 The FM-index family

These compressed indexes were introduced by Ferragina and Manzini in [6], who
devised a way to orchestrate in efficient time and space the relation that exists be-
tween the suffix array data structure and the Burrows-Wheeler Transform [4] (shortly,
BWT). The BWT is a reversible transformation that permutes the symbols of the in-
put string 7 into a new string L = BWT(T') which is easier to compress. It can be
computed in three steps (see Figure 1):

1. append a special symbol $ smaller than any other symbol of X to the end of T
(for the rest of this paper, we assume that T'[n] = $);

2. form a conceptual matrix .# (T) whose rows are the cyclic rotations of string 7$
in lexicographic order;

3. set string BWT(T) to be the last column L of the sorted matrix .# (T).

Every column of .#Z (T, including the transformed string L, is a permutation of
T'$. In particular the first column of .# (T), call it F, is obtained by lexicographically
sorting the symbols of T'$ (or, equally, the symbols of L). Note that the sorting of
the rows of .Z(T) is essentially equal to the sorting of the suffixes of T, because
of the presence of the special symbol $. This shows that: (1) symbols preceding the
same substring (context) in T are grouped together in L, and thus give rise to clusters
of nearly identical symbols; (2) there is an obvious relation between .# (T) and SA.
Property 1 is the key for devising modern data compressors, Property 2 is crucial
for designing compressed indexes and, additionally, suggests a way to compute the
BWT through the construction of the suffix array of 7: L[1] = T'[n — 1] and, for any
1 <i<n,setL[i] =T[SA[i]— 1], where T[0] = T[n] = $.

Burrows and Wheeler [4] devised two properties which are crucial for the invert-
ibility of the BWT:

(a) Since the rows in . (T) are cyclically rotated, L[i] precedes F[i] in the original
string 7.

(b) For any ¢ € X, the ¢-th occurrence of ¢ in F and the ¢-th occurrence of ¢ in L
correspond to the same symbol of the string 7.

As a result, the original text 7 can be obtained backwards from L by resorting to
a function LF that maps row indexes to row indexes, and is defined as follows [6]: if
the BWT maps T[j — 1] to L[i’] and T[] to L[i], then LF (i) = i’ (so LF implements
a sort of backward step over T). Now, since the first row of .# (T) is $7T, it can be
stated that T[n — 1] = L[1] and, in general, T [n —i] = LILF'(1)], fori=1,...,n— 1.

Starting from these basic properties, Ferragina and Manzini [6] proposed a way to
combine the compressibility of the BWT with the indexing power of the suffix array.
In particular, they have shown that searching operations over T can be reduced to
counting queries of single symbols in L, now called rank operations. For any symbol
¢ € X and position i in L, the query rank.(L, i) returns how many times the symbol ¢
appears in L[1,i].

An FM-index then consists of three key tools: a compressed representation of
BWT(T) that supports efficient rank queries, a small array C|c] which tells how many
symbols smaller than ¢ appear in T (this takes O(o logn) bits), and the so called back-
ward search algorithm which carefully orchestrates the former two data structures in
order to implement efficiently the Count query. More precisely, FMI searches the
pattern P[1, p] backwards in p steps, which eventually identify the interval of text
suffixes that are prefixed by P or, equivalently, the interval of rows of .# (T) that are
prefixed by P. This is done by maintaining, inductively fori = p,p—1,...,1, the in-
terval SA[sp;,ep;] that stores all text suffixes which are prefixed by the pattern suffix
P[i, p].

Initially i = p, and SA[spp,ep,] corresponds to all suffixes that are prefixed by
the last symbol P[p]. Hence we can set sp, = C[P[p]] + 1 and ep, = C[P[p] +1]. In
any later step, the algorithm has already computed SA[sp;1,ep;i+1]. Thus we can de-
rive the next interval SA[sp;, ep;] by setting sp; = C[P[i]] + rankp(; (L,spi+1 — 1) + 1
and ep; = C[P[i]] + rankpj;(L,epi+1). These two computations are actually map-
ping (via LF) the first and last occurrences (if any) of symbol P[i] in the substring
L[spit1,epit+1] to their corresponding occurrences in F. (Indeed, [6] showed that any
LF computation boils down to a rank query on L.) As a result, the backward-search
algorithm requires to solve 2(p — 1) rank queries on L = BWT(T) in order to find out
the (possibly empty) range SA[sp, ep] of text suffixes prefixed by P. The final interval
SA[spi1,ep1], if any, corresponds to all the suffixes that are prefixed by the pattern
P[1, p]. Thus, Count(P) can be solved by returning the value occ = ep; — sp; + L.
Since each of the above steps requires the computation of two rank queries over the
string L, O(p) ranks suffice to count the number of occurrences of any pattern P in
the indexed text T'.

