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Abstract 

Distributed antennas are envisaged for LTE-

Advanced deployments in order to improve 

the coverage and increase the cell throughput. 

The latter in turn depends on how resources 

are allocated to the User Equipments (UEs) at 

the MAC layer. In this paper we discuss how 

to allocate resources to UEs so as to maximize 

the cell throughput, given that UEs may re-

ceive from several antennas simultaneously. 

We first show that the problem is both NP-

hard and APX-hard, i.e. no polynomial-time 

algorithm exists that approximates the opti-

mum within a constant factor. Hence, we pro-

pose and evaluate two polynomial-time heuris-

tics whose complexity is feasible for practical 

purposes. Our simulative analysis shows that, 

in practical scenarios, the two heuristics are 

highly accurate.  

 

Keywords: LTE, Distributed Antennas, Complexity, 

Spatial Multiplexing 

1 Introduction 

The Long Term Evolution (LTE) of the Universal Mo-

bile Telecommunication System (UMTS) [1]  is gaining 

progressive hold as an access network for Internet ser-

vices, thanks to its foreseen near-ubiquitous coverage 

and high bandwidth. In such a system, a central base 

station or eNodeB shares radio resources among a num-

ber of User Equipments (UEs), i.e. handheld devices, 

laptops or home gateways, using Orthogonal Frequency 

Division Multiplexing Access (OFDMA) in the down-

link. On each Transmission Time Interval (TTI), the 

eNodeB allocates a frame, which contains a finite num-

ber of resource blocks (RBs) to be shared among the 

UEs. A RB may carry a variable number of bits, depend-

ing on the modulation used to encode the RB, which is 

suggested by the Channel Quality Indicator (CQI) ad-

vertised by the UE.  

The new standard of LTE, called LTE-Advanced (LTE-

A) [2], allows several architectural enhancements. One 

of the most prominent is the Distributed Antenna System 

(DAS) deployment, in which the eNodeB acts as a hub 

for a number of physically distributed antennas (or Re-

mote Units, RU). RUs are linked to the eNodeB via 

high-speed wired connections, and they transmit one 

frame each. Resource allocation is however centralized, 

and decided by the eNodeB on each TTI. A UE may 

experience different channel quality with respect to dif-

ferent RUs. Using a spatial multiplexing transmission 

mode, a UE may receive independent transmissions 

from several RUs simultaneously on the same RB, 

which it can decode relying on spatial separation. Ac-

cordingly, in a DAS deployment, maximizing the cell 

throughput implies deciding not only to whom RBs 

should be given (e.g., to the UE with the highest CQI), 

but also through which RU(s) among those that can tar-

get a single UE at a given time.  

This paper tackles the problem of resource allocation at 

the MAC level in a LTE-A cell using DAS, in the down-

link direction. The objective is to allocate RBs to UEs so 

as to maximize the overall cell throughput. We first 

prove that a maximum-throughput allocation can be 

found in polynomial time if one assumes that the 

eNodeB has an infinite supply of data for each UE (full 

buffer assumption). That assumption, however, is unre-

alistic, since many applications have periodic (e.g., 

voice and video) or bursty (e.g., web) arrival patterns. 

Unfortunately, when finite buffers are considered, the 

problem of maximum-throughput allocation becomes 

NP-hard. Therefore, we propose polynomial-time heu-

ristics that approximate the optimal solution. We evalu-

ate their performance in the two dimensions of complex-

ity and accuracy, under several simulation scenarios. 

Our results show that the heuristics are near-optimal in 

practical deployments.  
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To the best of our knowledge, this is the first work that 

deals with these specific problem and settings. The 

problem of MAC-level resource allocation on LTE-A 

with DAS is relatively new, which justifies the paucity 

of the literature on the subject. Some related work exists 

on OFDM networks (e.g., [6]-[8]), where each antenna 

can serve a single UE. Under this hypothesis the prob-

lem can be solved optimally in polynomial time. How-

ever, in a LTE-A network a frame carries up to ten Kb 

hence allowing for multiple UEs in a single frame is 

essential. The optimal solutions computed for OFDM 

systems are therefore useless in practice.  

The rest of the paper is organized as follows: Section 2 

provides background on the relevant features of the LTE 

technology. Section 3 describes the system model and 

the hardness results. Our heuristics are presented in Sec-

tion 4, and evaluated in Section 5. Section 6 reviews the 

related work, and conclusions are reported in Section 7. 

2 LTE-Advanced with Distributed Anten-

nas 

In this section we describe the features of the LTE-A 

system that are more relevant to the downlink resource 

allocation problem at the MAC layer. Distributed An-

tenna Systems (DAS) can be employed in LTE-A to 

increase coverage and/or transmission rate. In a DAS 

deployment, the eNodeB is connected via a fiber inter-

face to a set of M  spatially distributed antennas or Re-

mote Units (RU), whose coverage may overlap, as 

shown in Fig. 1. Transmissions are arranged in time 

slots called Transmission Time Intervals, (TTIs), whose 

duration is 1ms. The eNodeB schedules transmissions 

by composing M  frames and transmitting each of them 

through one RU on each TTI. At the logical (MAC) 

level a frame, is a vector of (Virtual) Resource Blocks 

(RBs), each one of which is transmitted to one UE only 

(unless multi-user MIMO is employed, which is outside 

the scope of this paper) on a different frequency. Each 

RB carries a fixed number of symbols, which translate 

to different amounts of bits depending on the modula-

tion used on that RB. In general, more information-

dense modulations (e.g., 64QAM, yielding up to 6 use-

ful bits per symbol) are favored when a better channel to 

the UE is perceived. The quality of the wireless channel 

varies over time and is generally different from one UE 

to the other. For this reason, UEs report their perceived 

downlink channel states to the eNodeB scheduler as 

Channel Quality Indicators (CQIs) to the RUs the UE is 

associated to. The CQI is an index in a standard table, 

computed by the UE according to the measured Signal 

to Noise and Interference Ratio (SNRI), and influences 

the Transmission Block Size (TBS) that the eNodeB 

should use, i.e., the number of bits per RB. The UE may 

either report one CQI (called wideband CQI), describing 

the average channel conditions over the whole spectrum, 

or several per sub-band CQIs, each one describing the 

channel conditions in a fraction of the spectrum.  

A single UE may also receive transmissions from differ-

ent RUs on the same time-frequency resource, exploit-

ing a feature known as Spatial Multiplexing1. Those 

transmissions are in fact spatially separated, and can 

therefore be decoded at the UE with a sufficiently high 

probability. Spatial separation can be assumed when the 

distance between RUs (which is in the order of meters, 

or tens and hundreds thereof) is larger than half the 

wavelength of the LTE transmission, which is in the 

order of 15cm. This hypothesis is verified in practice. 

