
1

Compositional Generative Mapping for

Tree-Structured Data - Part II: Topographic

Projection Model
Davide Bacciu, Member, IEEE, Alessio Micheli, Member, IEEE, and Alessandro Sperduti, Senior Member, IEEE

Abstract—We introduce GTM-SD, the first compositional gen-
erative model for topographic mapping of tree-structured data.
GTM-SD exploits a scalable bottom-up hidden tree Markov
model, introduced in Part I of this paper (D. Bacciu, A.
Micheli, A. Sperduti. ”Compositional Generative Mapping for
Tree-Structured Data - Part I: Bottom-Up Probabilistic Modeling
of Trees”, IEEE Trans. on Neural Netw. and Learn. Sys., In
Press), to achieve a recursive topographic mapping of hierarchical
information. The proposed model allows an efficient exploita-
tion of contextual information from shared substructures by
a recursive upward propagation on the tree structure which
distributes substructure information across the topographic map.
With respect to its non-compositional generative counterpart,
GTM-SD is shown to allow the topographic mapping of the full
sample tree, that includes a projection onto the lattice of all
the distinct subtrees rooted in each of its nodes. Experimental
results show that the continuous projection space generated by
the smooth topographic mapping of GTM-SD yields to a finer
grained discrimination of the sample structures with respect to
the state-of-the-art recursive neural network approach.

Index Terms—Generative Topographic Mapping, Tree struc-
tured data, Recursive bottom-up processing, Hidden Tree Markov
Model, Self Organizing Map

I. INTRODUCTION

Effective information visualization is of paramount im-

portance for facilitating the understanding of complex data,

especially when dealing with non-flat information such as

in tree-structured domains. Tree-structured information is a

particular form of relational data composed of atomic pieces

of information (the nodes) that are in a hierarchical ancestor-

descendant relationship. As such, the composing atomic pieces

need to be considered in the context of their relatives, rather

than in isolation, in order to capture the full semantics of the

compound data. In particular, taking into account the hierarchi-

cal nature of tree-structured information, it is straightforward

to consider evaluating a node in the context given by its direct

descendants, i.e. its children.

Such an approach has the advantage of being coherent

with the recursive organization of tree-structured information,

where simpler substructures are located at the bottom of the

tree (the simplest substructures being the leaf nodes) and are

composed, at higher levels of the hierarchy/tree, to realize

more complex compound entities (the most complex being

the complete tree). By considering a node in the context of

its children, we are evaluating a complex structure, rooted

on the node, in terms of the knowledge acquired on the

substructures rooted on its children. Such a property is defined

as compositionality and has clear computational advantages

typical of a divide-et-impera approach. For instance, a learn-

ing/inference procedure can incrementally process a structure

by, first, tackling with the less articulated substructures at the

bottom of the tree and, then, reusing the extracted information

to address the complexity of the higher level nodes. Within

the scope of visualization problems, compositionality has the

additional advantage of providing a deeper insight into the

structure being considered. In particular, a truly compositional

approach allows not only the visualization of the tree as a

whole, rather, it should permit to project each composing

substructure in an orderly manner, thus giving a clearer picture

of the regularities in the data, e.g. by highlighting shared

substructures among the trees.

In this paper, we present the first generative approach to

compositional topographic mapping of tree-structured data.

This is achieved by learning an efficient, though approximate,

process that generates sample structures from a bottom-up

perspective, i.e. from the leaves to the root of the tree. Compo-

sitionality, in fact, can only be achieved with a bottom-up ap-

proach, such that the tree structure is processed from the leaves

to the root with increasing levels of structure complexity.

However, the probabilistic modeling of a bottom-up children-

to-parent relationship is computationally expensive due to its

ariety, i.e. where the relationship describes the association

of L nodes to their common ancestor. Instead, top-down

relationships can be efficiently modeled as multiple parent-

to-child relationships of ariety 2, as they associate a parent

with each child independently. This has, so far, prevented

the development of compositional probabilistic approaches for

hierarchical data, which has only been dealt with using top-

down generative models [1]. Here, we define a compositional

generative process by exploiting the probabilistic model for

trees presented in Part I of this paper [2]. This process is

constrained to follow a topological ordering by chaining the

generation of the tree substructures to points on a latent

topographic map [3], yielding to a topological mapping for

each sample tree together with an implicit projection of each

distinct subtree in the structures under consideration.

Several works (see [4], [5] for a review) have addressed

compositional visualization of structured data from a neu-

ral network perspective, in particular by resorting to recur-

rent extensions of the Self Organizing Map (SOM) (e.g.

SOMSD [6]). Recurrent neural architectures, in fact, can

deal with tree-structured data as they naturally exploit the

recursive/hierarchical aspect of such information. However,
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no probabilistic compositional model has been proposed until

now and, only recently, [7] has introduced a non-compositional

generative approach for structured data visualization, known as

GTM-HTMM. The idea underlying GTM-HTMM is to extend

the Generative Topographic Mapping (GTM) [3] from flat i.i.d

samples to independently distributed trees. This is obtained

by exploiting the GTM latent space centers as sources for a

collection of Hidden Tree Markov Models (HTMMs) [8] that

are, in turn, responsible for the top-down generation of the

observed input trees, starting from the root and ending up to

the leaves, via state transitions from the parent to the children

nodes described by the hidden state dependency matrix. In

GTM-HTMM, every tree is treated as an atomic entity such

that only the tree as a whole is associated to a projection onto

the lattice. Indeed, such an approach is not compositional, as

top-down tree generation entails that a node is evaluated in the

context given by its parent: therefore, an hidden state captures

little information concerning the co-occurrence of particular

substructures in its child subtrees.

Conversely, by taking inspiration from the recursive neural

approach [6], we introduce a GTM for Structured Data (GTM-

SD) where single nodes, instead of full trees, are generated in

a bottom-up fashion by different latent points on the lattice.

This is done similarly to how the GTM Through Time [9]

deals with the topographic mapping of sequences. Thanks to

the bottom-up approach, it is possible to propagate structural

information across the tree structure, so that an ancestor node

effectively captures dependency information concerning its

descendants. The GTM-SD model is realized by exploiting

the Bottom-up Hidden Tree Markov Model with Switching

Parents approximation (SP-BTHMM) that has been introduced

in Part I [2]. This model introduces an approximation of the

bottom-up transition, i.e. from the joint state of the children

to the parent, in terms of a mixture of pairwise child-to-parent

transitions, thus making learning computationally feasible and

scalable also for trees with large out-degree.

A preliminary version of this work has been published in

[10]: here we present an extended version providing an in-

depth introduction to GTM-SD as well as an extended experi-

mental assessment, comprising a larger number of benchmarks

and a more extensive comparative analysis with the state-of-

the-art. The remainder of the paper is organizes as follows:

Section II briefly recalls the notation introduced in Part I

[2] for representing tree-structured data and reviews the main

neural and generative approaches to the topographic mapping

of non-flat data. Section III, after a brief summary of the SP-

BHTMM from Part I [2], describes the proposed compositional

model for the probabilistic topographic mapping of trees.

In Section IV, we experimentally assess the performance of

GTM-SD with respect to state of the art neural and generative

models for topographic mapping of structured data, i.e. GTM-

HTMM [7] and SOM-SD [6]. Section V discusses the outcome

of the experimental evaluation and concludes the paper.

II. BACKGROUND

A. Definitions and Notation

In the following, we briefly recall the notation for repre-

senting tree-structured data introduced in Part I: details of

the notation can be found in [2]. As in Part I, we deal with

rooted trees, denoted as yn, that are connected acyclic graphs

consisting of a set of nodes Un = {1, . . . , Un} such that a

single vertex is denoted as the root and any two nodes are

connected by exactly one simple path. The index n is used to

denote the n-th tree in a dataset of N structures and will be

omitted for notational simplicity when the context is clear.