There are various implementations of FMI, whose engineering choices mainly
differ in the way the rank-data structure built on BWT(T) is compressed and scales
with the alphabet size of the indexed text. The site Pizza&Chili' contains several
implementations for FMI that mainly boil down to the following trick: BWT(T) is
split into blocks (of equal or variable length) and values of rank, are precomputed for
all block beginnings and all symbols ¢ € X. A query rank.(L,) is solved by summing
up the answer available for the beginning of the block that contains L[i], plus the
rest of the occurrences of c in that block— they are obtained either by sequentially

! http://pizzachili.dcc.uchile.cl/ orhttp://pizzachili.di.unipi.it/.

decompressing the block or by using a proper compressed data structure built on
it (e.g. the Wavelet Tree [10]). The former approach favors compression, the latter
favors query speed.

2.2 The CSA family

These compressed indexes were introduced by Grossi and Vitter [11], who showed
how to compactly represent the suffix array SA in O(n) bits and still be able to access
any of its entries efficiently. Their solution is based on a function ¥, which is the
inverse of the function LF introduced for BWT:

. i’ such that SA['] = SA[i] + 1 (if SA[i] < n)
Pi) = { i such that SA['] = 1 (if SA[i] = n)

In other words, V(i) refers to the position in the suffix array of the text suffix
that follows SA[i] in T, namely, the text suffix which is one-symbol shorter. Grossi
and Vitter show how to hierarchically decompose the suffix array SA in order to ob-
tain its succinct representation that still permits performing searching operation on it.
In their construction they exploit the piecewise increasing property of ¥ — namely,
if T[SA[i]] = T[SA[i + 1]], then ¥ (i) < ¥(i+ 1) — to represent the suffix array in
O(nlogo) bits. The index must indeed keep the original text available in a non-
compressed form to explicitly compare symbols of the text and the pattern during
the searches.

This drawback was overcome by two subsequent improvements. The first one,
due to Sadakane [17], showed that the original text 7 can be replaced with a binary
vector F, such that F[i| = 1 iff the first symbol of the suffixes SA[i — 1] and SA[i]
differs. Since the suffixes in SA are lexicographically sorted, one can determine the
first symbol of any suffix in constant time by just executing a rank; query on F.> This
fact, combined with the retrieval of ¥’s values in constant time, allows to compare
any suffix with the searched pattern P[1, p] in O(p) time. Sadakane also provided an
improved representation for ¥ achieving nHy(T') bits. Theoretically, the best variant
of CSA is due to Grossi, Gupta and Vitter [10] who devised some further structural
properties of ¥ that allow to come close to nH(T) bits, still preserving the previous
time complexity.

In practice, one of the best implementations of the CSA is the one proposed by
Sadakane that actually does not use the hierarchical decomposition mentioned above,
but orchestrates a compact representation of the function ¥ together with the back-
ward search of the FMI family.

2.3 Locate and Extract queries

Even though in the last years we have seen a proliferation of different compressed full
text indexes [5,16], Locate and Extract strategies remain almost unchanged since

2 Binary vector F is essentially an encoding of array C in FMI.

Algorithm FMI-Locate(i) Algorithm CSA-Locate(i)

i it +0; i' it 0;

while SA[i'] is not explicitly stored do while SA[i'] is not explicitly stored do
i« LF({'); 7 w(i'):
tt+1; tt+1;

return SA[i'] + 1, return SA[i'] — t;

Fig. 2 Algorithms for locating the position in 7' of the row with index i in FMI and CSA.

the very first proposals. The indexes of both families need some extra information
about the underlying suffix array which remarkably impact on their space occupancy.
At a high level, the idea consists in storing the relation between text positions and
indexes in the suffix array of some sampled positions of the original text. Recall that
Locate(P) must be able to return the value SA[i] for any row i, while Extract(/,r)
extracts substring T'[[,7]. Locate is solved by starting from the i-th suffix and by
going backward or forward in the text by means of LF or ¥ functions. The procedure
stops whenever a sampled position is found. With a FMI, Extract(/,r) is solved by
starting from the sampled position closest to r, and by extracting the substring T'[1, r]
symbol by symbol by going backward in the text. The same strategy is used in CSA,
except that we proceed forward starting from the sampled position closest to /.

