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Abstract 
 
The spatial distribution of a population represents an important in sampling designs where that use the 
network of the contiguities between units as auxiliary information in the frame. Its use is increased in the 
last decades as the GIS and GPS technologies made more and more cheap to add information regarding 
the exact or estimated position for each record in the frame. These data may represent a source of 
auxiliaries that can be helpful to design effective sampling strategies, which, assuming that the observed 
phenomenon is related with the spatial features of the population, could gather a considerable gain in their 
efficiency by a proper use of this particular information. This assumption is particularly relevant if we are 
dealing with not planned geographical domains or, in other terms, if we want that the design will be 
efficient for a future use within a small area estimation context. A method for selecting samples from a 
spatial finite population that are well spread over the population in every dimension should guarantee that 
the variability of the expected sampling ratio should be smaller than that obtained by using a simple 
random sampling. Some algorithms of sample selection are presented such that a set of units with higher 
within distance will be selected with higher probability than a set of nearby units. Some examples on real 
data show that the RMSE of the EBLUP estimates applied to samples selected with these network 
methods are lower than those obtained by using a classical solution as the Generalized Random 
Tessellation Stratified (GRTS). The proposed algorithm, even if in its nature it is computationally 
intensive, seems to be a feasible solution even when dealing with frames relevant to large finite network 
populations. 
 
Keywords: Fay-Herriot model. Generalized Random Tessellation Stratified design, 
Spatially balanced samples. 
 
1. Introduction 
 
The importance of selecting samples of statistical units taking into account their 
geographical position is now more than ever recognized in the measuring process of 
several phenomena. In fact the statistical units themselves are defined by using purely 
spatial criteria - as in most environmental studies - and, in addition, it is a recent 
common practice in many countries that the National Statistical Office geo-references 
the typical sampling frames of physical or administrative bodies not only according to 
the codes of a geographical nomenclature but also adding information regarding the 
exact, or estimated, position of each record. In particular, the estimation for small, not 
planned domains has received a lot of attention in recent years due to growing demand 
for reliable small area statistics that are needed for formulating policies and programs. 
Indirect estimates, i.e. model-based estimates, that “borrow strength” from some 
covariates are used because direct area-specific estimates may not be reliable due to 
small area-specific sample sizes. A sample, which is well spread over the whole study 
region should reduce the possibility that in a small and not planned domain just a few 
sampling units will be selected, increasing the variance of the estimates. Let 
U = 1,2,...N{ }  be a finite population recorded on a frame together with a set of k 

auxiliary variables X = x1,x2,...,x j ,...,xk{ }  and a set of h coordinates 

C = c1,c2,...,c j ,...,ch{ }  obtained by the geo-coding of each unit, where 

x l = x1l ,x2l ,...,xil ,...,xNl{ }  is the generic l-th auxiliary and cl = c1l ,c2l ,...,cil ,...,cNl{ }  is 
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the generic l-th coordinate. From C we can always derive, according to any distance 
definition, a matrix DU = dij ;i =1,...N , j =1,...,N{ }  which specifies how far are all the 

pairs of units in the population. To use some covariates we always assume that there is 
a certain degree of dependence between a survey variable y and the set X even if not 
specified in detail. With regard to the use of the set C, the widely used distance matrix 
as a synthesis of the spatial information emphasizes the importance of the spread of 
the sample over the study region as a feature which can be related to this dependence 
but also to some form of similarity between adjacent units. 
An intuitive way to produce samples that are well spread over the population, widely 
used by practitioners, is to stratify the units of the population on the basis of their 
location. The problems arising by adopting this strategy lie in the evidence that it does 
not have a direct and substantial impact on the second order inclusion probabilities, 
surely not within a given stratum, and that frequently it is not clear how to obtain a 
good partition of the study area. These drawbacks are in some way related and, for this 
reason, they are usually approached together by defining a maximal stratification, i.e. 
partitioning the study in as many strata as possible and selecting one or two units per 
stratum. The idea that is behind the Generalized Random Tessellation Stratified 
(GRTS) design (Stevens and Olsen, 2004) is to systematically select the units, map the 
two-dimensional population into one dimension while trying to preserve some multi-
dimensional order based on the use of Voronoi polygons, which are used to define an 
index of spatial balance. 
The paper is organized as follows. Section 2 briefly reviews the classical small area 
estimation model for area level covariates (Fay and Herriot, 1979) while in Section 3 a 
theoretical framework for the main choice regarding to what extent the spread or not 
of the sample can be or not a basis for an efficient design is discussed and, as a result 
of this background, we propose an algorithm to select samples according to a 
summary statistic of the within sample distance. Finally, Section 4 examines the 
performance of the suggested design when compared with other sampling designs that 
are evaluated in terms of mean squared errors (MSE) of the small area estimates. 

