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Abstract 

The minimum zone tolerance is a non linear method to find a global solution to the roundness 

evaluation problem. Metaheuristics such as genetic algorithms, ant colony systems and particle 

swarm optimization concurrently process a set of solution candidates (chromosomes, ants, particles 

etc.) within a given search-space. Computation experiments carried out with an effective genetic 

algorithm have shown that the optimal sampling strategy providing sufficient accuracy at 

acceptable processing time represents a compromise between number of sample points and search-

space size. An estimate of the neighborhood of the centroid containing the minimum zone center is 

given. 
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1. Introduction 

The growing complexity of shapes of manufactured parts and assembly tasks and the increase of 

performance demand to mechanical products requires high-speed inspection. Evaluation of form 

errors of machined parts is fundamental in quality inspection to verify their conformance to the 

expected tolerances. Performance of methods have been reviewed in [1]. 
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Figure 1: MZ error EMZ. c1 and c2 are possible locations of the centers of the two concentric circles. 

∆r1 and ∆r2 are the differences in radii. If the minimal difference in radii ∆r2 is the EMZ, c2 is the MZ 

center. 

About here 

 

Form tolerance is evaluated with reference to a Euclidean geometric feature, i.e. a circle in the case 

of roundness (also known as circularity). Roundness is a typical geometric form to be inspected as 

well as other typical forms such as straightness, flatness and cylindricity. 

The most used criteria to establish the reference circle are: the least-squares method (LSQ), the 

maximum inscribed circle (MIC), the minimum circumscribed circle (MCC) and the minimum zone 

tolerance (MZT). 

The use of a particular data fitting method depends on the required application, e.g. MIC and MCC 

can be used when mating is involved. The LSQ is one of the methods used by Coordinate 

Measuring Machines (CMM). It is efficient in computation and can be used with a large number of 

measured points, but the roundness error determined is larger than those determined by other 

methods, such as the MZT. Therefore, good parts can be rejected resulting in an economic loss. The 

MZT meets the standard definition of the roundness error, as reported in ISO 1101 [2]. It 

determines two concentric circles that contain the roundness profile and such that the difference in 

radii is the least possible value. Figure 1 shows two pairs of concentric circles that include the 

sample points centered respectively at c1 and c2 and where ∆r1 and ∆r2 are their difference in radii. 

Once the MZ center is found, the minimum zone error can be considered as the roundness error. 

The MZT is a non linear problem and two approaches have been proposed in the literature: 

computational geometry techniques and solutions of a non linear optimization problem. The first 

approach is, in general, very computationally intensive, especially, when the number of data points 

is large. One of these methods is based on the Voronoi diagram [3]. The second approach is based 

on the minimization of the minimum zone error as a function of the MZ center, but the 

inconvenience is that this function has several local minima. Some examples are: the Chebyshev 

approximation [4], the simplex search / linear approximation [5] [6], the steepest descent algorithm 

[7], the particle swarm optimization (PSO) [8] [9], the simulated annealing (SA) [10], and genetic 

algorithms (GAs) [11] [12] [13] [14]. 

Xiong [15] develops a general mathematical theory, a model and an algorithm for different kinds of 

profiles including roundness where the linear programming method and exchange algorithm are 

used. As limaçon approximation is used to represent the circle, the optimality of the solution is 

however not guaranteed. 



A strategy based on geometric representation for minimum zone evaluation of circles and cylinders 

is proposed by Lai and Chen [16]. The strategy employs a non-linear transformation to convert a 

circle into a line and then uses a straightness evaluation schema to obtain minimum zone deviations 

for the feature concerned. This is an approximation strategy to minimum zone circles. 

M. Wang et al. [17] and Jywe et al. [18] present a generalized non-linear optimization procedure 

based on the developed necessary and sufficient conditions to evaluate roundness error. To meet the 

standards, the MZ reference circles should pass through at least four points of the sample points. 