The terms u, v ∈ Un are used to denote generic nodes of a

tree yn, while pa(u) denotes the parent node of u and chl(u)
is the l-th child of node u. Any two nodes u and v sharing

a common parent pa(u) = pa(v) are called siblings, while a

node without children is called a leaf. We denote the set of

the leaf nodes of the n-th tree as LFn. The term yu is used to

denote the subtree of y rooted at node u: in particular, y1 is the

whole tree and ychl(u) denotes the l-th child subtree of a node

u. Additionally, we use the term y1\u to denote the tree, rooted

at 1, without the yu subtree. For the purpose of this paper,

we assume trees to have a finite maximum outdegree L, i.e.

the maximum number of children of a node; these structures

are also referred as L-ary trees. Further, we consider only

labeled trees, where each node u is associated to a label yu, of

dimensionality D ≥ 1, which can be categorical or continuous.

B. Related Models

Unsupervised learning has long since emerged as a fun-

damental neural network paradigm for flat data visualization

and exploration, especially throughout the use of models

allowing topographic projection of high dimensional data into

low-dimensional lattices. Among the best known models, in

this respect, are the Self-Organizing Map (SOM) [11] and

its probabilistic counterpart Generative Topographic Mapping

(GTM) [3], which have inspired two prominent approaches to

the unsupervised processing and visualization of non-vectorial

information, that are the recursive neural approach [4], [5]

and the generative probabilistic model [7]. A third approach

exploits extensions of both SOM and GTM using kernel

metrics for structured data.

The recursive neural approach has been formalized in

[4], [5] by providing an organic general framework covering

several, independently proposed, SOM models for sequential

and structured data. The key idea of the recursive approach is

to capture the structure of the data by exploiting a recursive

context to represent the information processed until the current

step. This results in recurrent self-organizing models with

a common recursive dynamics that adapts the context as

computation unrolls on the structure of the input data, differing

only in the way in which such context is internally represented

by the neural map. For instance, the Temporal Kohonen map

(TKM) [12] and the Recurrent SOM (RSOM) [13] originally

extend the standard SOM to deal with sequential data. Both

models introduce self-recurrent connections that, given the

current element of a sequence, provide contextual information

regarding the neuron response to the previous element in

the sequence. The RecSOM [14], [15] enlarges the context

by allowing each neuron to receive feedback connections

propagating past activations from all the units in the map.

To this end, each RecSOM neuron is equipped, in addition
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to the standard SOM weight wi, with a context vector ci
which stores the past activation profile of the whole map,

indicating in which sequential context the vector wi should

arise. The SOM for Structured Data (SOM-SD) [6] further

extends topographic mapping to deal with more articulated

contexts and tree structured information with a fixed outdegree

L. Given a node u in the tree, SOM-SD processes its label

yu within the context given by the L child subtrees of u,

i.e. ych1(u), . . . ,ychL(u). Similarly to RecSom, each SOM-SD

neuron is equipped with a number of vectors ci1, . . . , c
i
L, that

encode context as the indices of the winner neurons for the

L subtrees of the current node u. Tree processing proceeds

bottom-up from the leaves to the root, recursively computing

the winning neuron index I(yu), given a tree yu with root

label yu, as

I(yu) = argmin
i

{

µ1‖yu − wi‖
2 + µ2

(

‖I(ych1(u))− ci1‖
2+

· · ·+ ‖I(ychL(u))− ciL‖
2
)}

.

(1)

Leaves do not have child subtree, hence are assigned an empty

context, typically set to (−1,−1), which is the same used

to denote a missing child. The Merge SOM (MSOM) [16]

defines a context vector that intuitively combines the sequence

history by referring to a merged form of the winner neurons

properties, including the weight vector of the previous winner

and the context vector computed for the previous element of

the sequence. Further, MSOM allows to take into consideration

arbitrary lattice topologies such as Neural Gas [17].

The generative probabilistic approach stems as an extension

of the Generative Topographic Mapping (GTM) [3], which has

been introduced as a principled alternative to SOM for the

visualization and clustering of high-dimensional real-valued

data. The key idea of the GTM is to learn a generative model

for the data by fitting a mixture of probability density functions

whose parameters are controlled by an hidden low-dimensional

space where data is projected. For instance, the standard

GTM models the distribution of the original high-dimensional

data yn ∈ R
D as a mixture of Gaussians N (y|Γ(xc), σ),

whose mean Γ(xc) is parameterized by latent variables xc

lying on a mono/bi-dimensional lattice (the hidden space),

while the spherical variance σ is shared among the centers

xc. The nonlinear transformation Γ : V → R
D serves as

mapping from the continuous latent space V to the data space

R
D. Topographic organization is achieved by constraining

the means Γ(xc) to lie on a non-Euclidean manifold em-

bedded in data space. Like SOM, the generative topographic

mapping has been first extended to sequential data by the

GTM Through Time (GTM-TT) model [9]. In the original

GTM, observations yn are assumed to be independent and

identically distributed (i.i.d.). Conversely, GTM-TT assumes

that two adjacent elements ynt−1 and ynt of a sequence yn

have a Markovian dependence and it describes the generative

process of a sequence yn = yn1 , . . . , y
n
T by an Hidden Markov

Model (HMM) whose hidden states are constrained to lie on

a lattice in the latent space. In a sense, the hidden states of

the HMM serve as the neuron indices in the recurrent neural

paradigm, providing a context for the current sequence element

ynt .

Recently, [7] has proposed an extension to the GTM that

deals with tree-structured data by exploiting an Hidden Tree

Markov Model (HTMM) [8] as a generative model for tree

structured data. Differently from GTM-TT, the approach in

[7] (referred as GTM-HTMM, in the following) considers each

tree yn as an atomic i.i.d. sample, i.e. similarly to how flat

observations are dealt with in the standard GTM. The emission

probability of each i.i.d. tree is then modeled by a constrained

HTMM distribution that plays the same role as the constrained

Gaussian emission in the standard GTM for vectorial data.

Such a process ensures that a tree yn is generated as an atomic

entity from a single point of the GTM-HTMM latent space.

The likelihood of the corresponding mixture model is

L =
N
∏

n=1

C
∑

c=1

P (xc)P (yn|xc) (2)

where P (yn|xc) is the tree distribution described by an

HTMM parameterized by the latent points xc. The smooth

mapping Γ is used, as in flat GTM, to map latent points to

the hidden tree models in order to ensure their topological

organization. Similarly to an HMM for sequences, the HTMM

models an observed tree by a generative process defined by

the hidden state variables {Qu} which take values from the

discrete set of hidden states {1, . . . ,K} and that follows the

same indexing as the observed node u (which is the equivalent

for trees of the time instant t in sequential data). Differently

from the recursive neural approach, the HTMM [8] proceeds

in a top-down fashion by assigning an empty context to the

root, while each internal and leaf node u is evaluated in

the context provided only by its parent pa(u). Hidden states

are characterized by a prior distribution P (Q1 = i) for the

root node (i.e. corresponding to the empty context), a state

transition probability P (Qu = i|Qpa(u) = j), modeling the

contextual relation between a node u and its parent, and an

emission distribution P (yu|Qu = i), modeling node label

generation. The Markovian assumption for a top-down HTMM

dictates that the current state of a node u depends solely on

that of its parent pa(u). Given an observed tree yn and the

latent point assignment xc, the parameterized GTM-HTMM

distribution in eq. (2) factorizes as

P (yn|xc) =
∑

Q={1,...,K}Un

P (Q1|xc)p(y1|Q1, xc)

×
Un
∏

u=2

P (yu|Qu, xc)P (Qu|Qpa(u), xc)

(3)

where the sum marginalizes over the hidden states assignment

Q = Q1, . . . , QUn
. For notational simplicity, we use Qu as

a short form for the assignments Qu = i when this is clear

from the context. By inserting this result in eq. (2), it yields the

likelihood for the GTM-HTMM model [7]. Due to the latent

point parametrization, the GTM-HTMM model cannot directly

estimate the HTMM state and emission probabilities; rather, it

has to obtain them from the smooth mapping Γ(xc), resulting

in estimates that need to be passed through a softmax function

in order to be transformed into probabilities [7]. Summarizing,
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the GTM-HTMM associates an hidden tree generative model

to each latent point xc and constraints its parameters by means

of the smooth mapping Γ. For each observed tree, it obtains

the responsibility of that tree being generated by each of the

HTMMs connected to a latent point: then, it projects the tree

onto the map at the mean of the posterior distribution over xc,

that is the average of the latent centers xc weighted by the

responsibilities.