 
2. Area Level Models for Small Area Estimation 
 
A classical approach to small area estimation concerns the use of model-based 
methods involving random small area effects within an area level linking model. A 
basic area level model that uses area level covariates has two components: (a) Direct 
survey estimate iy  of the th−i  area mean iY , possibly transformed as ( )ii yg=θ̂ , 

is equal to the sum of the population value !i = g Y i( )  and the sampling error ie : 

!̂i =!i + ei,    i =1,...,m  (1), 
where the ie 's are assumed to be independent across areas with means 0 and known 

variances iψ . (b) A linking model connecting the iθ 's to area level covariates 

zi = z1i,..., zpi( )T  through a linear regression model: 

!i = zi
T! + vi,    i =1,...,m  (2), 

where the model errors iv  are assumed to be independent and identically distributed 

with mean 0 and variance 2
vσ . Combining (1) and (2), we get a mixed linear model 

!̂i = zi
T! + vi + ei,   i =1,...,m  (3). 

Using the data !̂i, zi( ),    i =1,...,m{ }  we can obtain estimates, *
iθ , of the realized 

values of iθ  from the model (2). A model-based estimate of iY  is then given by 



( )*1
ig θ− . The model involves both design-based random variables, ie , and model-

based random variables, iv . Empirical best linear unbiased prediction (EBLUP) is 

essential for the estimation of iY  under model (3). EBLUP method is applicable for 
mixed linear models and EBLUP estimates do not require normality assumption on the 
random errors iv  and ie . 

EBLUP estimate of iθ  is a composite estimate of the form (Rao, 2003): 

!i
* = "̂ i!̂i + 1! "̂ i( )ziT #̂  (4), 

where !̂ i = !̂ v
2 / !̂ v

2 +!i( )  and !̂  is the weighted least squares estimate of β  with 

weights ( ) 12ˆ −
ψ+σ iv  obtained by regressing iθ  on zi : !̂ = "̂ izizi

T
i!( )

"1
!̂ izi!ii!( )  

and 2ˆ vσ  is an estimate of the variance component 2
vσ . That is, the EBLUP estimate, 

*
iθ , is a weighted combination of the direct estimate, iθ̂ , and a regression synthetic 

estimate zi
T !̂  with weights iγ̂  and iγ− ˆ1 , respectively. The EBLUP estimate gives 

more weight to the direct estimate when the sampling variance, iψ , is small (or 2ˆ vσ  is 

large) and moves towards the regression synthetic estimate as iψ  increases (or 2ˆ vσ  
decreases). 
For the non-sampled areas, the EBLUP estimate is given by the regression synthetic 
estimate, zi

T !̂ , using the known covariates associated with the non-sampled areas. 

Under EBLUP we use an estimate of ( ) ( )2i
~~MSE iiE θ−θ=θ  as a measure of 

variability of iθ
~

, where the expectation is with respect to the model (5). 

Under model (4), the leading term of ( )i~MSE θ  is given by iiψγ  which shows that 
the EBLUP estimate can lead to large gains in efficiency over the direct estimate with 
variance iψ , when iγ  is small (or the model variance, 2

vσ , is small relative to the 

sampling variance, iψ ). The success of small area estimation, therefore, largely 

depends on getting good auxiliary data { }iz  that can lead to a small model variance 
relative to sampling variance. 
 