This can occur in two cases: a) when three points lie on a circle and one point lies on the other 

circle (the 1-3 and the 3-1 criteria); b) when two points lie on each of the concentric circles (the 2-2 

criterion). In order to verify these conditions the computation time increases exponentially with the 

dataset size. Gadelmawla [19] uses a heuristic approach to drastically reduce the number of sample 

points used by the min-max 1-3, 3-1 and 2-2 criteria. 

Samuel and Shunmugam [20] establish a minimum zone limaçon based on computational geometry 

to evaluate roundness error; with geometric methods, global optima are found by exhaustively 

checking every local minimum candidate. Moroni and Petro [1] propose a technique to speed up the 

exhaustive generation of solutions (brute force algorithm), which starts with a single point and 

increases one sample point at each step in order to generate all the possible subsets of points, until 

the tolerance zone of a subset cover the whole dataset (essential subset). 

A mesh based method with starting center on the LSC, where the convergence depends on the 

number of mesh cross points, representing a compromise between accuracy and speed, is proposed 

by Xianqing et al. [21]. 

The strategy to equally-spaced points sampled on the roundness profile is generally adopted in the 

literature. Conversely, in previous works the authors developed a cross-validation method for small 

samples to assess the kind of manufacturing signature on the roundness profile in order to detect 

critical points such as peaks and valleys [22] [23]. They use a strategy where a next sampling 

increasing the points near these critical areas of the roundness profile. 

In [24], some investigations proved that the increase of the number of sample points is effective 

only up to a limit number. Recommended dataset sizes are given for different data fitting methods 

(LSQ, MIC, MCC, MZT) and for three different out-of-roundness types (oval, 3-lobing and 4-

lobing). Similar works are [25] and [26] in which substantially the same results are given. 

A sampling strategy depends on the optimal number of sample points and the optimum search-

space size for best estimation accuracy, particularly with datasets that involve thousands of sample 

points available by CMM scanning techniques. In this paper, the sampling strategy problem tailored 

for a fast genetic algorithm to solve the MZT problem is addressed. To achieve more general 



results, the sampling strategy used in this work can be defined as blind according to the 

classification in [27]. By sampling strategy not only the number and location of sample points on 

the roundness profile is addressed, but also their use by the data fitting algorithm [28]. 

Based on current experience, only few contributions are available in the literature regarding the 

sampling parameters, particularly with genetic algorithms. In [12] the search-space is a square of 

fixed 0.2 mm side, in [14] it is 5% of the circle diameter and center. In [11], the side is determined 

by the distance of the farthest point and the nearest point from the mean center. In [13] it is the 

rectangle circumscribed to the sample points. The optimal selection of the number of sample points 

and the search-space represent the main focus of current work. 

 

2. Genetic algorithms for the MZT problem 

To experimentally assess the sampling strategy with metaheuristics (such as genetic algorithms, ant 

colony systems, particle swarm optimization, taboo search etc.) a previously optimized genetic 

algorithm [14] has been selected. Genetic algorithms constitute a class of implicit parallel search 

methods especially suited for solving complex optimization or non-linear problems. They are easily 

implemented and powerful being a general-purpose optimization tool. Many possible solutions are 

processed concurrently and evolve with inheritable rules, e.g. the elitist or the roulette wheel 

selection, so to quickly converge to a solution, which is very close or coincident to the optimal 

solution. 

Genetic algorithms maintain a population of center candidates (the individuals), which are the 

possible solutions of the MZT problem. The center candidates are represented by their 

chromosomes, which are made of pairs of xi and yi coordinates. Genetic algorithms operate on the xi 

and yi coordinates, which represent the inheritable properties of the individuals by means of genetic 

operators. At each generation the genetic operators are applied to the selected center candidates 

from current population in order to create a new generation. The selection of individuals depends on 

a fitness function, which reflects how well a solution fulfills the requirements of the MZT problem, 

e.g. the objective function. 

Sharma et al. [29] use a genetic algorithm for MZT of multiple form tolerance classes such as 

straightness, flatness, roundness, and cylindricity. Because of the small dataset size (up to 100 

sample points), there is no need to optimize the algorithm performance, by choosing the parameters 

involved in the computation. 

