
1

Randomized Packet Filtering through Specialized

Partitioning of Rulesets
Luca Abeni, Nicola Bonelli and Gregorio Procissi

Abstract—A key issue in high speed traffic processing is to
immediately detect potentially interesting packets. At very high
speed, this operation is particularly crucial as filtering packets
close to the wire relieves real applications from handling large
volumes of (uninteresting) data. This paper proposes a fast and
randomized approach to packet filtering based on partitioning
rule databases for their storage in fast and compact Bloom filters
that can be placed in fast cache memory. Database partitioning
is obtained by a specially tailored clustering algorithm and the
results show that even large rulesets can be divided into a limited
number of partitions and accommodated in reasonably small
Bloom filters.

Index Terms—Packet filtering, Bloom filters, Rules database,
Partition, Clustering

I. INTRODUCTION

THE huge amount of data exchanged in todays’ Internet,

and the fast and continuous proliferation of new services

and cyber attacks require data monitoring and processing

operations to be quickly responsive and to run on the live

data directly. In addition, new technologies – such as network

virtualization – arise similar requirements, as high speed

packet forwarding in huge and high–loaded data centers calls

for fast and efficient data handling and steering mechanisms.

In all the above cases, efficient data processing requires a

first data–reduction stage of filtering to immediately recognize

the packets of interest (namely, either the packets to be

collected in a monitoring/security application, or the packets

to be forwarded in a virtual network). Packet filtering is a very

special case of packet classification in which the results are

only yes (packet allowed) or no (packet is dropped). Packet

classification, instead, is a more complex task that involves

searching for the best matching rule in the database. As such,

it requires exact algorithms and very large data structures that

hardly fit into small memory caches.

Also, it is worth reminding that packet filtering is typically

used as a data–reduction stage for a second stage of processing

in which a second check on the data coming at a significantly

reduced rate can still be performed. Hence, a small – but con-

trolled – number of false positives can generally be tolerated

(false negatives, instead, must be avoided to refrain from losing

packets). This work exploits such a property by presenting a

novel randomized approach for packet filtering, which allows

to process packets from a high–speed link by trading few false

L. Abeni is with DISI, University of Trento, Via Sommarive 5, POVO
38123 Trento, Italy e-mail: luca.abeni@unitn.it,

N. Bonelli and G. Procissi are with the Department of Information Engi-
neering – University of Pisa, and CNIT, Via G. Caruso 16, 56122, Pisa, Italy
e-mail: nicola.bonelli@cnit.it, g.procissi@iet.unipi.it

positives in favour of high performance. To achieve the desired

trade–off between false positives and performance we compact

the state information in a Bloom filter [1]. The resulting small

memory footprint makes it possible to take advantage of small

but fast cache memories of modern computer architectures to

achieve high performance.

The use of Bloom filters for packet filtering is not new,

though not very widespread. Deri [2] proposed the use of

a Bloom filtering stage for fully specified rules with limited

support of wildcards. In [3] and [4], Bloom filters are used

as part of more complex tasks such as packet lookup and

classifications. Recently, [5] proposes an approach to packet

classification in which Bloom filters are used for all involved

header fields as well as to combine the results for tuple pruning

before accessing an off–chip hash table. In this paper, instead,

we aim at using a single Bloom filter to provide a full–fledged

technique for packet filtering for nearly general rule types (i.e.

with support of ranges of values of header fields).

II. FILTERING TAXONOMY

Packet filtering is the network function whose result is either

accepting or discarding packets according to a set of rules

(ruleset or rules database). Typically, rules specify the values

that packet header fields (or part of them) must match for the

packet to be accepted.

More formally, a header is modelled as a sequence of K
fields, where the ith field is composed by νi bits. A filtering

rule is a tuple of pairs Hi/pi:

R = (H1/p1, H2/p2, . . . , HK/pK) (1)

meaning that, for any packet to be checked, the first pi bits of

its ith header field are compared to the the first pi bits of Hi

(pi, 0 ≤ pi ≤ νi). If a match occurs for all 1 ≤ i ≤ K header

fields, then the packet is accepted. Otherwise it gets dropped.

