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Abstract. Business processes design is an error-prone task often relying
on long-running transactions with compensations. Unambiguous formal
semantics and flexible verification tools should be used for early valida-
tion of processes. To this aim, we define a small-step semantics for the
Sagas calculus according to the so-called “coordinated interruption” pol-
icy. We show that it can be tuned via small changes to deal with other
compensation policies and discuss possible enhancements.

1 Introduction

Long-running transactions (LRTSs) in business processes are composed by ser-
vices taken off-the-shelf. One important problem is failure recovery, i.e., the
ability to bring a faulty process back to a consistent state. Processes may grow
large and complex and when a fault occurs the designer has to take several con-
straints into account: all sibling activities that run unaware of the fault should
be stopped and all the activities that were executed before the fault need to be
undone in a suitable order. Moreover, in many cases, an action, like a service
invocation, cannot simply be undone: it can be an ACID transaction on its own,
or it may involve asynchronous messaging (e.g., via SMTP).

A compensation is the means of reversing the effects of an activity in case
a later fault occurs in the business process. Compensations were introduced
in [17] to implement (non-ACID) database LRTs as a sequence of short, ACID
sub-transactions t;...t,,. Each ¢; had an associated activity c;, its compensation,
to be installed when ¢; committed, and to be executed if a fault occurred before
the whole LRT was committed. Compensations are executed in the reverse order
of installation. For example, if ¢3 fails, then the observed activities are t1tscacy.
Service-oriented computing is a particularly favourable setting for the concept
of compensation, because services are designed without knowing in advance the
context where they will be used. For example, take a process that receives an
order form with multiple items and delegates each request to a different supplier.
If some request fails while others already succeeded, the process may cancel
the successful requests and inform the customer about the failure. Still, certain
cancellations may involve fees and others may not be possible at all. Moreover,
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Fig. 1: Compensation policies (arrows stand for trace inclusion)

when the fault occurs one would like to interrupt non-issued requests. Thus, it is
natural to demand that a service comes with one (or more) companion service(s)
for compensation. An action and its compensation form a compensation pair.

Concurrency makes process design an error-prone activity: processes must be
assigned with unambiguous semantics and early validated to detect unwanted
behaviour and to suppress as many inconsistencies as possible. We focus on the
semantics of the Sagas calculus [7]. The core fragment of parallel Sagas has been
sufficient to characterise different compensation policies for parallel processes.
A thorough analysis is presented in [3] by comparing the Sagas calculus with
compensating CSP [10] (cCSP) along two axes of classification: i) interruption of
siblings in case of an abort (interruption vs no interruption); ii) whether com-
pensations are started at the same time or siblings can start their compensation
on their own (centralised vs distributed). The relation between the four different
policies is displayed in Fig. 1. The fifth policy (double lined in Fig. 1) has been
formalised in [6] and proved more satisfactory than #1-4, and all semantics #1—
5 coincide on the sequential fragment of Sagas. A key contribution in [6] is the
definition of a concurrent semantics for policy #b5, obtained by encoding Sagas
processes in (safe) Petri nets. The Petri net model is more informative than trace
semantics, because it accounts for the branching of processes arising from the
propagation of interrupts, but the sophisticated mechanism needed for handling
interrupts introduces many auxiliary places and transitions that make the Petri
net model quite intricate to parse (§ 5.1) and difficult to extend (§ 7).

Our aim is to provide an operational semantics for Sagas whose main re-
quirements are: i) it must follow the small-step style of operational semantics, so
to account for the branching caused by the propagation of interrupts; ii) other
policies can be implemented without radical redesign; iii) it must be easy to in-
troduce other features, like choice, iteration, and faulty compensations (crashes).