Wen et al. [30] implement a genetic algorithm in real-code, with only crossover and reproduction 

operators applied to the population; thus in this case mutation operators are not used. The algorithm 

proposed is robust and effective, but it has only been applied to small samples. 



A fast genetic algorithm with convergence speed greater than 0.1 µm per 30 generations, within a 

selected stop condition, has been developed for large manufacturing samples and validated by 

certified software in [14]. The authors state that larger datasets require higher population size and 

not significantly affect the probability of crossover within a wide range. They conjecture that 

mutation is not a fundamental operator. 

Table 1 lists all the parameters with their mechanism and value used by the data fitting algorithm 

proposed here. The optimal values of the genetic operators Ps, Pc and Pm are taken from [14]. The 

genetic algorithm starts with a population of 70 center candidates (Ps), randomly chosen in a search-

space 
),,( iyxrS θ  centered in nC  defined later in expression (2). At each generation the center 

candidates with their minimum zone reference circles and difference in radii are simultaneously 

evaluated for fitness by expression (1) also introduced later. 

 

Table 1: Algorithm parameters and their description. 

SAMPLING AND 

GENETIC PARAMETERS 

SYMBOL VALUES COMMENT 

dataset size n 10÷10,000 Number of equally-spaced sample points on the 

roundness profile. 

search-space size [mm] En 0.1÷10 Radius of a circle where the initial population is 

randomly selected, centered in (1). 

population size Ps 70 Number of center candidates at each generation 

to be included in the search-space. The 

population density ∆ can be estimated as 

[Ps / π (En)
2
 ] 

selection  elitist Mechanism to select a center candidate for 

crossover operation. The center candidates are 

ordered for selection depending on their fitness 

function. The next generation includes the best 

chromosomes chosen between the set of 

offspring and the current population. 



crossover probability Pc 0.7  Mechanism to generate new center candidates 

by inheriting coordinates from parents. The 

number of parents selected for crossover is 

Pc×Ps. The arithmetic crossover mechanism 

used generates offspring as a component-wise 

linear combination of parents. 

mutation probability Pm 0.07  Mechanism to generate new center candidates 

by changing the coordinates with a random 

value. The number of the center candidates 

selected for crossover is Pm×Ps. 

stop criterion G 100 Mechanism to stop the genetic algorithm after G 

generations with no improvements rounded off 

to the fourth decimal digit (0.1 µm). 

 

 

3. Problem formulation 

 

The minimum zone error MZE  is the solution of the following optimization problem [14]: 
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where θi = i×
n

π2
, i=1,...,n are the angular positions of a number of equally-spaced points of the 

roundness profile r(x,y,θi) of the reference circle of center (x,y) and radius R; 
),,( iyxrS θ  is the search-

space, which is function of the sample points at θi and their dataset size n. 

The search-space is an area enclosed by the roundness profile where the center candidates of the 

initial population are selected for the data fitting algorithm. This area is rectangular be-cause the 

crossover operator changes the xi and yi coordinates of the parents to generate offspring [11]. After 

crossover, the xi and yi coordinates of parents and offspring are located at the rectangle vertexes as 

shown in Figure 2.a and Figure 2.b. 

 



Figure 2: Limit conditions to generate offspring by the crossover operator such that MZC ∈
),,( iyxrS θ . 

a) MZC  at the boundary of 
),,( iyxrS θ . b) MZC  at the intersection of the boundary of 

),,( iyxrS θ and a 

principal axis of the reference system; c) position of centroids C and Cn, for increasing n: n1 < n2 < 

n3 and position of MZC  located at a distance smaller than EC from C by (6). 

About here 

 

In order to solve the MZT problem, the search-space must include the global optima i.e. the MZ 

center, MZC , or at least it must be approached in order to find good solutions. Therefore we are 

interested to locate the center of the search space around MZC  by a fast procedure. 