The Locate algorithm of FMI and (a practical implementation of) CSA is shown
in Fig. 2. This algorithm is used to obtain the position in the text of the suffix that
prefixes the i-th row of .#(T). As we said, the basic idea is to logically mark a
suitable set of rows of .# (T'), and keep for each of them their position in 7T (that is, we
store the corresponding SA values). Then, Locate(i) scans the text 7' backward using
the LF-mapping until a sampled row /' is found, and then reports SA[i’] +7, where ¢
is the number of backward steps used to find such /. CSA works by going forward
in the text by means of ¥ function. To compute the positions of all occurrences of
a pattern P, it is thus enough to call Locate(i) for each of the rows identified by the
Count(P) operation.

The sampling rate of .2 (T)’s rows, hereafter denoted by ss4, is a crucial param-
eter that trades space for query time. Most FMI and CSA implementations [5] sample
all the entries SA[i] that are a multiple of ss4. This guarantees that at most sgq — 1
steps of LF (or V) suffice for locating the text position of any occurrence. The extra
space required to store these positions is O(”iog") bits. In addition to these positions,
we need to store a data structure that is able to, given a row, tell us if the row is sam-
pled and, in that case, return its position in the text. An immediate solution resorts to
a bitmap B[1,n] whose i-th entry is 1 iff the i-th row is sampled. Then, all the sampled
SA[i]s are stored contiguously in suffix array order, so that if B[i] = 1 then one finds
the corresponding SA[i] at position rank; (B, i) in that contiguous storage. In this case
the extra space becomes "i‘;f” +n+ o(n) bits. There exist other more space efficient,
but probably less practical, solutions. For example, one could resort to Minimal Per-
fect Hash functions [12]: we create a perfect hash function for the set of marked rows
having their positions as satellite data. In this case the extra space is O("i‘;%) bits.

For our discussions it will be more convenient to sample text positions instead of
sampling rows of matrix .# (T). Since there is one-to-one correspondence between

A (T)’s rows and text’s positions, the problem of sampling positions is exactly the
same as the problem of sampling rows.

The algorithm for Extract(/,r) resorts to a similar approach. Each query takes
no more than (r — [+ss4) rank queries: at most ss4 — 1 rank queries are required to
reach r, starting from the closest sampled position, and r — [+ 1 queries are required
to extract the substring T'[/,] symbol by symbol.

The net result is that the space and time complexities of FMI and CSA depend on
the value sg4 and on the performance guaranteed by the data structure used to com-
pute rank queries on the BWT-string. The extra space required by the best (theoreti-
cal) data structures added to support Locate and Extract is bounded by O((nlogn)/ssa)
bits, which is o(n) whenever sg4 is large enough.

3 Optimal distribution-aware Locate and Extract

In this paper we assume that, for any position j of the input text 7', we know the prob-
ability Pr(j) that the position j will be located. We have the user defined parameter
ss4 that specifies the amount of space that we can use to store information regarding
sampled positions. Our aim is to identify an optimal set of sampled positions &?* of
size K = n/s4 that allows us to minimize the expected time required to solve Locate
queries. The expected time is given by

where c(j, 27*) is the time cost required to reach the first sampled position in £2*, say
i, that precedes j in T. We call this problem the distribution-aware optimal sampling
problem.

We observe that there could be several different ways to define c¢(j, 7). For ex-
ample, by setting ¢(j, &) = j— i, we are simply counting the number of backward
steps required to reach position i from j. This implies that we are implicitly assuming
that all the backward steps have the same cost (in terms of CPU usage). Or one could
refine the measure by setting c(j, &?) to be the sum of the real cost of the backward
steps required to reach position i from j. To simplify the discussion we will use the
first cost-type.

We notice that by simply changing the definition of the above cost function c(),
we can also address the problem of optimally sampling positions for Extract queries.
In this case Pr(j) is the probability of extracting a substring that ends at position j
and c(j, &) is the cost of reaching position j starting from the first sampled position
in & that follows ;.

The discussion above implicitly assumes that we are dealing with a FMI. As a
CSA scans the text forward in Locate, and starts from the closest sampled position
before the substring in Extract, the cost functions are used in the opposite way.

3.1 On finding a minimum weight K-link path over a DAG

The Distribution-aware Optimal Sampling Problem can be reduced to finding a mini-
mum weight K-link path [1,18] in a properly defined Directed Acyclic Graph (DAG)
%r. The graph @ has a vertex for each text position denoted vy, vs,...,v, plus a
dummy vertex v, that marks the end of the text. For any pair of positions i and j
such that 1 <i < j <n+1, we have an edge (v;,v;) whose cost w(i, j) is equal to
Z’ lPr([)- (I —1i). Intuitively, w(i, j) accounts for the part of expected cost for lo-
cating positions between i and j — 1, assuming that among them only 7 is a sampled
position.