In this paper we propose an LTS semantics that meets all the above require-
ments. The main result consists of the correspondence theorems with the existing
semantics. We started by considering the “optimal” policy #5 and were guided
by the correspondence with the Petri net semantics to correct many wrong de-
sign choices in our first attempts. The main result is the proof that our LTS
semantics matches the Petri nets semantics in [6] up to weak bisimilarity. This
gives a way to read markings as (weak bisimilar) terms of a process algebra that
describes the run-time status of the process.



(acT) A,B:u=a | skip | throw (PROCESS) P,Q ==X | P;Q | P|Q
(sTEP) X = A+ B (sagA) S, T ==A | S;T | S|T | {P}

Fig. 2: Core fragment of Sagas

Synopsis. In § 2 we recall the denotational semantics of Sagas. In § 3 we define
the LTS semantics for the sequential fragment only, and extend it to the parallel
case in § 4. In § 5 we sketch the Petri net semantics from [6] and outline the
technique used for proving the main result. In § 6 and § 7 we show the flexibility
of our LTS semantics in accommodating other policies and advanced features.
Related work, concluding remarks and future work are collected in § 8.

2 Background

The syntax of the parallel Sagas calculus is in Fig. 2. Atomic actions A include
generic activities a € A, the vacuous activity skip and the faulty activity throw.
In a compensation pair A + B, the activity B compensates A. We write throww
for throw = skip. Beside the ordinary sequential and parallel composition, we
use {{P]} to enclose a compensable process within a saga. Below, we outline the
denotational semantics of policies #1-5, while the Petri net semantics for policy
#5 is recalled in § 5.1. The Petri net semantics and our novel LTS semantics
are parametric to the context of execution that fixes the success or failure of
activities. Let 2 = {[@,K}. A context I' is a function I" : A — (2 that maps
a basic activity to @ or X depending on whether it commits or aborts, with
I'(skip) = @ and I'(throw) = K. We assume a compensation activity cannot
fail. Dealing with faulty compensations is discussed in § 7. The denotational
semantics does not use I': only throww is used for failures.

Notation. A trace for a saga is a string s{w), where s € A* is said the observable
flow and w € R is the final event, with R = {v/,!,7} and ANR =0 (v stands
for success, ! for fail, and ? for yield to an interrupt). Note that ? appears only
in traces of compensable processes. We let € denote the empty observable flow.
Slightly abusing the notation, we let p, g, ... range over traces and also observable
flows. We denote by pl|||q the set of all possible interleavings of the observable
flows p and ¢, with final event w&w’, where & is associative and commutative.
A trace of a compensable process P is a pair (p, q), where p is the forward trace
and g is a compensation trace for p. We find it convenient to define policy #3
first (see Fig. 3) and then explain the other ones by difference. We use policy
numbers as subscripts of the symbol £ when the defining equation may not be
valid for other policies (e.g., é374 means the definition is valid for policies #3
and #4). Later, we write [-]; to denote the trace semantics w.r.t. policy #i.
Sagas (policies #1-5). For sagas, the most interesting case is the one of {{PJ}:
it selects all successful forward traces s(v') of P, and the traces sq, corresponding
to failed forward flows s(!) followed by their compensations g.

Interruption and centralized compensation (policy #3). When compos-
ing compensable traces in series, the forward trace corresponds to the sequential
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Fig. 3: Denotational semantics (policy #3)

composition of the original forward traces, while the compensation trace starts
by the second compensation followed by the first one. The parallel composition
is defined (pairwise) interleaving the forward flows and the backward flows.
No interruption and centralized compensation (policy #1). Policy #1
differs from policy #3 just by ruling out interruption.

A+B él,Q {p.q) I pe ANge B}

Interruption and distributed compensation (policy #4). Policy #4 dif-
fers from policy #3 only by the following definition of parallel composition of
compensable traces. Note that compensations can be triggered by “guessing”
that a fault will be issued.