3. Spatial Network Sampling With Probability Proportional To Distance 
 
It can be seen from classical Yates-Grundy-Sen formulation of the HT variance that a 
gain in the efficiency of the HT estimator can be realized both by setting the first order 
inclusion probabilities in such a way that yi/πi is approximately constant (Särndal et 
al., 1992 p. 53) and/or by defining a design in which the πij are higher for any couple 
i,j that we expect to have an high distance between yi/πi and yj/πj. 
Being relative to the target, unobserved, variable y, this distance is unknown, thus this 
concern will remain as a purely theoretical topic unless we find an auxiliary 
information for it. When dealing with spatially distributed populations a promising 
candidate for this rule is the distance dij as, particularly in the spatial interpolation 
literature (Ripley, 1981; Cressie, 1991), it showed to be often highly related to the 
difference of two different outcomes of variables observed on a set of geo-referenced 
units. One of the essential tools used in this field is the variogram (or semi variogram) 
Vy(d) whose shape is a valuable information to choose on how and to what extent the 
difference in the observed values of y is or not a function of the distance between the 
statistical units. Before attempting to distribute the sample units as much as possible 



over the population an estimate of the variogram is needed from previous surveys or 
from variables related to y. There could be a lot of reasons why it will be appropriate 
to put some effort on selecting samples, which are spatially well distributed: 
1 -  y has a linear or monotone spatial trend; 
2 -  there is spatial autocorrelation, i.e. close units have data more similar than distant 

units; 
3 -  the y shows to follow zones of local stationarity of the mean and/or of the 

variance, i.e. a spatial stratification exists in observed phenomenon; 
4 -  the units of the population have a spatial pattern which can be clustered, i.e. the 

intensity of the units varies across the study region. 
If the phenomenon to be surveyed respects these conditions the problem is to use a 
design which will give higher probabilities to samples with higher variance and, thus, 
with higher distance. Such a design p(S) can be obtained by setting each 
p(s)=M(Ds)/ΣsM(Ds) proportional to some synthetic index M(Ds) of the matrix ds, 
observed within each possible sample s. The most common sample selection 
algorithms (for a review see Tillé, 2006) usually do not try to find a suitable choice for 
the probability p(S) of the sampling design, but its respect is at the most verified only 
a posteriori. Traat et al. (2004) review the sampling designs and the sampling 
selection issues from a distribution prospective. They start from the assumption that 
the probability function p(S) of the sampling design is known. Thus, drawing a sample 
s∈{0,1}N from a population U according to some sampling design means to generate 
an outcome from the multivariate design distribution p(s)=P(s=S) with Σ p(s)=1 (the 
sampling design is of fixed size thus p(s)=0 when  Σsi≠n). Each element of the design 
vector is a Bernoulli random variable and the joint distribution of the vector is a 
multivariate Bernoulli distribution whose moments of the first order are the πi. Traat et 
al. (2004) list different functional forms of the multivariate Bernoulli distribution and 
develop a general list-sequential method for drawing a sample from any sampling 
design. Markov Chain Monte Carlo (MCMC) methods and in particular Gibbs-
sampling can be used to generate samples from any high-dimensional distribution if 
the probability function is known (Robert and Casella 1999, Chapters 6 and 7). For 
example, Gibbs-sampling is an efficient algorithm to draw a fixed size sample from a 
multivariate Bernoulli design (Traat et al., 2004). This algorithm is an iterative 
procedure where each step consists in running a Markov-Chain in which given a 
configuration s(t) at the t-th iteration, another configuration, say s(t+1), is chosen 
according to an acceptance rule known as Metropolis criterion. The proposed 
algorithm can be summarized as follows. The procedure starts at iteration t=0, with an 
initial point s(0), randomly selected from {0,1}N according to a SRS with constant 
inclusion probabilities. In a generic iteration t the elements of s(t) are updated in the 
succeeding steps: 
1. select at random two units included and not included in the sample in the 

previous iteration, say i and j. Formally one respectively among the units 
within the sample, for which si

(t ) = 1 , and another among the units outside the 

sample for which s j
(t ) = 0 ; 

2. denote with *s(t )  the sample where the units in the position i and j exchange 
their status. Randomly decide whether or not to adopt *s(t ) , that is:  

s(t+1) =
*s(t )     with probability p =min 1,

M D*s( t+1)( )
M Ds( t+1)( )

!
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#
#
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s(t )      otherwise
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*
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)

 (5), 

3. repeat steps (1) and (2) mq times (in our application and simulations we used 
m and q constantly equal respectively to N and 10). 