Furthermore, geographically remote RUs (e.g., deployed 

around the perimeter of a cell) can be selectively acti-

vated, and – when active – can target a subset of UEs 

(e.g., thanks to beamforming techniques, as allowed by 

TM 8 and 9, [20], [21]). In the current standard, UEs 

report CQIs for at most two codewords (i.e., independ-

ent spatial streams). Furthermore, the accuracy of CQI 

reporting depends on the UE reporting scheme. Depend-

ing on whether the reporting is periodic or aperiodic, the 

CQI for the second codeword may be reported fully or 

differentially with respect to the first one (on four bits), 

hence with reduced accuracy. 

In addition to the CQIs, a UE reports its Rank Indicator 

(RI) to the eNodeB. This number is the rank of the re-

ceiver channel matrix, and defines the maximum num-

ber of spatial layers that the UE can decode, as a rec-

ommendation to the eNodeB. This number, in turn, 

bounds from the above the number of different spatial 

streams that the UE may receive. The RI changes over 

time, depending on the channel conditions.  

 
1 Spatial Multiplexing is allowed in several transmission modes 

(TM) of the current LTE-A standard. The ones of interest for this 

paper are TM 8 and 9.  

https://doi.org/10.1016/j.comnet.2013.10.002
https://doi.org/10.1016/j.comnet.2013.10.002
https://doi.org/10.1016/j.comnet.2013.10.002
https://doi.org/10.1016/j.comnet.2013.10.002


Author’s version of: 

G. Accongiagioco, M. Andreozzi, D. Migliorini, G. Stea, "Throughput-optimal Resource Allocation in LTE-Advanced with 

Distributed Antennas" Elsevier Computer Networks, vol. 57(2013), pp. 3997-4009 (December 2013), DOI 

10.1016/j.comnet.2013.10.002 

 

UE traffic is physically buffered at the eNodeB. In order 

to build a schedule in a TTI, the eNodeB scheduler se-

lects which UEs are going to be targeted, through which 

and how many RU(s), using which TBS to guarantee 

reliable transmission, and employing how many RBs. 

These decisions are made, either sequentially or jointly, 

based on the reported CQIs, the RIs, the backlog and 

type of traffic of each UE, the QoS requirements, etc. 

The goal is to maximize the cell throughput. Of course, 

a schedule consisting of M frames has to be built in 1ms 

time, which limits the complexity of the decisions.  

Fiber

Air 

interface

eNodeB

RU MRU 1 RU j

UE NUE 1 UE i
ki

q1 … qi … qN
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Bj
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{

 

Fig. 1 – A DAS deployment 

3 System Model and Hardness results 

We focus on the downlink of an LTE-A cell, which is 

managed, at the MAC layer, by an eNodeB scheduling 

entity.  

We focus on a single cell, whose eNodeB scheduler co-

ordinates M  distributed RUs, hence builds M  frames. 

Each RU j  transmits a frame of jB  RBs (it is not un-

common to have ,jB B j=  ). The cell provides ser-

vice for N  UEs, and we denote with iq  the backlog 

(physically queued at the eNodeB) destined to UE i . 

With a little abuse of terminology, we will henceforth 

concisely define the latter “UE backlog”, and according-

ly we will call idle those UEs whose backlog is null. 

While we make no specific hypothesis on how the RUs 

are deployed, it is possible that each of them is only 

heard by a subset of UEs, and that a single UE does not 

hear all the RUs simultaneously, especially if they are 

deployed with partial overlapping coverage. Further-

more, we assume that RUs can selectively target some 

of the UEs within their coverage area, e.g. through 

beamforming. We assume that the eNodeB possesses the 

following information: 

- An estimate ,i jC  of the number of bits that can be 

transmitted in an RB by RU j  to UE i  (assumed to 

be the same for all RBs, hence coherent with wide-

band CQI reporting). We call ,i jC  the capacity, 

which may differ, for the same UE, from one RU to 

the other, e.g., because of different pathloss. 

- An estimate of the maximum number of simultane-

ous spatial streams that UE i  may receive, called 

ik . If only SISO transmissions are assumed, then it 

is 1ik =  for all UEs. 

The exact means through which these values are ob-

tained by the eNodeB are outside the scope of this pa-

per. Some of these are obviously obtained from UE re-

ports (e.g., the capacity from the CQI and the number of 

spatial streams from the RI). However, in practice UE 

reports are not necessarily complete, accurate, or availa-

ble on every TTI, and can be supplemented through oth-

er means, such as proprietary physical layer measure-

ments, data acquired at previous TTIs, default values, 

etc.  

We denote with 
1

N

ii
K k

=
=  the upper bound on the 

total number of receivable spatial streams. We denote 

with ,i jx  the number of RBs allocated by RU j  to UE 

i . Thus, , ,i j i jC x  is the overall number of bits that UE 

i  receives from RU j . Our objective is to compute, on 

each TTI, the solution to the Throughput-optimal Re-

source Allocation Problem (TORAP). Given the above 

information, we can formulate it as follows: 
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

 (1) 

The following modeling variables are introduced: 

- ,i jp  are the padding bits transmitted by antenna j
 

to UE i . Since RBs carry a fixed number of bits, 

partially occupied RBs have to be padded. Obvious-
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ly, padding bits cannot be counted in the objective 

function, otherwise an optimal solution might in-

clude RBs allocated to UEs with few useful bits and 

high capacities. 

- ,i jb  is a binary variable stating whether RU j  is 

actually serving UE  i  (i.e., eating away one of its 

spatial streams). 

The objective function is the sum of useful bits transmit-

ted by all RUs to all UEs, i.e., minus the padding. Con-

straint (i) ensures that each UE receives no more RBs 

than those needed to clear its backlog, whereas con-

straint (ii) bounds the padding from above, preventing 

the scheduler to allocate RBs entirely consisting of pad-

ding. Constraint (iii) enforces the limit on the number of 

RBs in each RU’s frame. Constraint (iv) limits the num-

ber of simultaneously received spatial streams to each 

UE’s maximum, whereas constraints (v-vi) force ,i jx  to 

be strictly positive if , 1i jb = , and null otherwise. B  is a 

constant such that jB B j  , so that (vi) is inactive 

when , 1i jb = .  

Problem (1) is a Mixed Integer-Linear Problem (MILP), 

with ( )O N M  variables and ( )O N M  constraints. 

MILPs are known to be NP-hard in general [13]. Hereaf-

ter we discuss hardness in more detail. At the end of this 

section, we discuss some generalizations of the models 

and results. 