(), )(@(v),d) Zaa {(r(v),7") [ € (lllg) A" € (@]lg)} U
{(r (), () | r(w) € (pp'llaq")}

(Plw) P)II(a(w"),q") 24 {(r{wkw’), (")) [ rw”) € (pp'llaq)} i wéw' # v/

No interruption and distributed compensation (policy #2). Policy #2
differs from policy #3 by combining together the two changes above.
Coordinated compensation (policy #5). Policy #5 differs from policy #3
by slightly changing the semantics of compensation pairs, to allow a successfully
completed activity to yield, and the semantics of parallel composition, to account
for distributed compensation without the guessing mechanism.
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In summary: in #1 and #2 all sibling processes will finish their execution
before compensating; in #3, aborted and interrupted processes cannot start the
compensation before all their siblings are ready to compensate; #2 and #4 rely
on a “guessing” mechanism for which a process may start its compensation when
a sibling will fail in the future; #5 is “optimal” in the sense that distributed com-
pensations can start as soon as needed, but only after an actual fault occurred.

Ezample 1. Consider the processing of an order in an eStore. First the order is
accepted, then, in parallel, the customer’s credit card is processed and the order
is packed and the courier is booked. If something goes wrong each activity can
be compensated, the courier will be cancelled, the order unpacked, for the credit
card an error message will be sent and the order can be deleted. Assume that
the booking of the courier will always fail and is thus replaced with throww.

eStore 2 a0 =+ a0; (pC + pC|pO =+ pO; throww)

In policies #1 and #2, pC and its compensation will always be executed, while
policies #3 and #4 admit e.g. the trace aO pOpO aO. Policies #1 and #3
are centralized and no compensation activity can precede a forward activity.
Policies #2 and #4 admit the trace aO pOpO pCpC a0 (distributed case). They
also admit the less realistic trace aO pCpC pOpO aO where the compensation
pC is executed before the actual throww could have issued a fault. This trace is
forbidden in policy #5 (where a0 pOpO pCpC a0 is still allowed).

3 A Small-Step Semantics for Sequential Sagas

In this section we define a small-step LTS semantics for the sequential fragment of
the Sagas calculus. (w.r.t. the syntax in Fig. 2, we ignore parallel composition).
To be able to reason on intermediate states in the execution of a process we
introduce a runtime syntax.

(comp) C:=A | C;C | nil (PROCESS) P = ... | P$C | [C]
(saga) S u=... | nil

First we add a distinct type for compensations. They can either be basic activities
A, the sequential composition of compensations C; C or nil. With nil we denote
completion of a compensation, in the sense that, e.g., the compensation nil; C
can never execute activities in C. For compensable processes, P$C denotes a
process P running with the already installed compensation C'. Compensations
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Fig.4: LTS for sequential compensations
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Fig.5: LTS for sequential compensable processes

of P will be installed on top of C' once P is finished. The completion of forward
activities is denoted by [C] instead of nil, because we need to consider the
installed compensation C' (informally, [C] can be read as nil$C). We also add
nil for marking the completion of a saga.

The small-step semantics is defined by three LTSs, one for each syntax cate-
gory. Given the set of compensations C, the set of compensable processes P and
the set of sagas S, we let S =C, Sp =02 x P, Ss =2 xS.

Definition 1. The LTS semantics of (sequential) sagas is the least LTS (S, L, T)
generated by the rules in Fig. 4—6, whose set of states is S = Sc USpUSg, whose
set of labels is L =AU {7}.

We will write transitions t € T ast: '+ s 2 ¢ for states s,s',alabel A € L
and a context I'. The component {2 in a state describes whether the process can
still commit (it can still move forward) or must abort (a fault was issued that
needs to be compensated). Note that states of the LTS for compensations have
clearly no {2 component. Sagas initially start executing in a commit state.