Given the weighted DAG % and a parameter K, the problem of finding a mini-
mum weight K-link path asks to identify a path from v to v, consisting of exactly
K edges whose cost is the minimum among all such paths. Very efficient solutions for
this problem do exist in the literature [1, 18], whenever the DAG satisfies the so-called
concave Monge condition.

Definition 1 A weighted DAG ¥ satisfies the concave Monge condition if
w(i, j)+w(i+1,j+1) <w(i,j+1)+w(i+1,))
holds forall 1 <i+ 1< j<n.

The following Lemma shows that our DAG % satisfies the concave Monge con-
dition.

Lemma 1 The DAG % satisfies the concave Monge condition.

Proof For the cost function in %, we have that

w(i,j+1)— ZPr (=i — ZPr (I—=1)=Pr(j)- (j—1).

i<I<j i<l<j
Since the concave Monge condition can be rewritten as
w(i+1,j+1)—w(i+1,j) <w(i,j+1)—w(ij),
we have that
Wik 1, j 1) = wli 1,) = Pr(j) - (j—i— 1) S wli, j+ 1) —wi, j) = Pr(j) - (j—i).
O

The best known solutions for the computation of a minimum weight K-link path
on a DAG satisfying the concave Monge condition are summarized in the following
Theorem proved in [1].

Theorem 1 Given a DAG ¥ satisfying the concave Monge condition and whose
weights are integers, for any K, a minimum weight K-link path in 4 can be com-
puted in O(nlogU) time where U is the maximum absolute value of the edge weights.

Thus Theorem 1 provides a weakly polynomial algorithm for the problem which
suffices for most of the practical interesting cases. The probabilities for locating text
positions are typically derived from pattern frequencies in some query log. The lo-
cating probability of suffix T'[j,n] is set to be the normalized sum of the numbers of
occurrences for those patterns that match the suffix. If we skip the normalization, we
get integer frequencies f(j) for text positions, and hence integral weights for edges.
For completeness, we point out that there are also solutions whose time complexities
are independent of the weights. The current best result is the one presented in [18]
that is summarized in the following theorem.

Theorem 2 Given a DAG ¥ satisfying the concave Monge condition, a minimum
weight K-link path in 9 can be computed in O(n - 200V102K10g108n)) tie for any K =
Q(logn),

3.2 Practical computation of Optimal sampling

For our experiments, we identified the optimal sample of positions by resorting to the
idea behind the algorithm of Theorem 1 (see [1]). Namely, given the DAG %, and
an integral value ¢, let %k (g) denote the adjusted DAG with exactly the same sets of
vertices and edges as ¥, in which each edge (u,v) has weight w(u,v) + ¢. Observe
that the Monge Condition remains satisfied in any graph %z (g).

The algorithm uses binary search to find a value ¢*, such that the adjusted graph
“r(q*) has a minimum weight path from v to v, with K edges.> Such an inte-
gral value g* always exists and belongs to the interval [—3U,3U], where U is the
maximum absolute value of the weights in % [1]. Moreover, it can be proven that
a minimum weight path with K edges in %(¢*) is a minimum-weight K-link path
in the original graph. These considerations imply that the value of ¢* can be binary
searched by considering integral candidates in [—3U, 3U]. For each candidate g, we
compute the shortest and the longest minimum-weight paths in the graph %(q). If
these paths are respectively shorter than and longer than K, then a K-link path can
be built by appropriately combining these two paths. The computation of these paths
can be done in linear time over DAG satisfying the concave Monge condition (see
[9,21] and references therein). Thus, the overall time complexity of the algorithm is
O(nlogU).

Our implementation is O(logn) times slower in the worst case, as we resort to the
simpler O(nlogn)-time algorithm by Hirschberg and Larmore [13] for the latter task
of computing the shortest and longest paths in %(g). In practice, all factors in the
time bound O(nlogU logn) are quite pessimistic, and we have three main reasons for
expecting significantly better performance in practice.

First, the optimal sampling never contains text positions with frequency 0. Hence
we have to consider only nodes with positive frequencies, replacing the factor n with
the number of those positions.

Second, the value ¢* is typically much smaller than U, so using doubling search
instead of binary search replaces the logU factor with logg®*. Assuming that the

3 Recall that in our problem K is equal to 1/sg4.

11

largest (integer) frequency of a text position is F, then the weight of edge (i,i+ ¢) of
Gr(q) is at most FL(¢ —1)/2+ q. For ¢ = 2Fn?/K?, the weight of any K-link path
must be at least 2Fn” /K, while the weight of the K /2-link path visiting all nodes v;
with i divisible by 2n/K is at most 2Fn? /K. As larger ¢ leads to shorter minimum-
weight paths in %z(q), it must be that ¢* < 2Fn?/K>. On the other hand, if the fre-
quencies are relatively evenly distributed in the text, then U = w(1,n+ 1) = @(Fn?),
where F is the average frequency of querying a text position.