The tuple of the bitwise prefix lengths of a rule R defines its

signature σ, namely:

σ(R) = (p1, p2, . . . , pK) (2)

Notice that, while a rule R is associated with one and only one

signature σ(R), multiple rules may have the same signature.

Ideally, a very effective approach to packet filtering would

then be to “expand” all of the rules in the database against

the limiting signature (ν1, ν2, . . . , νK) generating a list of all

the accepted header values, and to insert such values (the “ex-

panded rules”) into a single Bloom filter. If, on one hand, this

approach would achieve O(1) membership lookup complexity,

on the other hand the number of entries generated by such an

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80250773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

expansion would be far too large to be accommodated into a

reasonably small Bloom filter that can fit in a standard cache

memory. While the philosophy of this approach can be kept,

a more elaborated strategy for rules expansion is needed to

maintain low complexity and meet memory constraints.

Let the rules database R (ruleset):

R = {R1, R2, . . . RL} (3)

have cardinality L and let S = {σ1, σ2, . . . σP } be the set of

signatures that occur in the database. By denoting with Rσi

the subset of R containing rules with the same signature σi,

a natural partition of the set R is given by:

R =

P
⋃

i=1

Rσi
with Rσi

⋂

Rσj
= ∅ i 6= j = 1, 2, . . . , P (4)

Notice that the original ruleset R may contain redundant rules:

the partition (4) allows to reconstruct R exactly as it is,

including all redundancies possibly contained therein.

Let us now consider the set of rules Rσ associated with

signature σ. Each element of this set can be represented in

terms of any other signature ξ having all components bigger

than or equal to those of σ, at the cost of exploding the number

of rules by a factor ǫ(σ, ξ) (explosion factor) given by 2 to

the power of the Manhattan distance between the signatures

σ and ξ, that is:

ǫ(σ, ξ) =

K
∏

i=1

2

∣

∣

∣
p
(σ)
i

−p
(ξ)
i

∣

∣

∣

= 2
∑K

i=1

∣

∣

∣
p
(σ)
i

−p
(ξ)
i

∣

∣

∣

(5)

The cardinality of the “expanded” set will then be:

|Rξ| = |Rσ| ǫ(σ, ξ) (6)

Finally, we define minimum common signature (mcs) of

a set of M signatures Σ = {σ1, σ2, . . . σM} the minimum

signature having all the components bigger to or equal than

all the components of the signatures of Σ, i.e.:

mcs (Σ) =

(

max
1≤i≤M

p
(σi)
1 , . . . , max

1≤i≤M
p
(σi)
K

)

(7)

Figure 1 shows a 2D example with several subsets of sig-

natures referring to source and destination IP addresses, to-

gether with their associated minimum common signature on

the upper–right corner. Notice that, given a generic set of

signatures Σ, mcs (Σ) does not necessarily belong to Σ as

well.

More in general, any set of rules R partitioned according to

the set of signatures Σ that occur in R (i.e., R =
⋃

σ∈ΣRσ),

can be exploded according to the minimum common signature

of Σ. The resulting number of rules after explosion is:

∣

∣Rmcs(Σ)

∣

∣ =
∑

σ∈Σ

|Rσ| ǫ (σ,mcs (Σ)) (8)

III. THE FILTERING PROBLEM

As already explained, our goal is to fit the whole ruleset

D in a single standard Bloom filter small enough to fit in

the CPU cache (in order to allow fast accesses). To this end,

the ruleset is partitioned into a limited number N of subsets,

p1

p2

0

Set of 
signatures 

Prefix length

P
re

fi
x
 l
e
n
g
th

mcs (Σi)

Σi

Fig. 1. 2D example of database partition with maximum mask.

IP packet

Lookup

Bloom Filter

Signatures Cache memory

σ1

σ2

σN

1 0 0 1

H1 H2 HK

p 1 p 2 pK

101

h 1() h 2()

h 3()

h 3()

h 2()
h 1()

h 1()

h 2()

h 3()

Fig. 2. Signatures masking and Bloom filter lookup (k = 3 hash functions)

and all rules belonging to the same partition are expanded (if

needed) and expressed according to the minimum common

signature of the set of signatures associated with the partition.