The kernel metrics approach exploits the so-called kernel

trick to define distance metrics for non-vectorial data that can

be used to replace the Euclidean metric in the activation func-

tion of the standard SOM as well as in the Normal distribution

of the GTM. For instance, the Kernel SOM (KSOM) [18] is a

batch algorithm exploiting diffusion kernels to induce a metric

for graphs, which include trees as a special case. As with most

of the kernel-based approaches, the KSOM does not learn an

explicit graph prototype, rather the neuron codebook is used

to store the parameters of a linear combination of the input

data mapped into the Hilbert space induced by the diffusion

kernel. Recently, two groups [19], [20] have independently

proposed a substantially equivalent kernelized GTM for graph

data which redefines the components of the GTM Gaussian

mixture to use a kernel induced metric in place of the standard

Euclidean norm. These two models are symmetrically defined,

one (named Kernel GTM (KGTM) [20]) in terms of graph

similarity and the other (named Relational GTM (RGTM)

[19]) in terms of a matrix of graph dissimilarity, but they can

be reformulated so that they only differ for a constant term.

Kernel-based models and the GTM-HTMM share a common

approach to data processing and representation, as every

structure is considered to be an atomic i.i.d observation, so

that a topographic projection can only be associated to the

structure as a whole. Recursive models, on the other hand,

process structured information by focusing on each single node

composing the graph, allowing their topographic projection on

the map while considering their associated context. Related

to this, it is a fundamental property of recursive approaches,

known as compositionality, which refers to the ability in

exploiting the modular nature of the data by first tackling

with the less articulated substructures, to allow processing of

compound structures by composing the contextual information

obtained on their constituents. Another property, which can

be used to characterize the models is the adaptivity of the

metric they use to evaluate structures. Kernel-based models

[19], [20] are characterized by a non-adaptive metric, since

this is not learned from the data, whereas it is set a priori

when choosing the graph kernel. For instance, a particular

kernel K1 can weight structural discrepancies more than

label discrepancies, while another kernel K2 might behave

oppositely. Clearly, choosing the most suitable kernel becomes

a task and data dependent choice. Conversely, models with an

adaptive metric, such as the recurrent neural and generative

probabilistic approaches, determine the best suited distance

metric by inferring it from the characteristics of the structures

in the dataset.

Table I summarizes the properties of the approaches dis-

cussed so far in this section. SOM-SD and MSOM are the

sole models that have specifically been proposed to deal with

TABLE I
SUMMARY OF TOPOGRAPHIC MAP MODELS FOR NON-VECTORIAL DATA

VISUALIZATION EVALUATED IN TERMS OF COMPOSITIONALITY,
ADAPTIVITY OF THE STRUCTURE METRIC, AS WELL AS ON TARGET

STRUCTURES (I.E. SEQUENCES OR TREES).

Model Adaptive Compositional Sequence Tree

TKM [12]
√ √ √

×
RSOM [13]

√ √ √
×

RecSom [14]
√ √ √ ×

SOM-SD [6]
√ √ √ √

MSOM [16]
√ √ √ √

GTM-TT [9]
√ √ √

×
GTM-HTMM [7]

√
×

√ √

KGTM [20], RGTM [19] × ×
√ √

tree-structured data while retaining both compositionality and

adaptivity. RecSOM has been originally proposed to deal with

sequential data, but it has recently been used also with tree-

structured information [21]. GTM-HTMM fails to achieve

compositionality due to the top-down Markovian assumption

in its HTMM. A top-down tree generation dynamics, in

fact, entails that a node is evaluated in the context of its

ancestors rather that its descendants, hence its hidden state

cannot be modeled as a function of the co-occurrence of

particular substructures in its child subtrees. Therefore, even

if hidden states can be mapped to the latent space centers

(like with GTM-TT), none of them can be chosen as the

representative of the tree, i.e. as the projection of the whole

tree on the topographic map. As a consequence, the GTM-

HTMM needs to associate each point in the latent space to

a separate HTMM, considering trees as atomic entities rather

than compound objects. Following the recursive neural ap-

proach, compositionality can be achieved by taking a bottom-

up approach which processes information recursively from

the leaves to the root. In probabilistic terms, this correspond

to a bottom-up generative dynamics where state transitions

are performed from the hidden state of the children to the

parent node. Clearly, such an approach allows evaluating a

node in the context of its descendant subtrees. By this means,

it is possible to propagate structural information across the

tree structure, so that a single node can effectively collect

dependency information concerning the whole tree rooted in

it. In the remainder of the paper, we describe the details of

a novel bottom-up hidden tree Markov model, showing how

it can effectively be used to define compositional generative

mapping model for tree structured data.

III. GENERATIVE TOPOGRAPHIC MAPPING FOR

STRUCTURED DATA (GTM-SD)

In this section, we define the compositional model for the

probabilistic topographic mapping of hierarchical information

named Generative Topographic Mapping for Structured Data

(GTM-SD). GTM-SD models an input tree similarly to how

GTM-TT [9] represents sequences by means of HMM. We

interpret a tree yn as a collection of constrained observations

{ynu} following the Markovian dependencies determined by

the structural parent-children relationships. As discussed in
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Part I [2], we can describe the generative model for such data

using an approximated hidden Markov model for trees, named

Switching Parent Bottom-up Hidden Tree Markov Model (SP-

BHTMM). Before delving into the details of the GTM-SD

model, we briefly recall the basics of the SP-BHTMM model,

whose details can be found in [2].

A. Summary of the SP-BTHMM

HMMs for trees model data by a generative process defined

by a set of hidden state variables {Qu} associated to a state

transition dynamics determined by a conditional probability of

a given order L. A Bottom-Up Hidden Tree Markov Model

(BHTMM) defines a generative process that propagates from

the leaves to the root of an observed tree yn, thus modeling

the structural and contextual parent-children relationships in

the tree by state transitions from the hidden state of the child

nodes to the parent. This is modeled by a joint state transition

probability P (Qu = i|Qch1(u) = j1, . . . , QchL(u) = jL)
assuming that each node u is conditionally independent of

the rest of the tree when the joint hidden state of its direct

descendants Qchl(u) = jl is observed.

A bottom-up state transition ensures compositionality, as

simpler substructures (i.e. closer to the leaves) are processed

before more articulated trees, and allows to concentrate the

largest amount of contextual information in the root node.