The third reason depends on the behavior of Hirschberg and Larmore’s algorithm.
Let W (v;) be the weight of a minimum-weight path from node v; to node v;. The
algorithm of Hirschberg and Larmore processes nodes form left to right. At each
step, it maintains a set of active nodes. A previously processed node v; is active,
if it is strictly better than any other processed node for reaching some node v; that
has not yet been processed. More formally, node v; is active, if there exists a non-
processed node v;, such that W (v;) +w(v;,v;) +q < W(vy) +w(vy,v;) + ¢, for any
node vy with i’ < i. When processing a new node, the algorithm uses several tests to
determine, which nodes remain active, and whether the current node is added to the
active nodes. The logn factor comes from using binary search to determine, should
the last active node remain active. Again, using doubling search can reduce the logn
factor in many practical cases.

In practice, optimal sampling requires similar or worse time as suffix array con-
struction (see Section 4), which is known to be the bottleneck in the construction of
compressed indexes. In our experiments, finding the optimal samples for the 813-
megabyte Dblp dataset with sample rate sg4 = 8 was 1.6 times faster than the fastest
known suffix array construction algorithm. With sg4 = 128 on the 1.24-gigabyte Html
Pages dataset, sampling becomes 17 times slower than suffix array construction. It
could be possible to improve the sampling speed with large sample rates by using a
more clever approach than doubling search for finding the value ¢*.

The algorithms discussed above assume constant time access to any required cost
w(-,-). However, since there are ® (n?) edges in %z, we cannot compute and store all
its weights beforehand. Instead, we have to be able to compute on-the-fly any required
cost in constant time. This is obtained by precomputing two arrays of length n+ 1.
The first array stores edge weights w(i,n+ 1) for all nodes i, while the second stores
the sums of frequencies F[i] = Y.}_; f(j) for all i. By using these arrays, we compute
edge weights as w(i,j) = w(i,n+ 1) —w(j,n+ 1) — (j —i)F[j]. While the weights
of long edges can exceed 2% — 1, storing the lowest 64 bits is enough in practice.
As the weight of a minimum weight path in %x(q*) is O(Fn*/K), the necessary
computations can be done in 64 bits, for realistic values of F, n, and K.

4 Experiments

For the experimental evaluation we implemented the following four different sam-
pling strategies.

— Uniform sampling is the classical strategy that samples every ssath position;
— Greedy sampling selects n/ss4 text positions with the largest access probability;

12

— HalfGreedy sampling uses first the Uniform sampling with rate 2sg4, and then
greedily selects n/(2ss4) of the remaining positions;

— Optimal sampling selects the optimal set of n/sg4 positions as described in the
previous section.

Before presenting experimental results on real datasets, it is worth comparing the
behavior of these strategies with their worst-case distributions with respect to our
Optimal strategy. We present these considerations just for Locate, since Extract gets
similar performance.

The worst distribution for Uniform is clearly the one in which there are n/sgs
positions with probability ss4 /n, while the others have chance 0 of being located.
Each of these positions precedes one of the positions that have been sampled by
Uniform. Thus, the expected time to solve Locate is O(sga). Clearly the Optimal
strategy achieves expected time equal to O(1) by simply sampling all the positions
having a positive probability.

Greedy is much worse. Consider the following distribution: each of the first n/sg4
positions of the text has probability ,;YSTAP while the last n/ss4 positions have proba-
bility %. Greedy wrongly selects the first n/ss4 positions leaving a large part of
the text unsampled. Thus its expected time is (n —n/ss4).* On this distribution
Optimal performs much better by sampling every other position with a positive prob-
ability. In this way, it achieves an expected time of O(1). As far as HalfGreedy is
concerned, we observe that its worst expected time is 2ss4, and this is obtained by
using a distribution which is a mixture of the ones used for Uniform and Greedy.

The distributions above are specifically designed to highlight the drawbacks of
the other strategies. In the remaining part of the section we experimentally compare
these strategies on real datasets and with real query distributions. As we will see,
even in this practical setting, Optimal provides a less impressive but yet significant
improvement. The different sampling strategies have been plugged in the compressed
index RLCSA [15]°

The implementation was written in C++ and compiled on g++ version 4.3.3. Ex-
periments were done on a system with 32 gigabytes of memory and two quad-core
Intel Xeon E5540 processors running at 2.53 GHz. Only one core was used for the
queries and for finding the optimal samples, while the suffix array construction al-
gorithms used all 8 cores. The system was running Ubuntu 10.04 with Linux kernel
2.6.32 (version 3.0.0 for sampling and construction algorithms).

