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A modelling framework for the prediction of effective properties in random packings of particles is 
presented. Random packings of spheres and agglomerates of spheres are numerically generated by using 
packing algorithms. Effective properties of both the types of packings are evaluated through a Monte-Carlo 
random-walk (a.k.a. mean square displacement) method, which allows the calculation of both geometrical 
parameters (e.g., pore size distribution, specific surface area) and transport properties (e.g., effective gas 
diffusivity, permeability). The results are reported as a function of porosity in dimensionless form, in order 
to obtain scale-independent information. The effective properties obtained for random packings of spheres 
are compared with independent experimental data showing a satisfactory agreement. Effective properties 
of packings of agglomerates are also evaluated, showing that particle agglomeration significantly 
increases the mean pore size while reducing the effective gas diffusivity and the specific surface area. The 
results show that agglomerates can not be generally assimilated to spheres with an equivalent diameter. 
The modelling approach presented in this study may improve the quantitative characterization of porous 
media composed by aggregates of particles. 

1. Introduction 
The study of porous media and particulate systems is a classic topic of chemical engineering with broad 
applications in heterogeneous catalysis, membrane science, pharmaceuticals and packed towers just to 
cite the most common areas. One of the most important goals consists in predicting and correlating the 
effective properties of the medium, such as the permeability or the specific surface area, to its basic 
characteristics, such as the porosity and the particle size (Bertei and Nicolella, 2011a). Effective properties 
are related to the specific function that the porous media has to perform: for example, in a porous catalyst 
the effective diffusivity, the pore size distribution and the specific surface area are correlated to the 
transport properties of the pellet and to the resulting reaction rate of the reactant. 
In the last decades, modelling and reconstruction techniques have supported the developments made in 
the characterization of porous media. Some porous solids have been assimilated to random packings of 
spherical particles (Bertei and Nicolella, 2011b). This assumption does not hold when, due to the adhesion 
properties of the materials, particles tend to aggregate in agglomerates and clusters (Fadda et al., 2009). 
Particle agglomeration is particularly significant when dealing with micro- and nano-particles, for which 
undesired aggregation may have detrimental effects on the functionality of the system. 
In this study, a modelling framework for the numerical reconstruction and characterization of random 
packings of spherical particles and agglomerates of spheres is presented. The effect of particle 
agglomeration on effective properties in a wide range of porosity is assessed. In Section 2 the model, 
consisting of a packing algorithm and a Monte-Carlo random-walk method, is presented. In Section 3, 
effective properties in random packings of spheres and agglomerates of spheres are shown and 
discussed. Conclusions are reported in Section 4. 
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2. Modelling 

2.1 Structure generation 
Samples of random packings of spherical particles and agglomerates of spheres are numerically 
generated by using specific packing algorithms. Due to the different particle shape, different algorithms are 
used to represent the physics of the particle arrangement. 
Random packings of spherical particles of equal diameter d are generated through the sedimentation 
algorithm (Visscher and Bolsterli, 1972), also known as drop-and-roll algorithm, which mimics the 
deposition of particles into a box. One particle at a time is dropped into a domain of specified dimensions 
from a random position at the top of the box. The falling particle rolls over one or two already packed 
particles without friction or inertia until either it touches the bottom of the domain or it is stably supported 
by three other particles. As the particle comes into rest, a new particle is dropped, repeating the procedure 
until the domain is completely filled. A portion of a random packing of spherical particles is represented in 
Figure 1a. 
Agglomerates are defined as an assembly of 13 spheres of equal diameter d positioned as in Figure 1b. 
The number of spheres and their configuration were chosen as a reference to represent an aggregate of 
almost spherical and regular shape with an agglomerate size of about 3 sphere diameters. The apparent 
diameter La of the agglomerate is equal to 2.732·d, the equivalent diameter (i.e., the diameter of the 
equivalent sphere with the same surface/volume ratio) Le = 1.478·d, the sphericity is 0.644. Random 
packings of agglomerates are generated by using a modified collective rearrangement method (Nolan and 
Kavanagh, 1995). In this method, initially the particles are randomly distributed within the domain in 
overlapping configuration. Overlaps between different particles cause a restoring force and a restoring 
moment in a direction required to remove the overlaps. At the same time, a stability constraint is 
implemented: a particle is considered stable if supported by a contacting particle below its centre of mass 
while experiencing opposite moments in both the horizontal planes. Particles iteratively move, rotate and 
drop until all the overlaps have been removed and all the particles have found a stable position. 
For both the types of packings, sintering effects are simulated by uniformly increasing the size of the 
particles until the desired porosity is reached (Bertei et al., 2012). Wall effects are avoided by using 
periodic boundary conditions in the horizontal directions. Three layers of particles at the bottom of the 
domain are removed in order to extinguish floor effects as observed by Ben Aïm and Le Goff (1967).  The 
packing algorithms provide the centre coordinate of each sphere in the packing, therefore recreating a 
virtual sample of the microstructure to be used for the calculation of effective properties. Five structures 
per setting are generated in order to average the results. 