The semantics exploits some auxiliary notation. The predicate dn, checks the
completion of (the forward execution of) a compensable process. The subscript
o stands for @ or X and means that the process is either evaluated in a commit
or an abort context. The predicate dn, is inductively defined as:

dns([C]) 2tt dn,(A+ B) £ £f dn,(P$C) = dn,(P;Q) = dn,(P)
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Fig.6: LTS for sequential sagas

Note that for sequential processes dn is independent of the subscript; this will
change when introducing parallel composition. Analogously, we define a pred-
icate dn on compensations and sagas, together with a function cmp(P) that
extracts the installed compensation from a process P that is “done”. When P
is done, we use the shorthand tocmp(P) = =dn(cmp(P)) (i.e., tocmp(P) holds
when there is some compensation to run).

dn(nil) = tt dn(A) £ £f dn(C;C") £ dn(C)
dn(nil) £ tt dn(A) £ dn({{P}}) £ £f dn(S;T) £ dn(S)

emp([C]) £ C
emp(P; Q) = cmp(P)

C if dn(cmp(P))

cmp(P$C) = {cmp(p);c if ~dn(cmp(P))

The rules in Fig. 4 handle compensations. As we assume a compensation is
always successful, only rule C-ACT is needed for basic activities. Rules c-SEQ1
and C-SEQ2 exploit the “done” predicate to avoid reaching states such as nil; C.

For processes (Fig. 5), a basic activity A of A+ B can either commit or abort,
depending on the context: if A commits then B is installed (s-AcT); if A fails,
then there is nothing to be compensated (F-ACT). A sequential composition P; Q)
acts according to how P acts (SEQ and A-SEQ). If P finishes successfully (S-SEQ),
then @ will run under the installed compensation e¢mp(P’). The process P$C
acts according to P. When P finishes its compensation is installed on top of C
(As-STEP1). The rule AS-STEP2 ensures that a nil is not installed on top of a
compensation. Compensations are executed via COMP.

The rules for sagas A and S;T are as expected (Fig. 6). A saga {{P[} can be
executed as long as either it is still running forward (SAGA and S-SAGA) or it has
already aborted and compensates (SAGA and A-SAGA1). If the saga aborts but
is able to compensate, then it reaches a good state (A-SAGAZ2).



The formal correspondence between the LTS semantics and the denotational
semantics of policies #1-5 is an immediate consequence of our main result and
will be deferred to § 4 (see Corollary 1).

Ezample 2. Let eS £ a0 + a0;pC = pC; pO + pO;bC + bC. Assume that the
packing of the order fails, and let I" map pO to X and the other actions to .
We have e.g. @, {{eS]} 20, pC, 7, PC, 20, [, nil, because

m,eS 2% @, (pC =+ pC; pO = pO; bC = bC)$a0 25
X

@, ((pO + pO; bC = bC)$pC)$20 o> 30] % ®,[20

,[pC:30] S ®,[30] *© ®, [nil

4 Extension to Concurrency

In this section we extend the LTS semantics to handle parallel Sagas. First, we
extend the runtime syntax as follows:

(comp) Cu=A | C;C | nil | C|C
(PROCESS) P =X | P;P | P$C | [C] | Pol|oP
(saca) S u=A | S;S | {P} | nil | Sy|sS

We add parallel composition to compensations. We use subscripts for the
parallel composition of processes or sagas ,|, such that o,0’ € 2. If a thread
is denoted with [, it can still move forward and commit. A thread denoted
with X either aborted or was interrupted, so it can compensate. If a thread is
denoted with a [ then also every parallel composition contained as a subprocess
in this thread must have a [@. Similarly if the global state is a [, any parallel
composition in this state has subscripts [. We consider Pg|gQ part of the
normal syntax, not just of the runtime syntax, and usually write just P|Q. We
sometimes use || instead of .|, if the values of 0,0’ are irrelevant.

Definition 2. The LTS semantics of parallel sagas is the least LTS (S,L,T)
generated by the rules in Fig. 4—6 together with the rules in Fig. 7 (symmetric
rules C-PAR-R, PAR-R, INT-L and SPAR-R are omilted).