At the end of this process, N distinct subsets of rules are ready

to be inserted into the Bloom filter, with all rules belonging to

the same subset being expressed according to a single common

signature. Notice that rules are inserted in the Bloom filter in a

flat way, regardless of the subset they belong to (i.e. regardless

of their signature). Practically speaking, this only requires

the use of hash functions that accept variable length bitmaps

as arguments (as signatures from different subsets of rules

have different lengths). The role of subsets becomes crucial at

lookup time, instead. As graphically depicted in figure 2, upon

each packet arrival: i) its K header fields are progressively

masked according to the minimum common signatures of the

N partitions (i.e., subsets), and ii) the resulting K-uple is

checked in the Bloom filter until either a match occurs (in

this case the packet is forwarded to the next stage) or the end

of signatures is reached (the packet is filtered out).

Since the number of memory accesses performed by the

filtering mechanism is proportional to the number of partitions

N , the first goal of the proposed approach is to minimize

N . On the other side, decreasing N increases the number of

expanded rules and the size of the Bloom filter, with the risk of

preventing it to fit in the CPU cache. Therefore, the resulting

problem is a constrained minimization: find the minimum

value of N such that the memory footprint of the resulting

Bloom filter is smaller than the CPU cache size.

The problem of partitioning a set of signatures into a given

number of subsets is a typical problem of clustering. Hence,

the problem of partitioning the ruleset (and, in turn, the set

of signatures) can be translated into a problem of signature

clustering where the centroid of each cluster is set to the

cluster’s minimum common signature. In addition, each cluster



3

is associated with a cost given by the number of expanded

rules induced by the corresponding cluster centroid.

For a standard Bloom filter, given its size m, the number

k of hash functions used to index it, and the tolerated false

positive probability f , it is well known [6] that the number

nmax of elements that can be accommodated is:

nmax = −
(m

k

)

log
(

1− f1/k
)

(9)

Thus, the total number of expanded rules (that is, the sum

of the costs of all clusters) must not exceed nmax (the cost

threshold).

Function HyperMerge(points, cost threshold)

n← 0;

repeat

n← n+ 1;

partitions← do partitioning(points, n);
cost← compute cost(partitions);

until cost ≤ cost threshold;

return partitions;

This constrained minimization problem can be solved by

using the HyperMerge algorithm, an iterative signature-aware

algorithm that receives the set of signatures Σ (modelled as

a set of n-dimensional points) and the cost threshold nmax

as inputs, and produces the partition {Pi} as output. The

algorithm tries to group the n-dimensional points (representing

the signatures) in an increasing number N of partitions, by

using the do_partitioning() function until the cost is

smaller than the threshold nmax.

IV. THE PARTITIONING ALGORITHM

While HyperMerge may rely on any kind of clustering al-

gorithm (the actual “content” of the do_partitioning()

function), the overall effectiveness of the algorithm (i.e., its

ability of finding smaller values of N for which the memory

constraint is respected) depends on the adopted clustering

algorithm. Although a generic clustering algorithm (for ex-

ample, K-Means [7]) can be used for partitioning, a novel and

specialized K-Centroid type algorithm, named MinExp, has

been developed. MinExp uses the minimum common signature

of a partition as a centroid and the explosion factor (5) as a

distance measure.

Function MinExpPartitioning describes this greedy

optimization algorithm that starts from a random distribution

of the points in N partitions and iteratively checks if the total

cost can be reduced by moving a point to a different partition.

When no point can be further moved, the algorithm stops.