However, dealing with a joint bottom-up state transition

quickly becomes computationally infeasible as the maximum

outdegree L grows, since the joint state transition distribution

is order of CL+1. For this reason, in [2] we have proposed

the Switching Parents BHTMM approximation (denoted as

SP-BHTMM), that exploits an approximation of the joint

transition matrix from L children as a convex combination

of L simpler transition matrices. To this end, we introduce

an unobserved (latent) variable Su ∈ {1, . . . , L}, named

switching parent, such that

P (Qu|Su = l, Qch1(u), . . . , QchL(u)) = P (Qu|Qchl(u)). (4)

In other words, the knowledge of the switching parent assign-

ment Su = l allows only the l-th child chl(u), of a non-leaf

node u, to have influence on the hidden state of u. The latent

variable Su can be introduced in the joint state transition by

marginalization, yielding

P (Qu|Qch1(u), . . . , QchL(u))

=
L
∑

l=1

P (Qu, Su = l|Qch1(u), . . . , QchL(u))

=
L
∑

l=1

P (Su = l)P (Qu|Qchl(u)),

(5)

where we have used the assumption that Su is independent

of Qch1(u), . . . , QchL(u). Eq. (5) states that the joint state

transition can be approximated by a mixture of pairwise state

transitions P (Qu = iu|Qchl(u) = ichl(u)) from the l-th child

chl(u) to its parent u, where the influence of the l-th child

on the state transition to node u is determined by the weight

P (Su = l). The likelihood of the SP-BHTMM model is

obtained by inserting the result of eq. (5) in place of the joint

state transition, yielding to

L =

N
∏

n=1

∑

i1,...,iUn

∏

u′∈LFn

P (Qu′ = iu′)P (yu′ |Qu′ = iu′)

×
∏

u∈Un\LFn

P (yu|Qu = iu)

×

{

L
∑

l=1

P (Su = l)P (Qu = iu|Qchl(u) = ichl(u))

}

,

(6)

where P (Qu = i) is the prior distribution for the hidden states

of the leaf nodes. As in the top-down HTMM discussed in

Section II-B, each hidden state is characterized also by an

emission model P (yu|Qu = i) describing the distribution of

node labels yu associated to the i-th hidden state.

The SP-BHTMM model is trained by Expectation-

Maximization (EM) applied to the likelihood in eq. (6),

completed with latent indicator variables znui and tnul modeling

the (unknown) hidden state and switching parent assignments,

respectively. In particular, znui = 1 if node u in the n-th tree

is in state i and is 0 otherwise (similarly for tnul, see [2] for

details). By means of such indicator variables, it is possible

to reformulate the likelihood in eq. (6) into the equivalent

complete likelihood

Lc(θ;Y,Z) =

N
∏

n=1

∑

i1,...,iUn

∏

u′∈LFn

znu′iu′

(

πiu′
× biu′

(yu′)
)

×
∏

u∈Un\LFn

znuiubiu(yu)

{

L
∑

l=1

tnulz
n
chl(u)ichl(u)

(

ϕl ×Al
ij

)

}

,

(7)

where πi = P (Q = i) is the multinomial prior probability,

bi(y) = P (y|Q = i) denotes the task-dependent emission

distribution (e.g. multinomial, Normal, mixture of Gaussians,

. . . ), ϕl = P (S = l) is the multinomial switching parent prior

and Al
ij = P (Q = i|Qchl

= j) is the position dependent

transition distribution (i.e. it depends on the position of the

l-th child).

B. The GTM-SD Model

GTM-SD exploits the SP-BHTMM model introduced in

Part I [2] to learn a recursive topology-preserving projection

of trees with continuous or categorical labels by means of a

constrained mixture of Gaussian (resp. Multinomial) emission

models. In order to build a topographic mapping on the

top of the SP-BHTMM generative process in eq. (6), we

need to constrain the hidden states of the Markov model to

follow a topographical organization, similarly to how GTM-

TT constrains the states of an HMM.

A generic GTM setting [3] comprises a continuous Eu-

clidean latent space V (the map) of dimension q (typically

set to 2 for visualization) that generates the parameters of

an emission model through the use of the nonlinear smooth

mapping Γ : V → P , where P is the parameter space. For

computational tractability, such a nonlinear transformation is
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defined in terms of a discrete set of C latent centers xi ∈ V
arranged to form a squared equispaced grid on the latent space

V . Each of the latent point generates the parameters of a

different emission model through the mapping Γ(xi), which

constrains them to lie on a manifold S ⊆ P during learning.

The GTM-SD approach assumes that the hidden states Qu

of the nodes in a SP-BHTMM model are indexed by the C

latent centers of a GTM map. Therefore, Qu = i indicates that

the u-th node is assigned to the i-th hidden state which, in turn,

is associated with the latent center xi ∈ V , which is a point on

the GTM topographic map. Figure 1 graphically summarizes

the key idea of the GTM-SD: given an input tree, modeled

by a SP-BHTMM, we assume to have processed the tree in

bottom-up fashion up to nodes 2 and 3, that are the left and

right child of the root, respectively. In particular, we assume

that such children have been assigned to hidden state j and

k, respectively. At the next step, we probabilistically assign

an hidden state i to root node 1 based on the state transition

probability from j and k as well as based on the probability of

generating its label y1 through the emission model obtained

by the smooth mapping Γ(xi). Notice that the latent center

xi straightforwardly provides a projection on the map for the

root node and, hence, for the whole input tree.

The complete likelihood of the GTM-SD model follows

from (7) by introducing the latent-centers/hidden-states map-

ping, while constraining the parameters of the emission model

to be generated by the smooth mapping Γ. By recalling the

positional parametrization introduced in Section III-A and

by exploiting the indicator variables to rewrite the sum-

marginalization in eq. (7) as a more tractable product over

state assignments, we obtain the following GTM-SD complete

likelihood

logLc = log

N
∏

n=1

∏

u′∈LFn

C
∏

i=1

{

π
pos(u′)
i bi(yu′ |Γ(xi))

}zn

u′i

×

∏

u∈
Un\LFn

C
∏

i=1

C
∏

j=1

L
∏

l=1

{bi(yu|Γ(xi))}
zn
ui
{

ϕlA
l
i,j

}zn
uit

n
ulz

n
chl(u)j

(8)

that is similar to the SP-BHTMM formulation, except for the

dependency of the emission model bi(yu|Γ(xi)) on the smooth

mapping Γ.

Learning of the GTM-SD model is performed by Expec-

tation Maximization, by exploiting the reversed upwards-

downwards algorithm introduced for SP-BHTMM [2] for

estimating the posterior of the latent indicator variables

ǫ
l,n

u,chl(u)
(i, j) = P (Qu = i, Qchl(u) = j, Su = l|yn), (9)

that is the joint posterior probability of a node u in the n-

th tree being in state i while its l-th child is in state j.

The details of the reversed upwards-downwards algorithm

are presented in [2] together with an in-depth justification

for the learning equations. The key update equations and a

pseudo-code summarizing the algorithm for training the GTM-

SD model is reported in Appendix A of the Supplemental

Material. The update equations for the prior, the transition

Latent space

Input treeSP−BHTMM

Emission spaceΓ(xi)

xi

xk

xj

S

j

y5y3 y4

y3y2

y1

y2 y3

y1

k

i

Fig. 1. Generative dynamics of a GTM-SD mapping for an input tree modeled
by an SP-BHTMM. The topographic projection for the root node is determined
by the hidden state i, that is probabilistically assigned based on the hidden
states j and k of its left and right child. Emission for label y1 is determined
by the distribution with parameters Γ(xi) taken from the manifold S induced
by the smooth mapping.

and the switching parent distributions are identical to those on

the SP-BHTMM model [2].

The learning equations for the emission model are modified

to account for the dependency on the smooth mapping Γ.

Following the ideas in [3], the emission probability for a

generic real-valued label y is a Normal distribution whose

means µi are generated by Γ, i.e.

bi(y|Γ(xi)) = N (y|WΦ(xi), σ
2) (10)

where σ2 denotes the variance and µi = WΦ(xi) is the

Gaussian mean, that is the projection of the i-th latent point in

data space by the smooth mapping Φ(·) = [φ1(·), . . . , φP (·)]T

and the weight matrix W ∈ R
d×P . Each element of Φ is

a vector RBF function φ(·) : R
2 → R that is applied to

the latent point coordinates xi (usually bi-dimensional); the

resulting matrix Φ ∈ R
P×C has elements φpi = φp(xi) that

remain constant throughout the algorithm. The weight matrix

W and the variance σ2 (typically common to all the latent

points) are learned as in the standard GTM [3], i.e. given a

tree yn

Φ GnΦ
TW ′

n

T
= ΦRnYn (11)

where Rn = [ǫnu(i)] ∈ R
C×Un contains the state occupancies,

Yn = [(yu)
T ] ∈ R

Un×d is the observation matrix and Gn is

a C × C diagonal matrix such that gii(n) =
∑

u ǫ
n
u(i). The

updated W ′ on the full dataset can be obtained by solving eq.