3.1 Hardness results 

Hereafter, we prove theorems that define the hardness of 

the TORAP problem. We first show that polynomial-

time algorithms exist for the full-buffer case, i.e. when 

all backlogs 
iq  are so large that each UE can be allocat-

ed all the available frame space at every RU. Then, we 

show that the problem is instead NP-hard in the finite-

buffer case, i.e., when constraint (i) in (1) can actually 

be active. 

Theorem 1: Under the full-buffer hypothesis, i.e. if:   

 ,1
,

M

i i j jj
i q C B

=
   ,  (2) 

the optimal solution to the TORAP problem can be 

found in ( )3O K  operations. 

Proof: Inequality (2) ensures that each UE’s backlog is 

large enough to fill every frame, which implies that no 

padding is required, hence , 0 ,i jp i j=  . Furthermore, 

under (2), it is not restrictive to assume that each RU j  

serves only one UE. In fact, if the optimal solution is 

such that both UEs i  and h  are served by j , then it can 

only be that , ,i j h jC C= , i.e. a solution where j  serves 

only either of them is optimal as well (both i  and h ’s 

buffers being full enough). Hence the problem is to as-

sign one UE to each RU, subject to the stream constraint 

(iv). Assume for simplicity that 1ik i=   (we will re-

move this assumption later on in the proof). Then, the 

problem is equivalent to an assignment problem (AP) on 

a bipartite graph whose nodes are the N  UEs and the 

M  RUs respectively, and whose arcs are labeled with 

,i j jC B , i.e. the number of bits that frame j  would car-

ry if given to UE i . An AP can be solved in polynomial 

time via the Hungarian Algorithm (HA) [14]. HA 

matches elements of two idempotent sets X  and Y  so 

as to minimize the total cost, assuming that each match 

has a non-negative cost ,x yc . In our case, the two sets 

include N  UEs and M  RUs, with N M  in practical 

cases. The mismatch between the two cardinalities can 

be circumvented by adding N M−  dummy RUs. The 

matching costs can be computed as:  

 
max ,

,

max

i j

i j

C C j M
c

C otherwise

− 
= 


, (3) 

where 
maxC  is the maximum number of bits per RB al-

lowed by the standard. This way a higher capacity im-

plies a lower cost, and dummy RUs (i.e., those with 

j M ) are never chosen except as a last resort.  

The complexity of HA is the cube of the sets’ cardinali-

ty, hence ( )3O N . The result is a set of couples 

( ) , |1 ,S i j i j N=    describing the minimum-cost 

match, from which the relevant subset 

( ) ' , |S i j S j M=   , which only includes matches 

between UEs and real RUs, can be extracted in linear 

time. 

Assume now that 1ik i  . Then the problem can still 

be solved using HA. In fact, each UE can be selected for 

a match with a RU ik  independently. Thus, it is enough 

that we replace each UE i  with 
ik  identical copies of 

itself (thus obtaining a set of K  spatial streams), add 

K M−  dummy RUs to match the cardinality of the set 

of spatial streams, and compute the costs according to 

the obvious generalization of (3). Under these settings, 

HA computes the optimal match in ( )3O K  operations. 

□ 
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Still under the full-buffer hypothesis (2), an even sim-

pler solution exists if every UE can receive simultane-

ously from all the M  RUs, as shown by the following 

corollary. 

Corollary 2: Under the full-buffer hypothesis (2), if also 

 
ik M i   (4) 

then the optimal solution to the TORAP problem can be 

found in ( )O N M  operations. 

Proof: Under (4), the stream constraint (iv) is never ac-

tive, and the problem can be solved as follows: iterate 

on all the M  RUs: at each RU j , pick the highest ca-

pacity ,i jC  and allocate the whole frame to UE i . This 

is obviously a safe decision, since UE i  will still be able 

to exploit every other frame at subsequent iterations. 

The whole cycle completes in ( )O N M  operations.  

□ 

Although it may be regarded as useful to compute ca-

pacity bounds, the full-buffer hypothesis is unrealistic 

when dealing with real-life applications. VoIP traffic, 

for instance, has periodic arrivals, with large periods 

(e.g., 20 TTI), and small packets (e.g., 32 bytes). Com-

pressed real-time video is sent periodically with large 

inter-frame intervals (e.g., 40 TTI), and variable-sized 

packets. Finally, web-browsing traffic is intermittent. 

Unfortunately, under a more realistic finite-buffer hy-

pothesis, the TORAP problem becomes NP-hard, as 

proved by the following theorem:  

Theorem 3: With finite buffers, the TORAP problem is 

NP-hard. 

Proof: Consider the following simplified version of the 

TORAP problem: 1jB =  j . In this case,  , 0,1i jx  , 

which makes variables ,i jb  unnecessary. Assume also 

that ik M i  , so that constraint (iv) is not necessary. 

Furthermore, let us assume that padding can be counted 

as useful transmission. We show that computing an op-

timal assignment of ,i jx  under these hypotheses is NP-

hard. The problem can be rewritten as follows: 
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( )

  ( )
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,
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. .

1
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



 (5) 

Problem (5) is a Generalized Assignment Problem 

(GAP) [15], where N  agents (the UEs) are associated to 

M  tasks (the RUs). Each task can be solved by one 

agent only, although each agent can solve more than one 

task. The ,i jC  incidentally represent both the unitary 

profits (in the objective function) and the costs (within 

constraint (i)), and 
iq  is the overall agent budget. The 

GAP problem is NP-hard [15]. 

□ 

Now, if a simplified version of the TORAP is NP-hard, 

the TORAP cannot be any easier. Interestingly enough, 

the GAP is also APX-hard, meaning that no polynomial-

time  -approximation algorithm exists for the latter for 

any   [16]. In other words, heuristic solutions comput-

ed in polynomial time may be arbitrarily distant from 

the optimum in a worst case. We cannot afford non-

polynomial heuristics, since the number of UEs is easily 

in the hundreds and allocations are to be carried out 

within 1ms. Thus, we aim our search towards simple 

polynomial-time heuristics, fast enough to build a 

schedule in a TTI. Before doing that, we discuss some 

implications of the hardness results exposed so far. 