Since MinExp is a greedy algorithm (at each step it performs

a locally optimal move), it is not guaranteed to find an absolute

minimum (but only a local minimum). As a consequence, the

initialization step is very important and heavily affects the final

result. In particular, if partitions are initialized by using the

K-Means algorithm (i.e., starting from a random distribution

of the points in the partitions, then running K-Means, and

then running MinExp on the resulting partitions) the final

Function MinExpPartitioning(points, n)

repeat

update centroids; moved← false;

foreach p in points do

oc = compute cost(points, partitions);
old partiton← partition(p);
new partition← partiton(p);
foreach partition in partitions do

move p to partition; update centroids;

nc = compute cost(points, partitions);
if nc < oc then

oc← nc; new partition← partition;

if old partition 6= new partition then

moved← true;

until moved == false;

return partitions;

TABLE I
PERFORMANCE OF K-MEANS, MINEXP, AND K-MINEXP.

Avg Std Dev 99% conf Size

K-Means 11.800000 2.111871 3.651425
MinExp 9.700000 0.842615 1.456881 100
K-MinExp 8.300000 0.842615 1.456881

K-Means 27.500000 5.500000 9.509500
MinExp 31.800000 4.237924 7.327371 500
K-MinExp 14.050000 0.864581 1.494860

K-Means 42.600000 6.583312 11.382547
MinExp 56.150000 6.373971 11.020595 1000
K-MinExp 18.150000 1.194780 2.065775

number of clusters is significantly reduced (see Section V)

and the execution time greatly decreases. In the following,

the combined use of K-Means (for initialization) and MinExp

algorithms is referred to as K-MinExp.

V. PERFORMANCE EVALUATION

The performance of HyperMerge has been evaluated by

comparing the clustering algorithm K-MinExp to both K-

Means and MinExp alone. Remember that the number of

memory accesses used for filtering is proportional to N , hence

N can be used as a performance metric. We assumed an 8 MB

Bloom filter (a common CPU cache size in todays’ commodity

architectures) equipped with k = 4 hash functions that, by

equation (9), can handle around 1.77 Millions rules with false

probability of 10−4.

In a first set of experiments, the performance of the three

algorithms has been compared by using different rulesets

randomly generated by ClasshBench [8]. To assess scalability,

different kinds of rulesets (ranging from 100 rules to 1000
rules) have been generated, and HyperMerge has been used

to partition the rules and obtain the minimum number of

generated partitions. Each experiment has been repeated 20
times (using 20 different random rulesets for each size). Table I

shows the results obtained for sets of 100, 500, and 1000
rules. While it is quite evident that K-MinExp always out-



4

 10

 20

 30

 40

 50

 60

 70

 0  1  2  3  4  5  6  7  8

M
in

im
u

m
 n

u
m

b
e

r 
o

f 
p

a
rt

it
io

n
s
 N

Cost Threshold (millions of expanded rules)

K-Means
K-MinExp

Fig. 3. Performance of K-Means vs K-MinExp as a function of the cost
threshold nmax.

performs MinExp and K-Means, the results of the comparison

between MinExp and K-Means are less obvious: for smaller

rulesets (100 rules) MinExp performs consistently better than

K-Means, but for larger sets K-Means often outperforms

MinExp (although in some cases MinExp performs better

than K-Means). These results indicate that without a proper

initialization MinExp does not scale well with the ruleset size.

However, when K-Means is used to initialize MinExp the

resulting algorithm (K-MinExp) performs very well and scales

properly.

In the next set of experiments, the impact of the cost

threshold (used to stop the HyperMerge algorithm - see the

until condition in Algorithm HyperMerge) is evaluated.

Figure 3 compares the performance of K-Means and K-

MinExp (in terms of minimum number of partitions generated

by HyperMerge) for different values of thresholds. Each

experiment is based on a ruleset of size 1000 (1000 rules

randomly generated with ClasshBench) and has been repeated

100 times (by generating 100 rulesets per experiment). The

figure plots the mean and the standard deviation on the 100
runs. Again, note that K-MinExp constantly outperforms K-

Means. Moreover, it is interesting to notice that K-Means

results are subject to noticeable variations from run to run

(the standard deviation is significant), while K-MinExp results

are pretty consistent (the standard deviation is always pretty

small).