(11) with respect to W ′
n
T

using standard matrix inversion and

summing up the contribution for each tree yn. Notice that the

terms YnR
T
n and Gn can be efficiently computed and cached

as part of the upwards-downwards algorithm. Variance update

is achieved, in its simplest univariate form, as

σ2 =

∑N

n=1

∑

u∈Un

∑C

i=1 ‖yu −W ′Φ(xi)‖ǫ
n
u(i)

∑N

n=1 Un · d
. (12)

Such an update can be extended to diagonal and full covariance

matrices along the lines of [22].
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The Gaussian noise model in eq. (10) is only suitable for the

analysis of trees with continuous labels, whereas in many real-

world scenarios it is required to deal with categorical/discrete

information, e.g. in structured XML document processing.

This case can be well modeled by assuming a multinomial

noise model in place of the Normal emission in eq. (10). By

following the ideas in [23], we define a Multinomial GTM-SD

(µGTM-SD) whose emission model is the multinomial

bi(y|Γ(xi)) =

K
∏

k=1

(mik)
yk (13)

where y is a K-dimensional label of a generic node defined

over a discrete K dimensional alphabet, such that its k-th

component yk denotes the number of occurrences of the k-

th symbol. Parameter mik defines the probability of the k-

th multinomial class (symbol of the discreet alphabet) for

the i-th hidden state, subject to
∑K

k=1 mik = 1 for each

i ∈ {1, . . . , C}. Again, to achieve topographic organization,

the means of the multinomial in eq. (13) have to be generated

by a smooth mapping from the latent space. This can be

attained by obtaining the mik values throughout a softmax

transformation of the form

mki =
exp(wkΦ(xi))

∑

k′ exp(wk′Φ(xi))
(14)

where each term wk is a row of the K ×P weight matrix W

and Φ(xi) is the P -dimensional vector of the smooth mapping

matrix Φ defined previously.

As opposed to the Gaussian noise model, the derivative

of eq. (8), with respect to the weight matrix W , has no

closed form solution for a multinomial emission [23]. This

is due to the nonlinear link function that is used in eq. (14)

to obtain the parameters of the Multinomial noise model.

The Generalized EM (GEM) approach in [23] addresses the

problem by allowing M-step updates that increase, instead of

maximizing, the GTM-SD log-likelihood. In particular, for the

Multinomial emission model, we obtain the following gradient

update

W (t+1) = W (t) + δ

N
∑

n=1

∆W (t)
n (15)

where δ is the learning step size, superscripts t, t+1 identify

current and updated parameters and where the contribution

from the n-th tree is

∆W (t)
n = [YnR

T
n −M (t)Gn]Φ

T . (16)

The i-th column of matrix M (t) = g(W (t)Φ) contains the

multinomial parameters [mki]
K
k=1 for the i-th latent point,

computed using (14). The gradient update in eq. (15) is used

to perform an inner learning loop in the M-step, where only

the matrix of the Multinomial distribution means M (t) needs

to be updated at each step of the inner learning loop.

The GTM-SD model defined by eq. (8) can be interpreted

as a twice-constrained mixture of Gaussian/Multinomials (de-

pending on wether eq. (10) or eq. (13) is used as emission

model). The first (emission) constraint is imposed by the GTM

approach and refers to the fact that the emission means are not

chosen freely, whereas they are forced to move on the manifold

induced by the smooth mapping. The second (state) constraint

refers to the Markovian organization that is enforced on the

latent space by the SP-BHTMM model, which is required

to model observations that are not i.i.d samples, whereas are

expected to have a complex causal relationship coherent with

the structural relationships in the trees.

C. Topographic Projection and Inference

The GTM-SD defines a continuous smooth mapping from

the tree-structured data space onto a topological map defined

by the latent points grid. The topological ordering imposed on

the map by the smooth mapping ensures that similar structures

will be projected to points that are close on the map. In this

sense, projecting a generic tree y on the map entails projecting

its root to a point onto the GTM-SD latent space by using its

hidden state assignment Q1. For instance, a posterior mean

approach maps the tree to the average of the latent point

centers xi weighted by the respective posterior probabilities

P (Q1 = i|y), that is

Xmean(y) =

C
∑

i=1

P (Q1 = i|y) · xi. (17)

Alternatively, the tree can be mapped to its posterior mode by

means of

Xmode(y) = argmax
xi

P (Q1 = i|y). (18)

Several approaches can be used to determine the hidden

state assignment for posterior projection. The most straight-

forward one exploits the βu(i) factor computed by the up-

wards/downwards recursion employed, in the previous Sec-

tion, for parameter learning. By definition [2], the upwards

parameter for a generic node u in the tree yn is

βu(i) = P (Qu = i|yn
u),

where yn
u is the subtree rooted in u in the n-th tree. Clearly,

for a root node the upwards parameter is equivalent to the tree

posterior given that

P (Q1 = i|yn) = P (Q1 = i|yn
1 ) = β1(i)

so that β1(i) can be directly used to obtain the projections in

eq. (17) and (18) for the whole tree.

The compositionality of the underlying SP-BTHMM model

allows gaining a more articulated insight into the structures.

In particular, given an observed tree yn, the GTM-SD model

allows projecting every subtree yn
u rooted in each of the

nodes u of the observed tree. Such a feature realizes the

compositional mapping that has been missing in generative

models for structured data (see Section II), marking a fun-

damental difference from the top-down GTM-HTMM model

[7] that defines a generative mapping only for observed trees

considered as atomic entities. By means of its principled

probabilistic approach, GTM-SD allows a fine grained control

over the amount of contextual information used to determine

topographic projection. In particular, GTM-SD defines two

different subtree projection modalities, that are a composi-

tional and a contextual approach. The former, by taking a
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compositional approach equivalent to the recursive SOM-SD

[6], determines the hidden state assignment for node u based

only on the information propagated from the subtree yn
u ,

thus discarding the contextual information from the rest of

the yn structure. Again, this can be done very efficiently by

considering u as the root node of an isolated tree yn
u , thus

projecting the subtree yn
u on the map using (17) where

βu(i) = P (Qu = i|yn
u)

is used in place of the true posterior P (Qu = i|yn). The

latter, on the other hand, allows projecting the subtree yn
u

within the context given by the full tree yn. In other words,

the hidden state assignment for node u is determined based on

the information propagating from the whole tree yn, instead of

observing only yn
u . This can be obtained with the reversed up-

ward/downwards algorithm by computing the state occupancy

posterior ǫu(i) that, by definition [2], is exactly the contextual

posterior P (Qu = i|yn
u) used in eq. (17) and (18) (the

equivalence ǫu(i) = P (Qu = i|yn
u) follows straightforwardly

also from the definition (9)). Summarizing, to visualize a test

tree along with its substructures, it is sufficient to perform an

upwards recursion to obtain its compositional projection; the

contextual mapping can be obtained at the cost of an additional

downwards recursion computing ǫu(i).
Finally, an alternative means for determining the posterior

projection is by means of the reversed Viterbi algorithm

discussed in [2]. Viterbi algorithms are a class of inference

procedures that seek the hidden states assignment Q = x that

maximizes the joint distribution of an observed tree Y = y

and the hidden states. Clearly, this is a different, though

correlated, joint maximization (or decoding) problem, which

is wider than directly estimating the posterior distribution

needed for (17) and (18). Typically this is computationally

more expensive than an upwards recursion, especially if the

exact Viterbi is employed [2]. Further, such an approach only

allows contextual projection of the subtrees as the hidden state

assignment is jointly maximized for the whole tree. In the

following, we will focus our experimental analysis on posterior

projections obtained by the compositional approach.