The semantics exploits some auxiliary notation. First, the binary function
M: 2 x 2 — 2 is defined such that c Mo’ = @ iff 0 = ¢’ = @. It is easy to
check that M is associative and commutative. Then, the predicates dn,, dn and
the function emp are extended to parallel composition:

dn(C|C") £ dn(C) A dn(C")  dny(Pgy,|0,Q) £ dng(P) A dng(Q) A (0 = 01 = 03)
dn(So,]0,T) £ dn(S) A dn(T)  cmp(P || Q) = emp(P)[emp(Q)

The process Py, |s,Q is done when both P and @ are done and both sub-
scripts are the same and coincide with the global state o.

The rules C-PAR-L/C-PAR-R define just the ordinary interleaving of compen-
sations. The rules PAR-L/PAR-R are analogous, but the subscript determines the
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Fig. 7: LTS rules for parallel Sagas (symmetric rules omitted for brevity)

P~ P' A =par(P)  par(P) P~ P Q~Q
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Fig. 8: Predicate P ~» P’ for interrupting a process

modality of execution. A thread can move forward when it is in a commit state.
If a thread aborts, the failure is annotated also in the global state by taking
oMof. A commit thread can still move forward even if the global mode is abort.

The rules INT-L/INT-R use an “extract” predicate P ~» P’ to interrupt a
commit thread if the global process is in abort mode. In P ~~ P’, the process
P’ is a possible result of interrupting P (see Fig. 8). As a special case, note
the interrupt of a sequential composition: we distinguish whether P is a parallel
composition (predicate par(P) is true) or not. This is motivated by the inten-
tion to adhere to the Petri net semantics, where (P|Q); R can be interrupted
discarding R but without necessarily interrupting P or Q.

For the parallel composition of sagas (SPAR-L/SPAR-R) we just remark that
in the case of fault of one thread we let the other threads execute as much as
possible and just record the global effect in the ¢ component of the state.

Ezample 3. Let ¢S’ £ a0 = a0; (pC + pC|pO = pO; bC = bC), and assume that
the processing of the card fails while the other actions are successful.

@, e8" 2% @, (pC C| 0+ pO0;bC +
@, (pC = T|(bc bC)$p0)$a l> 20
X, [ 20 o

- 5C)$a0 £
b ([nil] gl (bC = BC)$pO)Sa

I,
(nil | p0);a0] &= K,[a0] = X, [nil]

5 Operational Correspondence

In this section we will show a weak bisimilarity between our novel LTS semantics
and the Petri net semantics of [6].



5.1 Petri Net Semantics (for Policy #05)
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Fig.9: Encoding of compensable processes as (safe) Petri nets

In [6] Sagas processes are encoded in safe Petri nets by structural induction
(see Fig. 9). A saga has just three places to interact with the environment: Fy
starts its flow, F5 signals successful termination, and F raises a fault. Each com-
pensable process has six places to interact with the environment: a token in F}
triggers the forward flow, to end in Fy; a token in R; starts the compensation,
to end in Ry; a token in I; indicates the arrival of an interrupt from the out-
side; a token in I informs the environment that a fault occurred. For sagas, a
computation starting in F; will lead either to F5 or to F, while for compensable
processes we expect to have the following kinds of computations:
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Successful (forward) computation: from marking F; the net reaches Fy
Compensating (backward) computation: from R; the net reaches Ra.
Aborted computation: from F) the net reaches Ry + I5.

Interrupted computation: from Fj + I; the net reaches Rs.

The nets for compensable processes are depicted in Fig. 9. The encoding
introduces several auxiliary transitions (thinner and black filled), e.g. to fork
and join the control flow, to catch an interrupt and reverse the flow.

Depending on the context, for a successful compensation pair A+ B (Fig. 9b)
we have the obvious transitions modelling activities A and B together with
auxiliary transitions for handling interruption. The net for a failing compensation
pair (Fig. 9c) has a transition K that models the abort of the transaction. The net
for the sequential composition P; @ (Fig. 9d) is obtained by merging the forward
output place F3 of P with the forward input place of @) and the backward output
place R3 of @ with the backward input place of P. Moreover, P and () share
also the places for I; and I5.