Repeating the experiments multiple times with different

numbers of rules, it has been observed that the number N
of partitions generated by K-MinExp is O(log(L)) (where L
is the ruleset size). Therefore, the number of memory accesses

of HyperMerge is O(log(L)). Comparing this result to well

known algorithms from literature (see [9], Table 8), it can be

seen that all the algorithms requiring a number of memory

accesses smaller than O(L) have a large memory footprint

(and their data structures do not fit in a CPU cache), while

the algorithms using data structures that can fit in the CPU

cache require a number of memory accesses that is at least

O(L). HyperMerge is therefore the only one providing a good

trade-off between time and space complexity.

After testing the performance of MinExp on synthetic

rulesets, some more realistic experiments have been performed

by considering real rulesets taken from [8]. In particular, 3
rulesets have been considered: FW, ACL, and IPC [8]1. The

1The rulesets are downloadable from http://www.arl.wustl.edu/∼hs1/
PClassEval.html#3. Filter Sets.

TABLE II
NUMBER OF PARTITIONS OBTAINED USING REAL RULESETS.

FW ACL IPC

K-Means 16 14 189

MinExp 14 30 273

K-MinExp 11 14 40

results on the number of partitions obtained are shown in

Table II. Notice that once again K-MinExp provides the best

performance (for the ACL ruleset only K-Means compares

to it). Also notice that in the IPC case the performance

difference between K-MinExp and the other two algorithms

is very relevant.

VI. CONCLUSIONS AND FUTURE WORKS

The paper presents a randomized approach to fast packet

filtering for high speed data processing. The main idea behind

the proposed technique is to fit the whole filtering ruleset in a

single Bloom filter for fast lookup upon a proper partitioning

of the set. The results prove that even large rule databases

(with different statistical properties) can be accommodated in

a reasonably small Bloom filter which fits in the CPU cache

while achieving O(logL) time complexity. The types of rules

here addressed include any kind of header values. Hence, we

plan to extended the presented approach to include the basic

rules used in Openflow lookup operations.

ACKNOWLEDGMENT

This work was partially supported by the Italian Ministry

of University and Research funded projects SFINGI and

GreenNet.

REFERENCES

[1] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, July 1970.

[2] L. Deri, “High-speed dynamic packet filtering,” J. Netw. Syst.

Manage., vol. 15, no. 3, pp. 401–415, Sep. 2007. [Online]. Available:
http://dx.doi.org/10.1007/s10922-007-9070-0

[3] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest
prefix matching using bloom filters,” in Proceedings of the 2003

conference on Applications, technologies, architectures, and protocols

for computer communications, ser. SIGCOMM ’03. New York,
NY, USA: ACM, 2003, pp. 201–212. [Online]. Available: http:
//doi.acm.org/10.1145/863955.863979

[4] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood, “Fast packet
classification using bloom filters,” in Proceedings of the 2006 ACM/IEEE

symposium on Architecture for networking and communications systems,
ser. ANCS ’06. New York, NY, USA: ACM, 2006, pp. 61–70. [Online].
Available: http://doi.acm.org/10.1145/1185347.1185356

[5] H. Lim and S. Y. Kim, “Tuple pruning using bloom filters for packet
classification,” IEEE Micro, vol. 30, no. 3, pp. 48–59, 2010.

[6] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scalable
wide-area web cache sharing protocol,” SIGCOMM Comput. Commun.

Rev., vol. 28, no. 4, pp. 254–265, 1998.
[7] E. W. Forgy, “Cluster analysis of multivariate data: efficiency vs inter-

pretability of classifications,” Biometrics, vol. 21, pp. 768–769, 1965.
[8] D. Taylor and J. Turner, “Classbench: A packet classification benchmark,”

Networking, IEEE/ACM Transactions on, vol. 15, no. 3, pp. 499–511, june
2007.

[9] P. Gupta and N. McKeown, “Algorithms for packet classification,”
Netwrk. Mag. of Global Internetwkg., vol. 15, no. 2, pp. 24–32, Mar.
2001. [Online]. Available: http://dx.doi.org/10.1109/65.912717