D. Model Meta-Parameters and Configuration

The actual instantiation of a GTM-SD model also depends

on the selection of a number of meta-parameters whose

majority, however, is problem independent or has a minor

effect on the performance of the model. Most of this meta-

parameters are inherited from the underlying generative topo-

graphic model: in general, GTM-SD uses the standard meta-

parameter choices suggested for the GTM for flat data in its

foundational work [3]. These serve to define the exact form

of the smooth mapping Φ, e.g. by selecting the number and

type of basis functions, or to complete the parametrization

of the emission distribution, e.g. by assigning an initial value

to the variance σ2 of the GTM emission. In GTM-SD, like

standard GTM, the smooth mapping Φ is defined by RBF

basis functions because these define a smooth mapping that

is a Generalized Linear Regression model which, under well-

defined assumptions, has universal approximation capabilities

[3]. In other words, provided that a suitable number of basis

function is used, it can represent any mapping. In the two-

dimensional GTM map, [3] suggests that 16 is an adequate

number of basis functions to represent any typical mapping:

this number is usually employed also by GTM-SD. When the

data lies on a very low-dimensional manifold, it might be nec-

essary to reduce such number to avoid numerical instabilities:

this is the case of the experiment in Sect. IV-A, where we use

the smallest non trivial number of basis functions, i.e. 4, to

avoid the numerical problems induced by a very degenerate

data space of identical node labels.

The standard GTM emission depends on the weight matrix

W and on the variance σ2, that are learned through the EM

process. A detailed discussion on how the initialization of W

influences the resulting generative maps can be found in [3]:

in general, the W initialization can be obtained by sampling

random values from a uniform distribution, without noticeable

impact on the generated maps. This is the approach used by

GTM-SD. The emission variance σ2 influences the degrees of

smoothing that is initially applied to the emission. The GTM

for flat data typically uses a standard value of σ2 = 1 for all

the latent centers [3], with an optional regularization scheme

to avoid numerical problems with degenerated data. GTM-SD

typically uses the same σ2 = 1 initialization and regularization

scheme: only in the experiment in Sect. IV-B, we initialize

σ2 = 2 to preserve coherence with the original setup in [7].

The number of hidden states C is the main GTM-SD meta-

parameter that is problem-dependent and whose choice can

vary the quality of the obtained maps. The C parameter

regulates both the resolution of the map (larger C means more

latent centers and an higher resolution) and the memory of the

underlying Markov model for structures (larger C means more

hidden states to memorize structural information). A standard

choice of C = 100 is used in the original GTM model and

it can be exploited as a starting point to evaluate the maps:

in the experiments, we explore several C values to appreciate

the effect of different map resolutions and memory capacities.

IV. EXPERIMENTAL RESULTS

In this section, we provide a thorough experimental evalua-

tion of the proposed approach, with the aim of characterizing

the capabilities of the topographic mapping (i.e. GTM-SD),

while the properties of the underlying probabilistic model for

trees (i.e. SP-BHTMM) have been discussed and experimen-

tally assessed in Part I [2]. Section IV-A characterizes the

behavior of the GTM-SD by evaluating the label-structure

tradeoff, that is the ability of the map to discriminate based

on the nodes’ labels, as opposed to discriminating based

on the structure of the tree. The GTM-HTMM model [7]

is a natural term of comparison to benchmark GTM-SD

against state of the art models in literature, in particular as

regards generative mapping of structured data. Section IV-B

presents the experimental comparison between GTM-SD and

GTM-HTMM: the source code for the latter algorithm is not

available, but the experimental evaluation has been performed

on the same datasets and experimental setting in [7], thanks

to the data provided by the authors of GTM-HTMM. Finally,
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Section IV-C compares the discriminative power of the GTM-

SD maps against a leading compositional approach, that is the

recursive SOM-SD neural network [6]. The two models are

compared on two real-world datasets, comprises trees with

discrete labels which also allows evaluating the performance

of GTM-SD with multinomial emission.

A. GTM-SD: Evaluating the Structure-Emission Trade-off

In this section, we evaluate the effect of homogeneous labels

on structure discrimination in the GTM-SD topographic map-

ping. To this end, we have devised a synthetic tree generator1

[2] to populate a dataset, named Artificial1, comprising 200
left sequences, i.e. represented as binary trees with only left

children, 200 right sequences and 200 non-complete binary

trees. The trees and sequences in the dataset are allowed to

have different depths, varying between 1 and 6: notice that

the dataset includes also degenerated trees comprising only a

single node. In order to evaluate the effect of homogenous non-

Markovian node labels on structure discrimination, we have

sampled the emission of all the trees and sequences from the

same bivariate Gaussian with full covariance.

The GTM-SD has been initialized with a 5× 5 latent space

lattice, corresponding to a SP-BHTMM with C = 25 hidden

states. Following the standard setup of the original GTM [22],

the smooth mapping is defined by 16 RBFs with unit variance

centered on a 4 × 4 grid, plus a constant bias (i.e. P = 17).

The weight matrix W has been initialized with random values

in [−1, 1] and the variance of the GTM emission has been

set to σ2 = 1 for each hidden state. For the purpose of

this experiment, we assume a SP-BHTMM with positional

stationarity. In the binary tree structures, left children are

identified by the child index l = 1, while right children

are associated to index l = 2. Therefore in the positional

parametrization, the term A1
ij denotes the state transition from

a left child (subscript l = 1) in state j to a parent in state i

(similarly A2
ij refers to a right child).

Figure 2 shows the posterior mean projections obtained by

the GTM-SD: clearly there is no topographic organization

of the space with respect to the tree structure. We have

experimented with several hidden state numbers (i.e. finer

scaled lattices), still obtaining the same results. In fact, such

lack of structural organization is the consequence of the

predominance of the label emission over the tree structures.

The way trees distribute on the hidden space follows the

Gaussian distribution generating the node labels. To better

understand this behavior, we should consider the generative

model underpinning GTM-SD: this essentially expects data

to be generated from an hidden process such that there exist

some sort of Markovian dependence between the child and the

parent emissions. This is not the case for the data in Artificial1,

as node emissions are i.i.d. from the originating Gaussian. In

a sense, the best generative model for such data is a single

Gaussian, which would provide the results in Fig. 2.

A question that follows straightforwardly from such results

is whether GTM-SD is an algebraic model or if it can

effectively detect the tree structure when labels have less

1Available for download here: http://www.di.unipi.it/∼bacciu/artree.html

Roots

Left

Right

Binary

Fig. 2. GTM-SD Topographic mapping obtained for the Artificial1 data with
emissions sampled from a single Gaussian: the resulting fitted distribution is,
expectably, a Gaussian.

relevance. To this aim, we have generated a second dataset,

that is structurally identical to the Artificial1, but where the

emissions are now set to be exactly the same for each node and

tree in the dataset. Notice this is a degenerated setting for a

Gaussian GTM model, but its use is intended only to deepen

the understanding on the structure discrimination ability of

the GTM-SD, given that samples in this dataset can only be

differentiated by their structure. In order to avoid numerical

problems, we reduced the number of basis functions to 4
and use the σ2 regularization scheme in [22] with parameter

λ = 0.1. The other parameters are left unchanged.

The corresponding topographic mapping is shown in Fig.

3.a: GTM-SD discriminates quite clearly the 4 structure

classes, with the left and right sequences positioned at the

opposite corners of the map, while most of the binary trees

are concentrated at the center of the map. Both sequence

types tend to split into 2 sub-groups (although separation is

less clear for left sequences), one comprising sequences of

length 2 and the other including the remainder of the elements.

Figure 3.b shows a graphical interpretation for the binary tree

subgroups identified in Fig. 3.a. Interestingly, some binary

trees have been positioned close to the sequence areas, i.e.

subgroups L1, R1 and R2. These corresponds to unbalanced

trees that are missing either the right root subtree (L1) or

the left root subtree (R1 and R2). Moreover, R1 and R2

differentiate further into trees with a balanced right root

subtree (R1) and structures with a pseudo-sequential behavior

R2. Structures in the middle correspond to more balanced trees

whose root have non-null left and right children. In particular,

subgroup B1 comprises the balanced structures, while B2 and

B4 cluster those showing more nodes in the right and left top-

subtree, respectively. Finally, subgroup B3 is the binary tree

counterpart of the pseudo-sequential structures in R2.