The centroid nC  of n equally-spaced points: 

 nC  = ( ∑ =

n

i ix
n 1

1
, ∑ =

n

i iy
n 1

1
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gives a fast estimation of the MZ center MZC  [11] [12] [13] [14]. It can be considered itself as the 

center of 
),,( iyxrS θ  if the size of the search space is conveniently large. Figure 2 shows the limit 

conditions such that MZC  can be generated by crossover from parents: MZC  must be located exactly 

at the boundary of the region 
),,( iyxrS θ of center nC  (Figure 2.a and Figure 2.b):  

 nMZn ECC =−  (3) 

where En ∈ ℜ is the search-space size (for example, the radius or the side of respectively circular 

and square features). 

Only circular search-spaces are considered, neglecting that some center candidates are external to 

the feature (even if they fall outside the circular feature, if they are included in the circumscribed 

square). In fact: 

Lemma 1 – Consider 
),,( iyxrS θ  as a circular feature of radius En. If the initial population of the 

genetic algorithm is included in 
),,( iyxrS θ then all center candidates of next generation are included in 

the square circumscribed to 
),,( iyxrS θ . □ 

■ The xi and yi coordinates of the center candidates of the initial population included in 
),,( iyxrS θ  are 

also included in the square circumscribed to 
),,( iyxrS θ  that has a side En and is centered to Cn. 

Therefore the xi and yi coordinates of the center candidates satisfy the following condition: 
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For any two center candidates with coordinates (x1,y1) and (x2,y2) that verify expressions (4), the 

crossover generates offspring (x1,y2) such that: 
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Therefore we infer that (x1,y2) and (x2,y1) themselves are included in the square circumscribed to 

),,( iyxrS θ . 

□ 

 

The eccentric shape [31] is the major feature that maximizes the distance En. Figure 3 shows the 

worst-case achieved by considering a hypothetical roundness profile described by two concentric 

opposite arcs: the outer ( RA ) and the inner ( rA ) arcs of radii, respectively, R and r. An inset splits 

RA  into two identical arcs of length α. When α tends to zero, the two arcs become two semicircles 

with a degenerate set bounded to a singular point of coordinates (r, 0).  

 

Figure 3: Graphical proof of Lemma 2 for 
22

π
α

π
<≤− . 
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Lemma 2 – Increasing the number of equally-spaced points of the roundness profile (n), MZC  is 

trapped in a circular neighbor centered at the centroid Cn defined by:  

nCn EE
12 )11( −−+= π         (6) 

where 
nCE  is the roundness error related to the centroid. □ 

 

■ To prove the lemma, a worst-case is considered: the feature of Figure 3 where either α and r tend 

to zero. 

For the boundary condition (3), En is equal to MZn CC − . Let E be the distance between the centroid 

C and MZC . It results: 

MZMZnnMZnnnn CCCCCCEE −=−=−== +∞→+∞→+∞→ )(limlimlim   (7) 

□ 

 



Evaluation of the minimum zone error 

According to ISO 1101, the MZC  of n points sampled on the feature of Figure 3 is at (0,0), while the 

ratio 
R

r
 is greater than a given threshold t. While t

R

r
<≤0 , MZC  is closer to C than )0,0( . 

Therefore for expression (7): 

CE =           (8) 

 

Evaluation of the boundary condition (3) when r tends to 0 

The centroid of the outer and of the inner semicircles are on the X axis, respectively, at 
π

R
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. From expression (8) it results that the distance E is: 
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Evaluation of CE  

Let CRC  and CRI  be the radii of, respectively, the minimum circumscribed and the maximum 

inscribed concentric circles centered at the centroid. By expression (9) it results: 
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Hence, the roundness error CE  related to the centroid C  is: 

)11( 2 −+=−= πERIRCE CCC        (12) 

 

Asymptotic condition 

For expressions (7) and (12): 

nCnnn EE
12 )11(limlim −

+∞→+∞→ −+= π       (13) 

Therefore, increasing the number of sample points n, an n* exist such that for n>n* the thesis of the 

lemma is verified. □ 



 

Lemma 2 has extensive practical applications, because 
nCE  in expression (6) can be evaluated in 

linear function of the sampling data size; in fact, the centroid Cn is evaluated by expression (2), i.e. 

in closed form of the sampling data. 