2.2 Effective properties 
The effective transport properties are evaluated in the reconstructed microstructures through a Monte-
Carlo random-walk simulation (Zalc et al., 2004). A tracer is randomly placed within the gas phase wherein 
it moves following a Brownian motion. At each step, the tracer moves of the free path, which is chosen 
from an exponential probability distribution centred on the mean free path. When the tracer collides with a 
solid particle, it is reflected on the surface according to the Knudsen cosine law. After a prescribed amount 
of time Δt, the displacement R between the initial location of the particle and its final location is measured. 
The effective diffusivity De is calculated from the mean square displacements of thousands of tracers using 
the Einstein equation (Einstein, 1926): 
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where φ represents the packing porosity. For a given diffusion regime, such as bulk diffusion or Knudsen 
diffusion, the effective diffusivity is related to the bulk or to the Knudsen diffusivity by the ratio between 
porosity and tortuosity factor as follows (Mason and Malinauskas, 1983): 
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Figure 1: a) Portion of a random packing of spherical particles (porosity = 30 %); b) Scheme of the sphere 
arrangement used to represent an agglomerate of spheres. 

Given the Knudsen number, which is imposed in the simulation, Eqs. (1-2) allow the effective diffusivity 
and tortuosity factor to be evaluated. The ratio φ/τ represents the normalized effective diffusivity, 
independent of the Knudsen regime. 
The mean pore size dp is calculated by using the chord length method (Berson et al., 2011). Chords are 
lines randomly drawn in the pore space between two solid particles. The mean pore size is calculated as: 
 














+

⋅
= 

∞

=1
2

2

cos
2 m

mp
l

l
ld ϑ  (3) 

 

where l  represents the number-averaged chord length, 2l  the mean-square chord length and 

mϑcos  is the average cosine of the angles between trajectory segments separated by m particle 

collisions in a random-walk simulation performed in Knudsen regime. The mean pore size is equal to the 
number-averaged chord length corrected by the statistics of both the chord distribution and the tracer 
redirecting collisions. Since the mean pore size scales with the sphere diameter d, the dimensionless 
mean pore size is calculated as dp/d for both spherical particles and agglomerates. 
When dealing with random packings of spherical particles, the permeability B can be evaluated on the 
basis of the porosity, tortuosity factor and mean pore size as follows (Mason and Malinauskas, 1983): 
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Since B scales with the square of the mean pore size, which scales with the sphere diameter d, the 
normalized permeability is defined as the ratio B/d2. 
The specific surface area exposed to the gas phase per unit volume, S, is evaluated by randomly 
generating hundreds of test points on the surface of each sphere. The position of the test point is then 
checked against other particles: if the distance of the test point from the centre of another sphere is 
smaller than the sphere radius, the test point is internal to the packing. In the other case, the test point is 
exposed to the pore space, thus it is accounted for in the calculation of the exposed area. It is noteworthy 
that, in both random packings of spherical particles and agglomerates, there are not closed pores in the 
range of porosity investigated in this study. The pore percolation was determined using a grid-based 
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technique (Kenney et al., 2009). The effective exposed area is equal to the number fraction of accepted 
test points times the particle surface area. The specific surface area is obtained by summing up the 
exposed area of each particle and dividing by the packing volume. The specific surface area per unit 
volume is normalized by multiplying S by the sphere diameter, i.e., S·d, for both spherical particles and 
agglomerates. 