3.2 Discussion and generalizations 

First of all, we observe that the hardness result of Theo-

rem 3 is indeed more general. Consider for instance a 

different resource allocation problem, whose objective is 

to achieve a proportional fair (PF) allocation. Under PF, 

UEs are ranked by decreasing PF score. The latter 

measures the relative channel condition with respect to 

the recent history of the same UE. The PF score is equal 

to ,i j iC R , iR  being a constant that represents the his-

torical rate, usually obtained as an exponential average 

of the rates measured at the previous TTIs. Furthermore, 

the PF score with multiple antennas is the sum of the PF 

scores of single antennas. One can easily see that prob-

lem (5) does not change its structure (hence its hardness) 

if we substitute ,i j iC R  for ,i jC  as a unitary profit in the 
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objective function. Within this paper, we will focus on 

the maximum throughput objective, and we will devise 

heuristics that work well for that objective. It is highly 

likely that the same heuristics can be adapted, with little 

to no tuning, to the PF case as well.  

Furthermore, the models and algorithms presented in 

this paper, devised for the downlink direction, can be 

straightforwardly mapped to the uplink direction as well. 

In the uplink, the eNodeB knows an estimate of the 

backlog of the UEs via periodic and/or solicited Buffer 

Status Reports (BSRs) transmitted by the UEs. Instead of 

scheduling traffic, the eNodeB schedules uplink grants, 

telling each UE which RBs to use in the subsequent up-

link frame. The uplink equivalents of CQIs are estimat-

ed by the eNodeB via a sounding procedure [3]. Finally, 

spatial multiplexing techniques can also be used in the 

uplink. Therefore, the same information is available at 

the eNodeB to formulate an uplink equivalent of the 

TORAP, although that information is obtained through 

different means. Hence, the algorithms that we present 

in the next section can be adapted to the uplink direction 

as well, mutatis mutandis. 

4 Polynomial-time Heuristics 

Having shown that the TORAP problem is NP-hard and 

APX-hard, we now present two greedy polynomial-time 

heuristics that exhibit reasonably small complexity. In 

Section 5 we will evaluate their accuracy in several sce-

narios.  

4.1 Algorithm 1 

With reference to the pseudo-code of Fig. 2, Algorithm 

1 works as follows: we associate to each (UE, RU) pair 

an allowance ,i jA , i.e. the number of useful bits that fit 

in a single RB. Initially (function Init), it is 

 , ,min ,i j i j iA C q= , for all the pairs worth considering 

in the allocation. The algorithm (function Algorithm1) 

cyclically selects the largest allowance, be it ,i jA  (line 

12). For the ( ),i j  (UE, RU) pair, the minimum between 

,i i jq A    (i.e. all the RBs that UE i can receive from 

RU j without resorting to padding), and the number of 

available RBs jB  is computed (line 14) and allocated 

(line 15). Furthermore, UE i's backlog is adjusted to 

reflect the allocation (line 16) and the number of availa-

ble RBs for RU j is modified accordingly (line 17). Af-

ter this allocation (which always gives away at least one 

RB), if RU j has no leftover RBs, its allowances are ze-

roed (line 18), so that it cannot be selected again. When 

UE i is matched to a new RU, 
ik  is decreased (line 13), 

and when 
ik  reaches zero, all the ,i jA  for which 

, 0i jx =  (i.e., those related to RUs which have not been 

matched to i yet) are zeroed for consistency (line 20). 

Finally, when the UE buffer is not enough to fill one 

RB, i.e. ,i i jq A  (including when 0iq = ), we need to 

clip all the allowances of UE i to 
iq  (line 19), lest we 

count padding as useful transmissions (or, worse yet, 

keep considering idle UEs for allocation). The cycle 

ends when all allowances are null (line 11). When that 

happens, variables ,i jx  describe the final allocation. We 

show an execution of Algorithm 1 in a toy example.  

Example 1 

We start from the data in Table 1, obtained for a system 

with 3N = , 3M = , 2ik i=  , 3jB j=  . Each UE has 

enough backlog to fill up at least one RB of each RU, 

hence , ,i j i jA C= . The maximum allowance is 3,2 10A = , 

hence ( )3,2  is the first match. UE 3 may receive two 

spatial streams, and it has enough backlog to fill two 

RBs completely. Hence, two RBs from RU 2 are given 

away. UE 3 is left with 5 bytes worth of backlog. Hence 

3,2 5A  , all the allowances for UE 3 are capped to 5, 

and 
3 1k  . The new configuration is reported in Table 

2.1. The maximum allowance is now 1,2 2,1 9A A= = . We 

break the tie (arbitrarily) by selecting ( )1,2 , and allo-

cate one RB to UE 1. RU 2 is no more eligible; hence its 

column is zeroed as shown in Table 2.2. The algorithm 

now picks 2,1 9A =  as the maximum and allocates two 

RBs from RU 1 to UE 2. The allocation occupies one 

spatial stream from UE 2, and the new allowances for 

UE 2 are capped to the residual backlog of 2 bytes, as 

shown in Table 2.3. As a fourth step, we pick 1,1 8A = , 

allocate the leftover RB at RU 1 to UE 1, and zero both 

column 1 and row 1, since UE 1 cannot receive any 

more spatial streams and a match with RU 3 is thus im-

possible. This is shown in Table 2.4. The three remain-

ing RBs at RU 3 are assigned (in three subsequent itera-

tions) as follows: first, one goes at UE 3 (with no pad-

ding), and then the remaining two are given to UE 2 and 

UE 3 (in any order, given the tie), suitably padded. The 

final status, reported in Table 2.5, shows that 13 bytes 

remain buffered at UE 1. 
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1.  Function Init 

2.  i,j  

3.    if Bj>0 and qi>0 and ki>0 then 

4.     Ai,j = min{qi, Ci,j} 

5.    else  

6.     Ai,j =0 

7.  end function 

8.  

9.  Function Algorithm1 

10.   Init 

11.   while maxij{Ai,j}>0 do 

12.    (i,j)= argmaxij{Ai,j} 

13.    if xi,j=0 then ki=ki-1  

14.    b=min {qi/Ai,j, Bj} 

15.    xi,j = xi,j + b 

16.    qi = qi - b Ai,j 

17.    Bj = Bj – b 

18.    if Bj = 0 then i, Ai,j=0 

19.    if qi < Ai,j then j, Ai,j=min {Ai,j, qi} 

20.    if ki = 0 then j | xi,j=0, Ai,j=0 

21.  end function 

Fig. 2 – Pseudo-code for Algorithm 1. 
 

Table 1 – Initial data for the example  

,i jC  RU 1 RU 2 RU  3 
ik  

iq  

UE1 8 9 7 2 30 

UE2 9 2 6 2 20 

UE3 3 10 3 2 25 

jB  3 3 3   

 

Table 2 – Data for each iteration in Algorithm 1 

1. 

,i jA  RU 1 RU 2 RU 3 
ik  

iq  

UE1 8 9 7 2 30 

UE2 9 2 6 2 20 

UE3 3 5 3 1 5 

jB  3 1 3   
 

2. 