The encoding of parallel composition P|Q (Fig. 9f) is more complex. We
use two subnets for the two processes, with places Fy, Fs,... and F{, Fy, ...
resp. The upper part of the figure highlights the transitions used in absence of
interruptions and the lower part focuses on transitions exploited by interruption.

5.2 Weak Bisimilarity Result

In the following, we write p N q if (p,q) € (5)*. Moreover, for p # T we write

P A q if there exists p/, ¢’ such that p’ & ¢/ and (p,p), (¢,q) € (Z)*.
Definition 3. Let (S1,L,T1) and (Sa, L, T) be two LTSs. A relation R C Sy x
Sy is a weak bisimulation if whenever (s1, s2) € R, then:

1. if s1 £, s then there exists sy such that s, 4, sy and (s}, s5) € R; and

2. if sy Lo sl then there exists s such that s, A sy and (s}, s5) € R.
The largest weak bisimulation is called weak bisimilarity and denoted by ~.

We shall let the marking graph of the net Np play the role of (S, L, T7) and
(the fragment of) the LTS reachable from process P play the role of (So, L, T5),
so that = relates markings of Np with processes P’ reachable from P. More
precisely, we assume the only observable actions in the marking graph are those
corresponding to activities a € A; all the other transitions are labelled with 7.

‘We have seen that the Petri net semantics associates to a compensable process
P a corresponding net Np that exchanges tokens with the context via six places.
The places Fi, Ry, I; are used to receive tokens in input from the environment,
while the places Fs, Ro, I5 are used to output tokens to the environment. Nets
are usually considered up-to isomorphism, therefore the names of their places
and transitions are not important, as long as the same structure is maintained.
However, to establish the behavioural correspondence between our LTS for P

11



and the marking graph of the net Np we need to fix a particular naming of
the elements in Np. Moreover, the same activity can occur many times in a
process and every instance corresponds to a different element of the net. One
way to eliminate any ambiguity is to annotate processes with the names of the
places to be used for building the interface of the corresponding net (before the
translation takes place). The proof of the main theorem requires some ingenuity
to fix the correspondence between net markings and process terms. Here, we just
mention that we write PQ(Fy, F5, Ry, Ro, I1, Is) meaning that process P (and
all its sub-processes) has been annotated in such a way that the names of the
places in the “public interface” of the net Np are FY, Fo, Ry, Ro, I, I>.

Theorem 1. Let Np be the Petri net associated with the tagged compensable
process PQ(Fy, Fo, Ry, Ro, I1, I5). Then, F1 = (&, P).

As an immediate consequence of the theorem and the main result of [6] the
correspondence to the denotational semantics given in § 2 follows.
For any sagas S we let (S) denote the set of weak traces in our LTS semantics:

(S) 2 {ar...an(v) | 381, ..., Sn, 01y sOn1. 3,8 B0y, 2. LB 3,8, AU
{ai...an()) | 381, ..; 80,00, s Opn_1. 0,8 B 01,8, 2 - BR,S, A}
Actually, under the assumption that compensation cannot fail, only success-

ful traces are present in (S) (as well as in [S]; for any ¢ € [1,5]). This is not
necessarily the case for the last extension in § 7.

Corollary 1. For any sagas S = {{P]} we have [S]5 = (S). Moreover, if P is
sequential then [S]; = (S) fori € [1,5].

6 Dealing with Other Compensation Policies

In this section we show that we can tune the LTS semantics to match and
improve other compensation policies discussed in the literature.

Notification and distributed compensation. To remove the possibility to
interrupt a sibling process before it ends its execution we just redefine the “ex-
tract” predicate by removing most cases, so that the interrupt is possible only
when the process is “done”.