It is known (Robert and Casella, 1999) that for a suitable choice of the parameters m 



and q this iterative procedure will generate a random outcome from a multivariate 
probability with p(S) proportional to the particular index used in (5). Estimation and 
specifically variance estimation can be a bit problematic for this sampling scheme as, 
unfortunately, explicit derivations of πi and πij for each unit and couples of units in the 
population could be prohibitive for most summary indexes of distance, thus the use of 
the HT estimator can be precluded. As we are dealing with a frame population and the 
sampling scheme does not depend on unknown characteristics of the population, we 
can generate as many independent replicates from the selection algorithm as needed 
and the πi and πij may be estimated on the basis of the proportion of times in which the 
units or the pairs of units are selected. These estimated inclusion probabilities can be 
adopted in the estimation process instead of their theoretical counterparts (Fattorini, 
2006 and 2009). Nevertheless an evident property of the suggested selection procedure 
is that, unless dij=0 for one or more couples {i,j}, every πij is strictly greater than 0 
because any (or at least one) sample s with si=sj=1 will have p(s)>0. This will always 
make possible a HT estimation of the variance avoiding a typical problem of spatially 
balanced sampling designs which for this reason are usually forced to propose some 
ad hoc variance estimation procedures (Stevens and Olsen, 2003). 
 
4. Simulation Studies 
 
To check the performance of the small area Fay Herriot estimator of the mean (4) 
under the spatial network sampling design we used data coming from the agricultural 
farm census conducted in the province of Florence in 2000. The data set records the 
spatial coordinates of 2251 farms and several variables related to crops. The province 
of Florence is divided into 8 agrarian regions, which are usually unplanned domains in 
Italian agricultural surveys. The population size of these agrarian regions ranges from 
114 to 683 farms. The target variable is the farm grape surface modeled by the 
following auxiliary variable: total farm surface, farm economic dimension and farm 
livestock. All of these variables have been recorded in 2000. Giving that we are 
evaluating the performance of the Fay-Herriot estimator, we used the small area mean 
of each auxiliary variable to model the HT estimator of the grape surface obtained 
under a specific sampling design in each agrarian region. 
We draw from the census data a simple random sample without replacement, a 
generalized random tessellation sample and a spatial network sample, each of 225 
observations. For each sample design we compute the HT estimator and the Fay-
Herriot estimator for the 8 small areas. We replicate this experiment 1000 times. Area 
sample size varies between simulations and between designs. Performances of the 
Fay-Herriot estimators under the three different designs are evaluated using the design 
effect (DEFF) and the coefficient of variation (CV) where the root mean squared error 
of the estimator has been obtained empirically from simulations. The design effect is 
evaluated in comparison of the Fay-Herriot estimator under simple random sample. 
Results are summarized over areas and simulation. In table 1 there is the mean and the 
median over areas of the DEFF and the CV. 
 

 DEFF  CV 
 SRS GRTS SNS  SRS GRTS SNS 

Mean !̂ i  1 1.04 0.80  0.53 0.53 0.46 

Median !̂ i  1 0.99 0.78  0.56 0.55 0.46 

Table 1. Mean and median over areas of the design effects (DEFF) and the coefficient 
of variation (CV) under the simple random sampling (SRS), the generalized random 
tessellation sampling (GRTS) and the spatial network sampling (SNS) 
 
As we can see from table 1 the spatial network sampling design increases the 



efficiency of about 20% and shows the smallest coefficients of variations. Further 
investigations are needed to better assess the performance of this design in small area 
estimation framework. 
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