,i jA  RU 1 RU 2 RU 3 
ik  

iq  

UE1 8 0 7 1 21 

UE2 9 0 6 2 20 

UE3 3 0 3 1 5 

jB  3 0 3   
 

3. 

,i jA  RU 1 RU 2 RU 3 ik  iq  

UE1 8 0 7 1 21 

UE2 2 0 2 1 2 

UE3 3 0 3 1 5 

jB  1 0 3   
 
 
 

4. 

,i jA  RU 1 RU 2 RU 3 
ik  

iq  

UE1 0 0 0 0 13 

UE2 0 0 2 1 2 

UE3 0 0 3 1 5 

jB  0 0 3   
 

5. 

,i jA  RU 1 RU 2 RU 3 
ik  

iq  

UE1 0 0 0 0 13 

UE2 0 0 0 0 0 

UE3 0 0 0 0 0 

jB  0 0 0   
 

We now compute the complexity of Algorithm 1: 

Property 4: The complexity of Algorithm 1 is 

 ( ) ( ) 2 2 2min ,O N M O N M B   .  

Proof: the Init function takes ( )O N M  operations. 

As far as the Algorithm1 function is concerned, the 

number of iterations in the while cycle is bounded by 

both ( )O N M  and ( )O M B . In fact, on each itera-

tion, at least one of the conditions of the ifs stated in 

lines 18-20 becomes true. Thus the same pair ( ),i j  can 

be considered at most twice in the whole cycle before 

becoming null: a first time to allocate one or more RBs 

without padding, and possibly a second time to allocate 

one RB with padding. For the same reason, on each iter-

ation at least one RB is allocated, hence the number of 

iteration is also bounded by the overall number of avail-

able RBs, i.e. ( )O M B . Within each iteration, search-

ing for the max in the allowance matrix takes ( )O N M
 

operations. Modifying the allowances as specified in the 

ifs of lines 18-20 takes either ( )O N  or ( )O M  opera-

tions. Thus, the cost per iteration is ( )O N M , hence 

the thesis.  

□ 

Since sorting is required to find the maximum allow-

ance, the alert reader may wonder whether a sorted-list 

implementation may prove more efficient. The answer is 

the following: 

Property 5: An equivalent implementation of Algo-

rithm 1 that uses a max heap has a complexity equal to: 

 
( )( )

( ) ( )( )

2 log ,
min

log

O N M N M

O M M B N N M

    
 

  +    

  

The proof of Property 5 is reported in the Appendix, and 

it is based on rewriting Algorithm 1 employing i) a max 
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heap to sort the allowances in decreasing order, and ii) 

circular lists to link all the allowances related to the 

same UE and RU. 

□ 

The above results show that Algorithm 1 scales linearly 

with the number of UEs and the system bandwidth (i.e., 

the number of RBs). Algorithm 1 is thus scalable 

enough to be implemented on real equipment, where up 

to few hundreds UE have to be served by less than ten 

RU, each with up to a hundred RBs, and schedules must 

be computed within 1ms.  

4.2 Algorithm 2 

We now describe a different algorithm, which uses the 

Hungarian Algorithm (HA) as a subroutine. The inter-

ested reader is referred to [14] for a detailed description 

of the HA. For our purposes, it is sufficient to recall that 

it takes as an input a square cost matrix, and it outputs 

the minimum-cost match between each row and column 

in the cost matrix. In our case, we need to match spatial 

streams to RUs. Therefore, assuming that K M , we 

must prepare an input consisting of a K K  expanded 

cost matrix. In the pseudo-code of Fig. 3, this is done 

within function HA. The latter starts from the rectangular 

N M  allowance matrix, and computes costs ,i jc  as 

the complement to the maximum capacity of these al-

lowances (line 2). It then computes the expanded cost 

matrix by: i) replicating 1ik −  times each row of costs, 

(lines 3-9), also keeping track of which row refers to 

which UE via the UE(i) map, and ii) adding K M−  

dummy RUs, i.e. K M−  columns of maximum costs 

(line 10). The function then runs the HA on the expand-

ed cost matrix (line 11), so as to match each spatial 

stream with a RU, and returns the set of matches, purged 

of those pertaining to dummy RUs or non-eligible 

UEs/RUs (line 12), sorted by increasing RU index. 

The structure of function Algorithm2 is similar to that 

of Algorithm1. The main difference is that the former, 

thanks to the HA subroutine, computes many matches at 

the same iteration. More specifically, it computes the 

initial allowances ,i jA , using the same Init function as 

Algorithm 1, then runs the HA to compute a set of 

matches I  (line 18). For each match in I , it allocates as 

many RBs as possible (lines 23-27) without resorting to 

padding. If a UE/RU is not eligible anymore, or the 
ik  

constraint prevents any more matches (lines 28-30) the 

UE/RU is removed from the allocation by zeroing the 

related allowances. Note that, since set I  may contain 

more than one pair for the same UE, it is possible that a 

pair ( ),i j I  is considered when ,i i jq A . In this case, 

the pair is skipped (lines 20-22). The cycle iterates while 

there are positive allowances.  

We show how Algorithm 2 works on the example used 

for Algorithm 1.  

Example 2 

Starting from Table 1, HA returns the following match: 

( ) ( ) ( ) 1,3 , 2,1 , 3,2 . UE 1 transmits 3 RBs (thus deplet-

ing RU 3), UE 2 transmits 2 RB, and UE 3 transmits 2 

RBs. The allocation is reported in Table 3.1. A new iter-

ation is required, and the outcome of HA is 

( ) ( ) 1,1 , 3,2 . UEs 1 and 2 can only transmit one RB, 

thus depleting the two remaining RUs. The 2nd iteration 

is reported in Table 3.2. Algorithm 2 scores higher than 

Algorithm 1 in this example (three bytes remaining in 

the UE queues against 13), using fewer spatial streams 

(four against six). 
 

As far as complexity is concerned, we can state the fol-

lowing 

Property 6: Algorithm 2 has ( )3O M B K  complexity.  

Proof: function HA has ( )3O K  complexity [14], and 

computes ( )O M  matches. The cycles at lines 28-30 

may happen only once in the execution of an algorithm, 

hence their total cost is ( )O N  and ( )O M  respectively. 