We use two large datasets in the experiments. Html Pages is a 1.24-gigabyte
set of web pages obtained by downloading the first five Yahoo! search results for
all query terms with at least 100 occurrences in an MSN query log. Dblp contains
the DBLP Computer Science Bibliography® in XML format, for a total size of 813
megabytes. Both datasets were downloaded in March 2011 and are available at http:
//www.cs.helsinki.fi/group/suds/rlcsa/.

4 Notice that at least n — 2n/ss4 steps are required to locate each of the last 11/ss4 positions.

5 Available at http://www.cs.helsinki.fi/group/suds/rlcsa/. February 2012 version in-
cludes the code used in the experiments.

% http://dblp.uni-trier.de/db/

1,000,000 100,000,000
1,000,000 100,000,000

Number of positions
10,000

Number of positions
10,000

100
I
100
I

T

T
500,000 1,000,000 1,500,000 2,000,000 1 20,000 40,000 60,000 80,000

Frequency Frequency

Fig. 3 Distributions of position access frequencies for Htm1l Pages (left) and Dblp (right). Axis x reports
the access frequency while axis y tells us the number of positions that have that frequency. Positions with
access frequency equal to 0 are not reported.

The set of patterns to be searched for Html Pages was constructed by selecting
all the terms but stop words in a query log from an anonymous web search engine
with a total of about 439 million of queries. The final dataset consists of 29,175,101
distinct terms, and the frequency of a pattern was set to be the number of its occur-
rences in the query log. The set of patterns for Db1p was obtained by crawling entries
from www.mendeley. com corresponding to computer science papers in September
2011. From a total of 519,545 papers, we extracted a set of 877,592 terms, consisting
of all author names and all non-stop word terms appearing in paper titles. For each
pattern, we computed the sum of the number of users having a paper in their library
for those papers, where the term appears in the title or as an author. This sum was
then used as the frequency of the pattern.

From a set of patterns, we computed the access frequency of each position of the
text as follows. For position j, we set its frequency f(j) to be the sum of pattern
frequencies of those patterns that are prefixes of suffix T'[j,n]. The frequencies of all
positions (suffixes) are plotted in Figure 3: axis x reports the access frequency while
axis y tells us the number of positions that have that frequency. Positions with access
frequency equal to O are not reported.

For our experiments, we built RLCSA with sgq = {8,16,32,64 128} for both
datasets. Table 1 shows the time and space requirements of index construction. The
suffix array construction algorithm used in RLCSA is a prefix-doubling algorithm that
supports large alphabets [20]. As a comparison, we have included the results for suf-
fix array construction with 1ibdivsufsort 2.0.1 by Yuta Mori’ that is currently
considered to be the fastest implementation of a suffix array construction algorithm.
Both construction algorithms were parallelized with OpenMP, while sampling selec-
tion was done with a single thread. With low values of sg4, optimal sampling took
similar time as index construction, while larger values led to slower performance.
Space requirements of optimal sampling were 32n’ bytes, where »' is the number of

7 https://code.google.com/p/libdivsufsort/

Html Pages Dblp

Construction Sampling Construction Sampling
SSA Time Space | Time Space Time Space | Time Space
8 9.99 18.18 5.11 7.75 4.43 11.06 1.13 4.25
16 9.29 18.23 | 13.43 7.41 3.47 10.99 2.73 4.25
32 7.80 18.75 | 24.39 7.41 3.37 11.17 5.45 4.25
64 7.60 18.55 | 40.33 7.41 3.66 11.22 | 10.05 4.25
128 8.10 18.49 | 44.24 7.41 3.87 11.24 | 16.07 4.25
SA 2.57 6.21 - - 1.84 3.97 - -

Table 1 RLCSA construction and optimal sampling with different values of sg4. Times are in minutes
and memory usage in gigabytes. As a comparison, row SA includes plain suffix array construction with

libdivsufsort 2.0.1.

Html Pages Dblp
ssa | Standard Uniform Optimal | Standard Uniform Optimal
8 1948 1977 2293 948 967 1090
16 1309 1401 1678 552 611 787
32 988 1123 1370 354 440 597
64 827 989 1216 255 357 502
128 747 924 1139 205 317 454

Table 2 Index sizes in megabytes for RLCSA with various sample rates ss4 and sampling strategies. Greedy
and HalfGreedy strategies require the same space as Optimal, with the exception that HalfGreedy requires
1168 megabytes on Dblp with ss4 = 8. Standard is the same as Uniform, except that the bit vector used
to mark sampled rows is gap encoded, making it slower and smaller than the succinct bit vectors used
with other strategies. The counting structure of RLCSA without any samples takes 667 megabytes for Html
Pages and 156 megabytes for Dblp.