The results in Fig. 3.a show that GTM-SD can effectively

discriminate trees based on their structure; only, it needs to find

the correct balance between the influence of the node labels

and the tree structure, especially when the labels are counter-

informative as in the dataset in Fig. 2. A straightforward way to

reduce the discriminative effect of node labels is by smoothing

the response of the GTM-SD activation using a larger variance

initialization. Figure 4 shows the results obtained on the same



10

Roots

Left

Right

Binary

L
1

R
1

R
2

B
1

B
4

B
2

B
3

(a)

B1 B4 L1 R1 R2B3B2

(b)

Fig. 3. GTM-SD Topographic mapping obtained for the Artificial1 data with
identical emissions: (a) structures are organized top-left to bottom-right on the
basis of balancing of nodes in the left and right root subtrees; (b) prototypical
structures corresponding to the map labels.

data in Fig. 2 (i.e. with no identical emissions as in Fig. 3),

but using a larger initial emission variance equal to σ2 = 100.

The resulting topographic mapping is coarser grained than in

Fig. 3 as it accommodates both the influence of the emission

as well as of the structure. The results show that GTM-SD

can effectively cluster left and right sequences as well as the

balanced binary trees (on the lower left). Interestingly, the

unbalanced binary trees (i.e. corresponding to clusters L1, R1

and R2 in Fig. 3) are again mapped onto the corresponding

sequence area. Figure 4.b shows examples of unbalanced

structures mapped to the corresponding sequence area, where

more unbalanced structures (e.g. T311 and T491) are more

mixed with the sequence clusters with respect to more regular

structures (e.g. T550 and T579). Notice that, due to stochastic

fluctuations in the generation of the artificial dataset, there

are a number of extremely unbalanced right-structures such

as T491, but no equivalent degenerate left-structures. This is

reflected in the organization of the map in Fig. 3.a where

there exists two clusters for unbalanced (i.e. R1) and extremely

unbalanced (i.e. R2) right structures, but a single cluster for

left-unbalanced trees (i.e. L1).

B. GTM-SD Comparison with GTM-HTMM

This section evaluates GTM-SD compared to a closely

related generative model in literature, that is GTM-HTTM [7].

The experimental comparison is based on the two datasets

used by [7] and kindly provided by the authors of GTM-

HTTM. The simulation setup is chosen in agreement with

that in [7] to allow a fair comparison of the results. We

employ a fully stationary GTM-SD with C = 100 hidden

state organized on a 10× 10 latent space lattice. The smooth

mapping and the parameter initialization has been chosen as

Roots
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T
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T
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T
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T
311
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T311 T579T550T491

(b)

Fig. 4. GTM-SD Topographic mapping obtained for the Artificial1 data with
smoothed emission: (a) binary trees mixed with the sequences correspond to
the unbalanced sequence-like structures clustered as L1, R1 and R2 in Fig.
3; (b) examples of unbalanced binary trees corresponding to the map labels.
Notice that structures that are projected in the center of the sequence clusters
(e.g. T311 and T491) are more unbalanced than those close to the cluster
boundaries (e.g. T550 and T579).

in the experiment in Section IV-A, except for the variance that

has been initialized to σ2 = 2 as in [7].

The first dataset, named Artificial2, comprises synthetic data

sampled from four Top-down Hidden Tree Markov Models

(THTMMs): details of the THTMM setting from [7] are

reported in Appendix B of the Supplemental Material. Each

element is a complete binary tree comprising 15 nodes and

there are a total of 80 elements for each of the 4 classes

corresponding to the generating THTMMs.

The samples in this dataset cannot be discriminated by

their structure, as they all are complete binary trees with

the same number of nodes. Further, as shown in [7], the

four classes cannot be discriminated based only on their

observations since these overlap in the bi-dimensional space.

Figure 5.a shows that the topographic mapping obtained by

GTM-SD can separate such 4 classes, although, differently

from GTM-HTMM, it generates additional subgroups. The

correspondig GTM-HTMM map is in Fig. 6, which reproduces

Fig. 7.a in [7]. In particular, by looking at the root labels

of the eight clusters in Fig. 5.a, it appears that GTM-SD is

differentiating the samples with respect to the root emission

or, in other words, with respect to its hidden state. In fact, each

node emission can be sampled from one out of two Gaussian

distributions, each corresponding to an hidden state of one of

the four THTMMs [7]. Figure 5.b shows the means of the root

labels for each of the 8 clusters identified by GTM-SD: each

of them approximate the means of the emission distribution of

the 8 hidden states that are generating the node labels (confront

with the emission means in Appendix B of the Supplemental

Material).
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Fig. 5. Artificial2 dataset: (a) Topographic mapping obtained by GTM-SD;
(b) Means of the root labels for each cluster discovered by GTM-SD.

Fig. 6. Topographic mapping obtained by GTM-HTMM on the Artificial2
dataset: this image is an authorized reproduction of Fig. 7.a in [7]. The four
THTMM classes are represented by different placeholders.

The structure of the topographic map in Fig. 5 is quite clear:

the top-bottom separation, corresponding to the bi-partition of

subclasses with a subscript from those with b subscript, corre-

sponds to separating trees whose root emission has been sam-

pled from a Gaussian positioned on the second quadrant (i.e.

C1b to C4b) from those sampled from a Gaussian positioned

on the first quadrant (i.e. C1a to C4a). Figure 5.b graphically

shows that subclasses C2a and C4a are close because their

roots share the same generating Gaussian, but their projections

are not mixed because GTM-SD can discriminate the different

structure of their generating THTMMs. A similar discussion

applies to the couples C1a-C3a, C2b-C4b, etc. These results

point out how GTM-SD discriminates strongly based on the

state of the root node, which is not surprising, given that

it exploits a bottom-up generative approach where structural

information is conveyed to the root node and captured into its

hidden state assignment.

The comparison of the GTM-SD map with that generated by

GTM-HTMM does not suggest a clear answer on which model

achieves the best data visualization. In fact, we are convinced

that in an exploratory task there is no such best view in general,

whereas the two models provide with different perspectives

over the data, depending on the assumptions underlying the

respective generative processes. By its own bottom-up nature,

GTM-SD tends to provide more discriminative projections for

the substructures close to the root of the tree, than for the

leaves: the practical advantage of having such discriminative

projections is very much application dependent. In the particu-

lar case in Fig. 5, the GTM-SD map has identified a regularity

in the data, that is the fact the root labels from each class can

come from two different Gaussian sources, which corresponds

to an actual property of the original generative process used to

produce the trees. Interestingly, the results in [7] show that an

alternative bottom-up compositional model, i.e. SOM-SD [6],

cannot effectively discriminate the structures in a way that

reflects the underlying THTMM generative process. This is

probably due to the fact that SOM-SD is biased to discriminate

trees based on their structure while, in this dataset, structure

does not provide sufficient information to tell the classes apart.

In fact, the only way to discriminate the structures in this

dataset, is to learn the Markovian dependencies among the

observations corresponding to the node labels. GTM-SD is

capable of achieving this by means of the underlying SP-

BHTMM model, which can capture such generative dynamics

even if the originating process is top-down. From a theoretical

point of view this is not surprising, as it is known that the class

of trees that can be recognized by a deterministic top-down

automata is a proper subset of the tree languages recognizable

by bottom-up automata [24].