At each iteration, at least one RB is allocated, hence the 

thesis.   □ 

Algorithm 2 is thus significantly more complex than 

Algorithm 1, as it scales with the cube of the number of 

streams (hence, of UEs). We remark that, under the full-

buffer hypothesis, it is also optimal, as discussed in Sec-

tion 3. 
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1. Function HA (input: NxM allowance matrix) 

2.   i,j, ci,j= Cmax - Ai,j 

3.   for i=1 to N UE(i)=i  

4.   set rowcount=N 

5.   for each iUEs | ki>1 

6.    for x = 1 to ki-1 

7.    rowcount = rowcount+1 

8.    UE(rowcount)=i    

9.    copy row i to row rowcount 

10.   add K-M columns of max costs to C 

11.   S = execute HA on matrix C 

12.   return S’={(UE(i),j)| (i,j)S and Ai,j>0} 

13. end function 

14.  

15. Function Algorithm2 

16.   Init 

17.   while maxij{Ai,j}>0 do 

18.    I=HA(allowances) 

19.    for all (i,j) in I 

20.     if qi < Ai,j then 

21.      set Ai,j = qi  

22.      continue for 

23.     if xi,j=0 then ki=ki-1  

24.     b=min {floor (qi/Ai,j), Bj} 

25.     xi,j = xi,j + b 

26.     qi = qi - b Ai,j 

27.     Bj = Bj – b 

28.      if Bj = 0 then i, Ai,j=0 

29.     if qi = 0 then j, Ai,j=0 

30.     if ki = 0 then j | xi,j = 0, Ai,j=0  

31. end function 

Fig. 3 – Pseudo-code for Algorithm 2  

 

Table 3 – Data for the iterations in Algorithm 2 

1. 

,i jA  RU 1 RU 2 RU 3 
ik  

iq  

UE1 8 9 0 1 9 

UE2 2 2 0 1 2 

UE3 3 5 0 1 5 

jB  1 1 0   
 

2. 

,i jA  RU 1 RU 2 RU 3 
ik  

iq  

UE1 0 0 0 0 1 

UE2 0 0 0 1 2 

UE3 0 0 0 1 0 

jB  0 0 0   

5 Performance Evaluation 

In this section, we evaluate the accuracy of Algorithm 1 

and 2, i.e. their distance to the optimum. The evaluation 

is carried out via simulation. The simulator, written in 

PHP and Python, uses CPLEX [18] to solve optimization 

problems. It can run in both snapshot mode, to compare 

the outcome of an execution of the heuristics to the opti-

mum, and time-based mode, by feeding back the output 

of each snapshot as input to the subsequent snapshot.  

The algorithms are initially evaluated in ideal condi-

tions. We assume fluid traffic and no data corruption. 

Furthermore, we assume that the UEs report fresh CQI 

values on every TTI, for each (UE, RU) couple. This 

allows us to have meaningful ,i jC  values for every cou-

ple (i,j). The above ideal scenario allows us to explore 

all the range of possibilities in the search for optimal 

solutions. Later on, we show that non-ideal reporting 

hardly affects the performance metrics at all. The CQI 

values reported by the UEs are shown in Table 4.  

 

Table 4 – Capacities associated to CQI indexes.  

CQI Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Capacities 

(Bytes/RB) 

0 3 3 6 11 15 20 25 36 39 50 63 72 80 93 93 

 

UEs may report their CQIs according to either:  

- a uniform distribution, which assumes no specific 

UE preference for a RU. In this case, CQI indexes 

are extracted uniformly in the interval  1;15 ; 

- a dominant-RU distribution. In this case, the CQIs 

indexes are partitioned into  1;10L =  and 

 11;15H = . The CQI for the dominant RU is cho-

sen uniformly in H , and the ones for non-

dominant RUs are selected uniformly in L .  

In time-based simulations, the next CQI is computed by 

adding a uniform random integer in [ 2; 2]− +  to the cur-

rent one.  

5.1 Snapshot simulations 

We define the optimality ratio R of an algorithm as its 

throughput normalized to the optimum. We first investi-

gate the impact of the various parameters (i.e., number 

of RUs, UEs, spatial streams, RBs, and offered load) on 

R.  

1) Uniform-CQI scenario 

We start with a symmetric case, with 20N = , 6M = , 

50jB =  j , 2ik =  i , and iq OL N= , OL  being 

the variable offered load. Fig. 4 shows the cell through-
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put (CT) as a function of OL for the optimum (left y ax-

is), and the value of R for Algorithm 1 and 2 (right y 

axis), as an average of 20 replicas. Confidence intervals 

are small, and they are omitted for the sake of readabil-

ity. The non-monotonic behavior of R can be explained 

as follows: when the offered load is low, the cell is light-

ly loaded and there is enough space for every UE, hence 

any strategy will yield maximum throughput. When the 

cell is saturated, we approach a full-buffer condition, 

where Algorithm 2 is optimal. In the middle zone, i.e., 

around the knee in the CT curve, the suboptimality of 

greedy decisions in both algorithms is more evident. 

Call 
minR  the minimum point in the R curve. To deter-

mine the accuracy of our algorithms, we study how sen-

sitive 
minR  is to the system parameters (figures 5 to 8).  

Fig. 5 shows that the number of RBs jB  is irrelevant, 

unless it is so small as to polarize the allocation. Fig. 6 

shows how 
minR  varies with the number of spatial 

streams 
ik  (assuming 10M =  for this test to allow a 

higher gamut). Interestingly, both algorithms have the 

same performance except with single-stream UEs. In 

that case, Algorithm 2 performs considerably better. 

This is due to the fact that Algorithm 2 exploits a single 

iteration of the HA, which computes matches globally, 

whereas Algorithm 1 computes them iteratively. We 

then vary the number of UEs, spreading the same of-

fered load among a different number of UEs. Fig. 7 

shows that both algorithms fare better as the number of 

UEs grows, which is expectable since a higher multi-

user diversity is known to improve allocations. The 

worst performance is achieved when the number of UEs 

is comparable to the number of RUs. Finally, we vary 

the number of RUs M  in Fig. 8. The test shows that 

minR  decreases with M , confirming the above intuition. 

Note, however, that M  is expected not to exceed few 

units.  

Summing up, in a configuration with uniform CQIs, the 

two algorithms do not exhibit significant performance 

discrepancies, except for limit cases (e.g., 1ik =  i ), 

and minR  is above 90% in all cases of practical signifi-

cance.  
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Fig. 4 – Cell throughput (left y axis) and optimality ratio 

(right y axis) vs. the offered load with uniform CQIs.  
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Fig. 5 – Cell throughput (left y axis) and 
minR  (right y 

axis) vs. number of RBs per RU. 
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Fig. 6 – Cell throughput (left y axis) and 
minR  (right y 

axis)  vs. number of spatial streams per UE. 
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axis)  vs. number of UEs. 
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2) Dominant-RU scenario 

We repeat the analysis in a more realistic scenario with 

one and three dominant RUs. Fig. 9 shows the carried 

load and R as a function of OL. We observe the same 

non-monotonic behavior as for the uniform case, with 

two noticeable differences: on one hand, the CT curve is 

not entirely flat after the knee, but instead keeps grow-

ing at a reduced slope for a wide range of offered loads. 