3. Results and discussion 

3.1 Mean pore size 
Figure 2 shows the normalized mean pore size as a function of porosity in random packings of spheres 
and agglomerates. For both the types of particles, the pore size decreases as the porosity decreases. The 
mean pore size in random packings of agglomerates is, in average, 1.7 times larger than the mean pore 
size in random packings of spherical particles. Such a ratio is smaller than 2.732, which would arise if the 
agglomerates behaved as spherical particles with apparent diameter La = 2.732·d (see Figure 1b). Thus, 
the mean pore size in agglomerates is smaller than what could be expected, due to the effect of the inlets, 
represented in Figure 3. In fact, the chords traced within the inlets contribute to reduce the number-
averaged chord length in Eq. (3), therefore reducing the mean pore size if compared with an equivalent 
sphere of diameter La. 

3.2 Effective diffusivity and permeability 
Figure 4a shows the normalized effective diffusivity (that is, the ratio between porosity and tortuosity 
factor) as a function of porosity in random packings of spheres and agglomerates. Experimental data on 
random packings of glass spheres obtained by Currie (1960) are also reported, which agree with 
simulation results for spherical particles. 
The normalized effective diffusivity is independent of the particle size. For both the types of packings, the 
normalized effective diffusivity increases as the porosity increases. However, the effective diffusivity in 
packings of agglomerates is smaller than in packings of spherical particles. This means that the tortuosity 
factor of packings of agglomerates is larger than in packings of spheres. This result is in agreement with 
the results discussed above regarding the mean pore size: the inlets create more tortuous paths than in an 
equivalent packing of spheres. 
Figure 4b shows the normalized permeability as a function of porosity in random packings of spheres. 
Simulation results are compared with experimental data obtained by Bosl et at. (1998) in random packings 
of sintered glass beads. The Carman-Kozeny correlation (Epstein, 1989) is reported in solid line. The 
normalized permeability rapidly increases as the porosity increases. The agreement between the two 
series of data and the Carman-Kozeny equation over a wide range of porosity provides the validation of 
the proposed modelling framework for spherical particles. On the other hand, validation for agglomerates 
is not possible due to the lack of experimental data. 

 

Figure 2: Normalized mean pore size as a function of porosity for packings of spheres and agglomerates. 
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Figure 3: Projection of an agglomerate: the dashed areas represent the inlets with respect to the apparent 
bounding sphere (marked with a dotted line). 

 

Figure 4: a) Normalized effective diffusivity as a function of porosity for packings of spheres and 
agglomerates; b) Normalized permeability in random packings of spherical particles. 

3.3 Specific surface area 
Figure 5 shows the normalized specific surface area per unit volume as a function of porosity in random 
packings of spherical particles and agglomerates. For both the types of particles, the surface area per unit 
volume decreases as the porosity decreases. This is due to the larger overlaps, created as the porosity 
decreases, which reduce the particle surface area exposed to the gas phase. This phenomenon is 
predominant if compared with the increase in the number of particles per unit volume as the porosity 
decreases, which would lead to increase the specific surface area.  
The results clearly show that particle agglomeration reduces the specific surface area if compared with 
spherical particles of the same size d. It is interesting to note that the packings of agglomerates have 
almost the same specific surface area of packings of spherical particles with diameter equal to the 
equivalent agglomerate diameter Le. On the other hand, if agglomerates were assimilated to spheres of 
diameter La, the specific surface area would be underestimated of about 45 %. 

4. Conclusions 
This numerical study showed that particle agglomeration significantly affects the effective properties in 
random packings of particles even if agglomerates retain almost a spherical shape. Particle agglomeration 
leads to an increase in the mean pore size while the effective diffusivity and the specific surface area per 
unit volume decrease. The results show that it is not generally possible to assimilate agglomerates to 
spheres with an equivalent diameter, suggesting that particle agglomeration must be properly taken into 
account and characterized. 
Further research will focus on different agglomerate configurations and particle shapes. 
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Figure 5: Normalized specific surface area as a function of porosity for packings of spheres and 
agglomerates. 
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