Html Pages Dblp
ssa | Uniform HalfGreedy = Greedy Optimal | Uniform HalfGreedy = Greedy Optimal
8 3.5 0.04 0.00002 0.00002 3.5 0.02 0 0
16 7.5 0.9 0.4 0.09 7.5 0.7 0.06 0.05
32 15.5 4.5 7.8 1.1 15.5 2.8 4.3 1.0
64 31.5 16.1 27.8 5.2 31.5 10.3 12.8 4.7
128 63.5 49.0 116.3 16.6 63.5 343 41.0 14.6

Table 3 Average number of LF or ¥ steps required to locate pattern occurrences depending on value of
ssa and sampling strategy in use.

text positions with a positive frequency. In practice, this became 5-6 times larger than
the text size which is an overhead similar to suffix array construction.

The size of the index with various sample rates ss4 and sampling strategies can be
seen in Table 2. Non-uniform samples require more space than uniform ones for two
main reasons: 1) we have to use an extra bit vector to mark the sampled text positions
for Extract; 2) sampled positions are no longer multiples of sg4 and, thus, they are
stored by using logn bits instead of log(n/ss4).

We searched for 10,000 patterns randomly selected accordingly to the previously
constructed query distributions, for a total of about 122 million located positions for
Html Pages, and about 84 million positions for Dblp. We also extracted snippets

Html Pages Dblp

100
L
100
L

Uniform
Optimal

Greedy o

bt

b{

Millions of occurrences / second
1
I

Millions of occurrences / second
1
I

0.1
0.1
L

0.01
L
0.01
L

Sample rate Sample rate

Millions of characters / second
0

Millions of characters / second
5 1.0
I I

T T T T T T
16 32 64 16 32 64

Extract length Extract length

Fig. 4 Experimental results for Html Pages (left) and Dblp (right). Locate performance (top) and Ex-
tract performance with sg4 = 128 (bottom).

of length 16, 32, and 64 from 1,000,000 randomly selected positions according to
position frequencies. In addition to measuring the number of located positions and
extracted characters per second (Figure 4), we also determined the average number
of LF /¥ steps required to find a sampled position (see Table 3). The results reported
in this table are interesting, because this measure is independent with respect to the
implementation details of the underlying compressed index.

All distribution-aware strategies performed similarly in Locate with lowest value
of 554 (i.e., ss4 = 8), being almost 22 times faster than Uniform. This behavior is due
to the fact that, for small values of sgy4, the distribution-aware strategies are able to
sample most of the positions with positive frequencies. However, just by moving to
ssa = 16, we observe that Optimal starts to become significantly better than Greedy
and HalfGreedy. The highest gain for Optimal with respect to Uniform is obtained for
ssa = 16 (factors 32.6 and 36.6 for Html Pages and Dblp, respectively) while the
lowest is obtained for sg4 = 128 (factors 4.1 and 4.6). The highest gain for Optimal
with respect to HalfGreedy is obtained for sg4 = 16 (factors 4.8 and 3.8) while the

16

highest gain with respect to Greedy is obtained for ss4 = 32 (factors 8.2 and 4.1). In
both cases, the lowest gain is with sg4 = 8 where their performances are very close.

It is worth to notice that Optimal with sg4 = 16 is able to locate more than 8.6
million occurrences per second. This can be compared with 500 million occurrences
per second located with Suffix Array. However, Suffix Array occupies about 4 times
more space than Optimal. In Extract, Optimal is roughly twice faster than the other
strategies. The gain is limited due to the fact that, in any case, Extract requires c steps
to extract ¢ symbols, after finding the substring to be extracted. Thus, the penalty from
a worse sampling strategy tends to be amortized by the number of extracted symbols
(as the value of ¢ becomes large).

A comment is in order at this point because the results presented in this paper
are significantly better than the ones reported in its conference version [8]. This is
mainly due to the new solution we adopted for marking the sampled rows. At each
step of this algorithm, it is required to check whether the current row index is sampled
or not. Whenever the average number of LF /' steps is close to 0, the cost of this
check becomes dominant. This check is usually performed by resorting to rank/select
queries over a bit vector. We replaced the old implementation with a new one which
is more stable in its performance, even if it may increase the compress size. The bit
vector is stored as is, requiring # bits of space. This allows us to determine, whether
the current row is sampled, with a single lookup. For the rank query used to determine
which sample we have found, we divide the bit vector into 256-bit blocks, and store
the number of 1-bits before each block in logn bits. Solving rank then requires the
retrieval of the stored value for the correct block, and counting the number of 1-bits
in the block up to the queried position via the 64-bit popcount function provided in
GCC. The function compiles either into a single instruction or a small subroutine,
depending on architecture.