On the other hand, the width of the suboptimal region 

for R is reduced with respect to the uniform case. We 

analyze the behavior of 
minR  against the number of RUs. 

Fig. 10 confirms that the worst performance is achieved 

when the numbers of UEs and RUs are comparable.  

Summing up, the accuracy of both Algorithm 1 and 2 

appears to be excellent in both settings, and weakly in-

fluenced by the system parameters, at least within rea-

sonable ranges of variation of the latter.  
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Fig. 9 – Cell throughput (left y axis) and optimality ratio 

(right y axis) vs. offered load, with one and three domi-

nant RUs.  
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Fig. 10 – Cell throughput (left y axis) and 
minR  (right y 

axis)  vs. number of RUs, dominant RUs. 

 

3) Impact of limited feedback 

We now evaluate the accuracy of Algorithms 1 and 2 

when less information is available, due to limited feed-

back. Assume that, as it happens in practice, UEs only 

report two CQIs. Furthermore, the eNodeB assumes that 

, 0i jC =  for the couples (i,j) for which it does not re-

ceive CQI reports. This reduces the possible matches 

between UEs and RUs. Fig. 11 and Fig. 12 report the 

graphs of the optimal cell throughput (left y axis) and 

the optimality ratio R (right y axis) in the case of uni-

form CQIs (to be compared with Fig. 4) and one domi-

nant RU (to be compared with Fig. 9), respectively.  

Quite counter-intuitively, the optimal cell throughput is 

marginally affected, and only in the dominant-RU sce-

nario. This is because, since there are (on average) many 

UEs per RU, there is still a sufficient percentage of UEs 

with good channel conditions, hence each antenna may 

still achieve a high throughput by targeting these UEs. 

As far as the optimality of the two algorithms is con-

cerned, the figures show the following: for Algorithm 2, 

minR  is practically unaltered in both scenarios. For Algo-

rithm 1, there is instead a reduction in minR , slightly 

more evident in the dominant-RU scenario. However, in 

both cases, the 
minR  of Algorithm 1 is still well above 

90%.  

https://doi.org/10.1016/j.comnet.2013.10.002
https://doi.org/10.1016/j.comnet.2013.10.002


Author’s version of: 

G. Accongiagioco, M. Andreozzi, D. Migliorini, G. Stea, "Throughput-optimal Resource Allocation in LTE-Advanced with 

Distributed Antennas" Elsevier Computer Networks, vol. 57(2013), pp. 3997-4009 (December 2013), DOI 

10.1016/j.comnet.2013.10.002 

 

-5000

0

5000

1 10
4

1.5 10
4

2 10
4

2.5 10
4

3 10
4

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

0 5 10
4

1 10
5

1.5 10
5

2 10
5

OPT

ALG1/OPT

ALG2/OPT

C
el

l 
T

h
ro

u
g

h
p

u
t 

(k
B

p
s) O

p
tim

ality
 R

atio
 (R

)

Offered Load (kBps)  

Fig. 11 – Cell throughput (left y axis) and optimality 

ratio (right y axis)  vs. the offered load with uniform 

CQIs, when UEs report two CQIs (compare with Fig. 4).  
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Fig. 12 – Cell throughput (left y axis) and optimality 

ratio (right y axis) vs. the offered load with one domi-

nant RU, when UEs report two CQIs (compare with Fig. 

9).  

5.2 Time-based simulations 

We now compare Algorithm 1, i.e., the simplest one, to 

the optimum, using traffic generators. Each scenario is 

simulated 5 times for 50s. We assume one dominant RU 

per UE and a 
ik  equal to 1, 2 or 4 with 40%, 40% and 

20% probability. On each TTI, the dominant RU and the 

ik  may change with a 50% probability. Ideal reporting 

is assumed. Confidence intervals are not drawn when 

negligible. The traffic generators are the following: 

1) Downlink Web Traffic: We simulate web traffic with 

a Pareto distributed on/off process (on period length: 

Shape=1.4, Scale=0.15s; off period length: Shape=1.2, 

Scale=0.5s). Packet size is 2KB, and inter-arrival times 

during on periods are 5ms. We simulate 4 RUs with 25 

RBs per RU. Fig. 13 shows the average and 95th percen-

tile delay for up to 100 UEs, a scenario which is close to 

the saturation point. Algorithm 1's performance is very 

close to the optimum.  

2) Video Traffic: we use a Futurama trace [19] with 

mean rate=128KB/s and min/avg./max frame size equal 

to 95B/5KB/44KB, respectively. Fig. 14 shows the de-

lay for up to 55 UEs. Algorithm 1 is nearly optimal until 

48 UEs, and then exhibits significantly worse perfor-

mance. Note, however, that beyond 50 UEs the cell is 

clearly saturated.  

3) VoIP Traffic: This is an on/off traffic, whose dura-

tions are Weibull-distributed (on period: Shape=1.423s, 

Scale= 0.824s; off period: Shape=0.899s, Scale=1.089s). 

During on periods, 32B-packets are sent each 20ms. As 

the traffic is low-bandwidth, we simulate two RUs with 

three RBs per RU to keep the simulation time managea-

ble. Fig. 15 shows the delay for up to 750 UEs. We ob-

serve that Algorithm 1 has a slightly larger 95th delay 

percentile, whereas the average delay almost matches 

the optimum. 

4) Mixed Traffic: This configuration combines the three 

above traffics. We simulate 65% VoIP users, 22% video 

users, 13% Web users. Fig. 16 shows the 95th delay per-

centiles for up to 160 UEs, i.e. close to cell saturation. 

The figure shows that Algorithm 1 privileges web traffic 

to the detriment of video sources. Another interesting 

fact is that VoIP traffic is virtually unaffected by the 

simultaneous presence of competing traffic.  
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Fig. 13 – Delay vs. number of UEs, Web traffic 

10

100

1000

10
4

30 35 40 45 50 55

Avg delay, a1

95p delay, a1

Avg delay, opt

95p delay, opt

d
el

ay
 (

m
s)

#Users  

Fig. 14 – Delay vs. number of UEs, Video traffic 
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5.3 Throughput comparison for the two algorithms 

The accuracy of Algorithms 1 and 2 has been shown to 

be comparable. There are cases, however, when the lat-

ter outperforms the former, e.g. when the number of 

UEs and RUs is similar and most UEs admit one stream 

only. Fig. 17 shows the cell throughput ratio of the two 

algorithms against the percentage of single-stream and 

2-stream UEs. The scenario includes 20 full-buffer UEs 

and 10 RUs with 25 RBs each. The graph shows that a 

7% gap exists when only single-stream UEs are in the 

cell. 
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Fig. 17 – Throughput ratio between Algorithm 1 and 

Algorithm 2 as a function of the percentage of 2-stream 

UEs. 