P~ P P~ P! Q~ Q'
[C]~[C] P$C~ P'$C  P|Q~ P'rlpQ P|Q~ PylxQ’

Now, the rule INT is only applicable if the interrupted process consists of an in-
stalled compensation [C]. The new extract predicate only changes the subscripts,
not the process: since any interrupted thread is “done” we never inhibit sibling
forward activities upon a fault.

We call this strategy Notification and distributed compensation (policy #6)
to emphasize the fact that siblings are notified about the fault, not really inter-
rupted. Since compensations are distributed and the fault is not observable, it
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can happen that a notified thread starts compensating even before the sibling
that actually aborted. However, contrary to policy #2, a thread cannot guess
the presence of faulty siblings, so it is not possible to observe a forward activity
of the only faulty thread after a compensation activity of a notified thread. Thus
policy #6 defines a variant of policy #2 where unrealistic traces are discarded.

Proposition 1. Let ()¢ denote the set of weak traces generated by policy #6
above. Then, for any sagas S = {{P]} we have [S]1 C (S)¢ C [S]2. Moreover, for

some P the inclusion is strict, while for sequential processes [P]1 = (P)s = [P]2-

Interruption and centralized compensation. To move from distributed to
centralized execution we simply strengthen the premise in PAR-L (and PAR-R):

(PAR-L)

(01 =BV dng(Po,|0,Q) V ~dng(P))  T'F oy, P25, P
FFJ,P(H\UQQi)crrloi,P’a”@Q

Thus a process can only be executed if it is either moving forward (o7 = @) or
the complete parallel composition finished in a failing case (dng(Py,|s,@)) Or
the thread has not yet finished its execution in a failing case (—dng(P)).

Proposition 2. Let ()5 denote the set of weak traces generated by policy #3
above. Then, for any sagas S = {[P]} we have [S]3 = (S)s.

No interruption and centralized compensation. By combining the above
changes we recover policy #1.

7 Possible Extensions

Choice and iteration. Our first extension adds choice P+ P and iteration P*
operators to the syntax for processes The corresponding rules are in Fig. 10. In a
process P + @ one option is nondeterministically executed while the alternative
is dropped. For iteration, a process P* either executes a 7 and finishes or acts
as the sequential composition P; P*. Note that, while it is easy to account for
choice and iteration in the denotational semantics, the extension is harder for
the Petri net semantics. For example, let us consider the sequential process
(A+ A" + B + B')*; throww. At any iteration, either A or B is executed and
thus either A’ or B’ is installed. When the iteration is closed, the installed
compensation may be any arbitrary sequence of A’ or B’, an information that
cannot be recorded in the state of a finite (safe) Petri net.
Failing compensations. One important contribution of [7] was the ability to
account for the failure of compensations. Here we discuss how to extend our LTS
semantics accordingly.

For compensations, we extend the states with 2 = {1, X}, modify the sources
/ targets from C' to [, C in the rules we have presented, change the rule C-ACT as
below and add the rules F-C-SEQ, C-PAR-L and C-PAR-R that record the execution
of a faulty compensation in the target of the transition:
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dne(P + Q) 2 dno(P) A dno(Q)  dny(P*) £ dn,(P)

P+ @~ [nil] P* ~ [nil]

(CHOICE-L) (E-ITER) (s-ITER)

r-m,pP-=20 P r'-m,P =25, P A-dn(P)
FFE,P+Q >0, p TFEP— il rrm P 2@ P;P*
(CHOICE-R) (A-ITER) (s-1TER2)

rrm,Q 2 0,Q r-m,P-5R P r'em P2 @, P Adn(P)

rrm,P+Q >0,Q I'tm,P SR P Tk, P26, P Semp(P)

Fig.10: LTS for choice and iteration

(c-AcT) (F-C-SEQ) (C-PAR-L)