5 Future work

In this paper we addressed the problem of designing distribution-aware compressed
full-text indexes when the distribution of subsequent queries is known beforehand.
The advantage at query time is between 4-36 times better than the classical approach
to Locate. In case of Extract the advantage is reduced to 2. We showed that an opti-
mal selection of positions can be computed efficiently in time (O(rnlogn)) and space
(O(n)). In practice, however, the task of finding the optimal samples may become
the dominant one. When the number of samples is large, this is similar to suffix ar-
ray construction, effectively doubling the time required for index construction. With
less samples, finding the optimal ones becomes slower — up to 17 times slower than
suffix array construction in our experiments. Improving the practical performance of
finding optimal or near-optimal samples remains an open problem which may involve
better algorithms, better implementations, and taking advantage of multiple proces-
sor cores. Another interesting open problem asks for designing distribution-aware
compressed indexes that are able to adapt themselves to an unknown distribution of
queries.

References

1.

9.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

A. Aggarwal, B. Schieber, and T. Tokuyama. Finding a minimum-weight k-link path graphs with the
concave monge property and applications. Discrete & Computational Geometry, 12:263-280, 1994.

. J. Barbay, T. Gagie, G. Navarro, and Y. Nekrich. Alphabet partitioning for compressed rank/select and

applications. In Proceedings of the 21st International Symposium on Algorithms and Computation,
Part II (ISAAC 2010), volume 6507 of LNCS, pages 315-326. Springer, 2010.

. D. Belazzougui and G. Navarro. Alphabet-independent compressed text indexing. In Proceedings

of the 19th Annual European Symposium on Algorithms (ESA 2011), volume 6942 of LNCS, pages
748-759. Springer, 2011.

. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm. Technical Report

124, Digital Equipment Corporation, 1994.

. P. Ferragina, R. Gonzdlez, G. Navarro, and R. Venturini. Compressed text indexes: From theory to

practice. ACM Journal of Experimental Algorithmics, 13, 2008.

. P. Ferragina and G. Manzini. Indexing compressed text. Journal of the ACM, 52(4):552-581, 2005.
. P. Ferragina and G. Manzini. On compressing the textual web. In Proceedings of the 3rd ACM

International Conference on Web Search and Data Mining (WSDM), pages 391-400, 2010.

. P. Ferragina, J. Sirén, and R. Venturini. Distribution-aware compressed full-text indexes. In Proc 19th

Annual European Symposium on Algorithms (ESA), pages 760-771, 2011.

R. Giancarlo. Dynamic programming: special cases. In Alberto Apostolico and Zvi Galil, editors,
Pattern Matching Algorithms, pages 201-236. Oxford Univ. Press, 2nd edition, 1997.

R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In Proceedings of
the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 841-850, 2003.

R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications to text indexing
and string matching. In Proceedings of the 32nd ACM Symposium on Theory of Computing (STOC),
pages 397-406, 2000.

T. Hagerup and T. Tholey. Efficient minimal perfect hashing in nearly minimal space. In Proceedings
of the 17th Symposium on Theoretical Aspects of Computer Science (STACS), pages 317-326, 2001.
D. S. Hirschberg and L. L. Larmore. The least weight subsequence problem. SIAM Journal on
Computing, 16(4):628-638, 1987.

J. Kérkkidinen and S. J. Puglisi. Fixed block compression boosting in FM-indexes. In Proceedings of
the 18th Symposium on String Processing and Information Retrieval (SPIRE 2011), volume 7024 of
LNCS, pages 174—184. Springer, 2011.

V. Mikinen, G. Navarro, Sirén J., and N. Vilimiki. Storage and retrieval of highly repetitive sequence
collections. Journal of Computational Biology, 17(3):281-308, 2010.

G. Navarro and V. Mikinen. Compressed full-text indexes. ACM Computing Surveys, 39(1), 2007.
K. Sadakane. New text indexing functionalities of the compressed suffix arrays. Journal of Algo-
rithms, 48(2):294-313, 2003.

B. Schieber. Computing a minimum weight k-link path in graphs with the concave monge property.
Journal of Algorithms, 29(2):204-222, 1998.

F. Silvestri. Mining query logs: Turning search usage data into knowledge. Foundations and Trends
in Information Retrieval, 4(1-2):1-174, 2010.

J. Sirén. Compressed Full-Text Indexes for Highly Repetitive Collections. PhD thesis, University of
Helsinki, 2012.

R. E. Wilber. The concave least-weight subsequence problem revisited. Journal of Algorithms,
9(3):418-425, 1988.