6 Related Work 

The problem of MAC-level resource allocation on LTE-

A with DAS is relatively new, which justifies the pauci-

ty of the literature on the subject. The works that are 

most directly related to ours are [4] and [23]. In the for-

mer, authors deal with the problem of allocating trans-

mission power and logical subbands to downlink trans-

missions. A mixed integer-linear problem is formulated 

to compute a fair allocation, and heuristics are proposed 

to approximate the optimum. In the latter, instead, a lin-

ear optimization problem is proposed to match multiple 

RUs to UEs, hence assuming spatial multiplexing. How-

ever, the objectives and the models of [4] and [23] differ 

from ours. Neither take finite buffers into considera-

tions, and [4] constrains a UE to receive transmissions 

from one antenna only. In [5] an algorithm to match 

antennas to UEs in the uplink direction is described. The 

algorithm is amenable to both Multiple-Input, Multiple 

Output (MIMO) and DAS systems. However, no re-

source allocation is proposed therein. The problem of 

antenna selection is dealt with in [22], where an algo-

rithm for selecting the most appropriate antenna cluster 

is presented. Papers [6]-[8] deal with resource allocation 

under DAS in OFDM networks, i.e. where each antenna 

can serve a single UE, whereas [9] investigates capacity 

bounds in the uplink of DAS systems via link simula-

tions. Authors of [10] evaluate both single-cell and mul-

ticell DAS systems employing two transmission tech-

niques, Maximum Ratio Transmission (MRT) and Selec-

tion Transmission (ST), and make observations regard-

ing where to deploy antennas in a cell. In [11] authors 

evaluate – via link level simulations – the performance 

increase in DAS systems employing known transmission 

schemes, namely MRT and zero forcing beamforming 

(ZFB). Finally, [12] studies multicast transmissions of 

layered video in a DAS deployment, taking into account 

power consumption and minimum rate requirements. 

Authors formulate the problem as a mixed integer-non-

convex optimization problem, and propose a iterative 

heuristic solution. No assumption on finiteness of buff-

ers is mentioned in this work. 

As a last remark, we observe that, if we constrain one 

RU to serve only one UE, as in [4] and [6]-[8], then the 

optimal solution can be computed in polynomial time, 
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whether buffers are finite or not: it is in fact enough to 

set a cost for match ( ),i j  as: 

   , max ,min ,i j i j j ic C B C B q=  −  ,  

and run the Hungarian Algorithm accordingly. Obvious-

ly enough, since a whole frame normally accommodates 

much more traffic than a single UE’s backlog, the above 

constraint leads to wasting resources. 

7 Conclusions 

In this paper we have described how to schedule RBs in 

an LTE-A cell using distributed antennas, so as to 

achieve the maximum throughput. We have shown that 

– under the assumption of finite buffers – the problem is 

both NP-hard and APX-hard, meaning that no polyno-

mial-time heuristic can achieve bounded worst-case per-

formance. We have presented two polynomial-time 

greedy heuristics, i.e. Algorithm 1 and Algorithm 2, 

which compute high-throughput allocations at different 

complexity. Algorithm 1 is linear in the number of UEs, 

whereas Algorithm 2 is cubic. Our evaluation has shown 

that the accuracy of the two heuristics is similar and 

quasi-optimal in practical cases, from both a throughput 

and a delay standpoint. This means that an accurate re-

source allocation is affordable in a real-life deployment.  
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8 Appendix 

Proof of Property 5 

We rewrite Algorithm 1 using the following data struc-

tures: 

- A max heap, to store non-null allowances 

- N  circular lists 
iUL , that link up to M  non-null 

allowances related to UE i 

- M  circular lists 
iAL , that link up to N  non-null 

allowances related to antenna j 

With reference to Fig. 18, in the Init function, compu-

ting allowances (lines 2-6) takes ( )O N M  operations; 

building the circular lists takes ( )O N M  operations as 

well, and building a max heap of ( )O N M  allowances 

takes ( )( )logO N M N M   .  

In the Algorithm1 function, lines 15-20 have a constant 

cost. Furthermore, when these lines are executed, at 

least one of the conditions in the ifs of lines 21-25 be-

comes true. The extractions required in line 21 (resp., 22 

and 25) are performed at most once per RU (resp., UE) 

in a run. The entire cost of line 21 (resp., 22 and 25) in a 

run of the algorithm is thus ( )( )logO N M N M   .  

The maximum number of iterations of the while cycle is  

upper bounded by both ( )O N M  and ( )O M B , since 

each element in the max heap is selected at most twice 

before being removed, and at least one RB is allocated 

on each iteration. The cost of a reheapification cycle in 

line 24 is ( )( )logO M N M  . Therefore, the overall 

complexity grows as: 

 
( )( )

( ) ( )( )

2 log ,
min

log

O N M N M

O M M B N N M

    
 

  +    

,  

which is the thesis. 

□ 

 

 

1. Function Init 

2.   i,j  

3.    if Bj>0 and qi>0 and ki>0 then 

4.     Ai,j = min{qi, Ci,j} 

5.    else  

6.     Ai,j =0 

7.   i| Ai,j>0, link Ai,j in a circular list ULi 

8.   j| Ai,j>0, link Ai,j in a circular list ALj 

9.   i,j| Ai,j>0, sort Ai,j in max heap H 

10. end function 

11.  

12. Function Algorithm1 

13.   Init 

14.   while not_empty(H) do 

15.    (i,j) = top of max heap H 

16.    if xi,j=0 then ki=ki-1  

17.    b=min {qi/Ai,j, Bj} 

18.    xi,j = xi,j + b 

19.    qi = qi - b Ai,j 

20.    Bj = Bj – b 

21.    if Bj = 0 then iALj extract Ai,j  

22.    if qi = 0 then jULj extract Ai,j  

23.     else if qi<Ai,j then  

24.      jULj, set Ai,j=min{Ai,j,qi} and re-

heapify 

25.    if ki = 0 then jULj | xi,j=0, extract 

Ai,j  

26. end function 

Fig. 18 – Pseudo-code for Algorithm 1 using a max heap 

and circular lists. 
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