Awsro r-o,0 2 xc r-mc -2 qc
A .
remA—=onil rrm oD KC T'Fa,CD -2 0,C'|D

For compensable processes, we extend the state in LTS to 2F = {[@, X, ®},
where the symbol # denotes the fault of a compensation, i.e., a non recoverable
crash. As a matter of notation for meta-variables, we let o,... € 2 and § €
{X,@m}. When executing a compensation [C], we must take into account the
possibility of a crash (coMpP-1 and comp-2). Moreover, if we generate a crash,
previously installed local compensations will not be executed (C-STEP):

(comp-1) (comP-2) (c-STEP)

rrme,C 5@, I'fo0-5RC T'FRP-S@ P
IF6,[C]-256,[C T'F6,[C) - ®,[C I'FR PSC 2@, P

(Note that in the premises of rules COMP-1 and COMP-2 we intentionally put
[ in the source of the transition, because the LTS for compensations has only
such states as sources of transitions.) The other rules for sequential Sagas stay
as before. For parallel composition we redefine the predicate dn such that

dng(Pa|nQ) = dng(P) A dng(Q)  dns(Ps,[5,Q) = dns(P) A dns(Q)

where 6,071,062 € {X,®}. The rules PAR-L/PAR-R are as before however for any
meta-variable we allow also @ as a possible value, i.e., 0,01,09,07,0, € 2%,
Thus we have to extend the operation M such that B Mo = &. The rules INT-
L/INT-R are also applicable in a global & state.

The rules guarantee that in case of a crash parallel branches can execute
their compensations as far as possible, only previously installed compensation
(i.e., before the parallel composition) are not reachable anymore.
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8 Concluding Remarks

We presented an LTS semantics for the Sagas calculus. Using a weak bisimula-
tion we investigated the correspondence with previously defined Petri net and
denotational semantics. Moreover, with small changes we can deploy a different
policy for the execution of concurrent compensable processes. We have shown
suitable semantics extensions enriching first the syntax and then the LTS itself.
This work is a first step towards a flexible tool for specifying and verifying
LRTs. While previous semantic definitions for Sagas gave a formal model for
LRTs, the LTS semantics is more suitable for custom property verification, like
model-checking. The LTS has been implemented in Maude, a language based on
rewriting logic and including tools like an inductive theorem prover or an LTL
model-checker (http://maude.cs.uiuc.edu). In the end we would like to integrate
the specified extensions as well as the option to choose which compensation
policy should be used together with a high-level dynamic logic for validation
and verification. Some promising steps in this direction are described in [5].
Related work. One of the first attempt to a process algebraic formalization
of LRTs is StAC [9], from which both Sagas [7] and cCSP [10] later originated.
A small-step semantics for cCSP was defined in [11]. It relies on the centralized
compensation policy, but is otherwise similar to our approach. Using a synchro-
nizing step at the end of the forward flow the success or failure of the transaction
is published, in case of a failure the compensations are executed as normal saga
processes (outside the transaction scope). In our approach the information about
a failure is kept in the state and compensations are executed inside the saga.
Compensation for a simple class of nets, called workflow nets, has been stud-
ied in [1]. It is simpler than the net semantics of [6] as it does not account for
interruption after a fault, but it is less elegant because a compensated run may
end with some remaining tokens. A dynamic policy for compensation is defined
in [20], where the compensation of a concurrent process depends on the order of
the interleaving of the forward actions, i.e. there is a unique compensation stack
that is updated by each action. The above studies have been applied to provide
formal support to standard technologies for web services [12,25,15,2] and to
develop provably correct engines for transactional workflows [4, 18,22, 19].
Finally, we mention other approaches that focus on the interaction between
processes. Notable examples are: webm [23] and derr [26] that extend the -
calculus, cJoin [8] that extends the Join calculus, CommTrans [14] for CCS and
the reversible process calculi in [13,24,21], where the special case of perfect
roll-back is investigated. We refer to [16] for some conceptual comparisons.
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