Figure 4 shows an experimental visualization of Lemma 2 increasing n; nC  converges to C for n > 

n*. n* is the optimum sampling size because it provides sufficient accuracy and minimum 

processing time to the algorithm. 

 

Figure 4: Coordinates of nC  [mm] versus dataset sizes n, ranging from 10 to 10,000 points 

generated with certified software [32] with radius R=20 mm and exact minimum zone error 

EMZ*=0.06 mm. 

About here 

 

 

4. Computation experiments 

The datasets used in computation experiments are generated with NPL Chebyshev best fit circle 

certified software [32].  

The use of certified software has the following benefits: 

• it produces randomly distributed error making the results not manufacturing signature-

specific; 

• the Chebyshev best-fit circle center MZC  and the exact minimum zone error *

MZE  are known, 

so it allows evaluating at each generation the error MZE  of the algorithm in the estimate of 

MZC . 

Several datasets are generated, with maximum residual deviation values from 0.01 to 0.09 mm, and 

sizes from 10 to 10,000 points. The maximum residual deviation is equal to half the exact minimum 

zone error *

MZE  [33]. 

All datasets have center in the axes origin (0,0) and a radius R=20 mm. The search-space 
),,( iyxrS θ  is 

a circular feature centered in nC  according to Lemma 1 with radius En. 

The genetic algorithm has been executed 30 times for each experimental condition and the average 

MZE  and the average computation time have been determined. 

 



5. Results 

As shown by computation experiments in Figure 5, the processing times of genetic algorithm tested 

with the configuration in Table 1 increase linearly with the dataset size and are barely affected by 

the exact minimum zone error *

MZE . 

 

Figure 5: Average computation time of 30 runs of the genetic algorithm with the parameters in 

Table 1 using 3 GHz Pentium processor with increasing datasets size, different roundness errors and 

En=0.5 mm. 

About here 

 

From Figure 6 it can be noticed that the minimum zone error MZE  decreases with En while MZC  is 

included in the search-space (1÷3 mm). Afterwards it starts increasing again because the density ∆ 

of the Ps center candidates decreases with increasing En. 

In the range En=1÷3 mm, by increasing the dataset size n up to 50÷100, MZE  decreases and remains 

stable afterwards in the range 0.062÷0.063 mm, a good approximation of the exact minimum zone 

error *

MZE  of 0.06 mm. 

With small search-spaces (En=0.1÷1 mm) MZE  is very high and barely decreases with n because the 

exact minimum zone center may be outside the search-space. 

The range for the sampling parameters n and En reported above provides the highest accuracy for 

the genetic algorithm in the search of the minimum zone error (lowest MZE ). 

 

Figure 6: Minimum zone error MZE  versus the number of sample points n and the search-space size 

En. The values of MZE  are the average of 30 runs of the genetic algorithm with the parameters in 

Table 1 and exact minimum zone error *

MZE =0.06 mm. 
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In order to optimize the algorithm speed the above range needs to be matched with the processing 

time in Figure 7. 

 

Figure 7: Average computation time of 30 runs of the genetic algorithm with the parameters in 

Table 1 and *

MZE =0.06 mm versus the number of sample points n and the search-space size En. 

About here 



 

In Figure 7 it can be noticed that the computation time increases both versus n and En. 

Consequently the optimal values for n and En are the minimal providing sufficient accuracy. The 

linear increase of the computation time versus n, while En is below 3 mm, complies with that of 

Figure 5. Beyond this limit, the density ∆ of the center candidates in the search-space is too low, 

therefore the genetic algorithm can be trapped in local optima, providing some faster but less 

accurate solutions. A population density ∆=2.5 chromosomes/mm
2
 is the corresponding limit to 

En=3 mm. 

 

6. Discussion 

It has been shown both theoretically, by a worst-case approach, and experimentally, using a genetic 

algorithm, that increasing the dataset size the MZE  estimation accuracy increases, but also the 

computation time increases. The computation time increase in Figure 5 is not the only drawback of 

increasing the sample size n. 

Figure 6 shows the beneficial effect of increasing n and the optimal range for En. However this 

graph cannot be considered alone, the effect of the same parameters on the processing time in 

Figure 7 should also be taken into account. For example, the average MZE  (0.06398 mm) for n=75 

and En=2 mm is close to that for n=100, with the same search-space (0.06209 mm, the minimum 

value achieved), but for n =75 there is a computation time reduction from 2.297 to 0.836 s. This 

shows that achieving sufficient algorithm accuracy instead of the best one may produce significant 

practical benefits. Inversely, the lowest processing time (0.134 s) is obtained with the lowest values 

from Table 1 of n and En (respectively 10 and 0.1 mm), but the corresponding MZE  is very high 

(4.66571 mm). 

The effect of different combinations of n and En is summarized in Figure 8. An interpretation for 

the MZE  increase (low algorithm accuracy) for the following four conditions is given. 

• Low n and low En. Small datasets do not provide sufficient estimation accuracy. The 

optimal solution is not included in the search-space. Lowest processing time, the algorithm 

stops because it is trapped in local minima and does not decrease with subsequent 

generations. 

• Low n and high En. The optimal solution is included in the search-space, but the small 

datasets do not provide sufficient estimation accuracy of the MZ center MZC . Increasing the 

population density ∆ is worthless. Premature convergence (low processing time), the 

algorithm stops because it is trapped in local minima. 



• High n and low En. Larger datasets yield a better estimation of MZC , but the optimal solution 

is not included in the search-space. In addition n increases the computation time because 

each center candidate is compared with n sample points in order to assess its fitness. 

• High n and high En. Larger datasets yield a better estimation of MZC , but larger search-

spaces are dangerous because the algorithm is trapped in local minima. In this case the 

population density ∆ should be increased accordingly. The processing time is greatly 

affected by the lower convergence speed of the algorithm (MZT problem is not linear). 

 

Figure 8: Possible causes and effects of different combinations of n and En on the algorithm 

accuracy and computation time. The optimal sampling parameters are n* and En*. 
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The proposed sampling strategy is summarized in Figure 9, which enhances the operative aspects: 

1. increasing the dataset size n until optimal or sufficient accuracy is achieved (sufficient 

accuracy depends on the manufacturing requirements); 

2. finding a suitable value for the search-space size. 

Once the optimal or suboptimal dataset size and the corresponding search-space are selected, the 

processing time is determined accordingly. 

 

Figure 9: The proposed optimal sampling strategy. 

About here 

 

The proposed method can be considered as a guideline for assessing the optimal sampling 

parameters with different metaheuristics. 

 

7. Conclusions 

In this work the sampling strategy for the roundness evaluation of circular profiles using the MZT 

method has been optimized. In particular,  

• it has been proven that an upper bound for the centroid to minimum zone center distance is 

given by CE
12 )11( −−+π ; consequently increasing the dataset size, this neighborhood of the 

centroid nC  is a good candidate for the search-space by metaheuristics; 

• computation experiments with a genetic algorithm have shown a linear increase of computation 

time versus dataset size. 



Based on theoretical considerations and extensive computation experiments, it can be concluded 

that there is an optimal value for the dataset size and the search-space providing the highest 

accuracy and lowest computation time. The population density ∆ seems a discriminating factor for 

the algorithm performance. 

This pattern is helpful to take out indications on the optimal number of sample points and 

corresponding search-space size by metaheuristics in roundness evaluation for the whole class of 

optimization problems defined by equation (2) – the MZT problem. In addition, this sampling 

strategy can be defined as blind or not manufacturing signature-specific because sample points are 

equally-spaced and sample errors are randomly distributed. 
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