The second data set from [7] comprises 600 images gen-

erated by the Traffic Policeman Benchmark (TPB) software

[25], that provides an artificial domain for evaluating learn-

ing algorithms for structured data. The dataset consists of

images categorized into 12 classes (50 pictures per class)

that resemble traffic policemen, houses and ships of different

spatial/chromatical configurations that are generated by a rule

based grammar. Images are represented as trees such that

connected components in each image have a parent-child

relationship, the object located lower and closer to the left edge

being the parent. Each node is labeled by a two-dimensional

vector that represents the center of gravity of the component

that node stands for.

Figure 8 shows the topographic mapping obtained by GTM-

SD: symbols identify different classes following the notation

in [7]. GTM-SD achieves a clear separation between the

structures of the 3 top-classes, whereas it does not differentiate

at all between the two subgroups in the Policeman class
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Fig. 7. Topographic mapping obtained by GTM-HTMM on the TPB dataset:
this image is an authorized reproduction of Fig. 7.b in [7]. Policeman trees
are well separated, while the house structures appear consistently mixed.

(marked as P in Fig. 8). These subgroups include trees that

are structurally identical, being differentiated only by the

leaves emission: bottom-up processing fails to separate the

two subgroups because, as shown in the previous experiment,

it tends to discriminate more based on nodes closer to the

root. Conversely, a top-down model separates more based

on the information of nodes close to the leaves: in fact,

GTM-HTMM yields to a better topographic mapping of the

policeman subgroups (see Fig. 7, reproducing the original map

in Fig. 7.b of [7]), that is also superior to that achieved by the

bottom-up SOM-SD [7].

Like GTM-HTMM, GTM-SD separates the subgroup cor-

responding to ships missing the central mast, that are B1 and

B2, where the latter further differentiates those ships that have

a larger hull. Subgroups B5 and B6 correspond to ships with

three masts with an unbalanced structure, i.e. with sails only on

the rightmost and leftmost mast, respectively. The remainder of

the ship subgroups are quite mixed in the large cluster on the

right, whereas GTM-HTMM can better separate the structures

corresponding to ships missing the left or right mast (see Fig.

7). On the other hand, the GTM-HTMM fails to find any type

of topographic ordering in the house class. Conversely, GTM-

SD provides some partial topographic organization based on

the presence and position of the chimney. The chimney appears

and its position moves upwards as one goes from the bottom to

the top of the map: H3 comprises houses without a chimney,

H4 includes houses with a low chimney positioned on the

right, while H1 and H2 comprise houses with non-right

chimneys having one and two windows, respectively. The large

and mixed groups H6 , on the other hand, maps to houses

with an higher center of gravity for the chimney. Chimneys

appear to be discriminative both for their structural relevance,

given that they increase the tree depth from 2 to 3, as well as

because GTM-SD associates the different chimney positions

with separate leaf priors, whose effect propagates well to the

root in the shallow house structures.

One of the main advantages of a compositional approach

such as GTM-SD over a monolithic model such as GTM-

HTMM is the possibility of projecting and visualizing the

substructures within the dataset, which allows a clearer under-

H2
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B4

B3

B2

B6

B5

P

H3

H6

H4

H5

(a) (b)

Fig. 8. GTM-SD Topographic mapping of the TPB dataset in [7]: topographic
map (a) and prototypical images for the discovered subgroups (b).

Level 0 Level 1

Level 2 Level 3

Level 4

Fig. 9. Topographic maps for the substructures in the TPB dataset: level
numbers refer to the distance from the leaves. Hotter colors denote a larger
responsibility (white and black denote high and low activation, respectively).

standing of the topographic organization of the latent space.

Figure 9 shows the responsibility maps for the TPD task: plots

are organized based on distance from the leaves, e.g. level 1

denotes subtrees that are rooted in nodes that are parents of

a leaf. The map shows a clear topographic organization of

the space that recall that obtained by SOM-SD [6]: leaves are

projected on the bottom left while subtrees with depth 2 are

mapped close-by. More articulated substructures are projected

in an orderly manner on the top of the map, with depth

increasing from the left to right. This is coherent with the

topographic organization in Fig. 8, where shallower structures

are mapped to the bottom-left with depth increasing as their

projection moves to the top of the map, which is responsible

for deeper structures.

Generally speaking, the bottom-up approach, postulated by

GTM-SD, and the top-down approach, taken by GTM-HTMM,

provide two complementary views over the structured data.

The suitability of one approach over the other is application

dependent, such that for some tasks and/or datasets one

approach can be superior to the other and that for other tasks

and/or datasets the opposite can be true. Nevertheless, there
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are some clear properties associated with the GTM-SD and

GTM-HTMM models that we would like to discuss here to

complement their experimental comparison.

From a modeling point of view, GTM-SD enforces a Marko-

vian organization of the topographic map that is associated to

a unique, large hidden Markov model that can generate all

possible structures and substructures in the dataset. Trees are

modeled as compound entities whose constituents follow com-

plex causal relationships induced by the structural properties.

Conversely, GTM-HTMM defines multiple, separate hidden

Markov models that are responsible for the generation of

complete (atomic) observed trees. Such modeling difference

can have an impact on the convergence of the learning process:

as noted by the authors in [7], the GTM-HTMM model is

prone to slow convergence and local optima, which is due to

the approximations introduced in the EM algorithm to generate

the parameters of the HTMM noise models from the smooth

mapping. Conversely, the EM algorithm for GTM-SD has an

exact closed form solution (at least for Gaussian emissions, see

Sect. III-B) that is more likely to converge to global optimum.

The GTM-SD approach allows a more effective information

sharing than GTM-HTMM as regards substructures that are

common to different sample trees. As shown in Fig. 9, GTM-

SD straightforwardly yields to a topographic projection for

every substructure in the dataset, whereas in top-down GTM-

HTMM this has to be enforced by explicitly training the

model on an augmented dataset comprising a tree for each

different (proper) substructure in the original data. However,

even with such an augmented dataset, the GTM-HTMM still

considers each tree and proper subtree as a separate atomic

entity, without information sharing among the HTMM noise

models generated by different latent points. Consider an ex-

ample tree y which contains two non-trivial subtrees ya and

yb. These structures may be generated by 3 different latent

points, corresponding to 3 separate HTMMs with different

distribution parameters: hence the results of the upwards-

downwards procedure of one HTMM cannot be reused to

simplify the computation of another HTMM. For instance, the

HTMM model responsible for y will generate by itself the

whole tree, irrespectively of the fact that some latent point

on the map may be capable of generating the substructures

ya and yb. This lack of information sharing prevents GTM-

HTMM from achieving compositionality.

Computationally, GTM-SD is asymptotically less efficient

than GTM-HTMM for small structures, whereas we expect it

to be more efficient and scalable for large-size data, as GTM-

HTMM would need to train C (i.e. one for each of the GTM

latent points) large HTMM models with K hidden states, while

GTM-SD naturally accommodates such structures in its large

constrained space of C hidden states. For instance, the total

number of parameters of the positional state transition matrices

of a GTM-HTMM with C latent points is order of Mhtmm =
C(K2 · L), where K is the number of hidden states of the

single HTMM noise models. The corresponding number of

parameters for GTM-SD is Msd = C2 ·L, where C is both the

number of hidden states and the number of latent points on the

map. Usually, the number of latent points on the topographic

map is chosen about C = 100 to ensure a sufficient map

resolution (in both the approaches). The number of hidden

states required to capture the structural information into the

Markov model grows with the complexity of the trees. For

instance, a minimum of 10 − 20 hidden states is required to

capture enough information from real world trees such as the

INEX 2005 data [26] discussed in the following subsection.

For a map of C = 100 latent points, a GTM-HTMM with

K = 10 hidden states in its noise models has the same number

of state transition parameters then the corresponding GTM-SD.

The latter, however, has a much larger state space of C = 100
states that can capture more structural information. For K >

10, GTM-HTMM needs a larger number of parameters than

GTM-SD.

By its compositional nature, GTM-SD can also better reuse

information from shared substructures, achieving a more ef-

fective information compression than GTM-HTMM. Notice

that augmenting the dataset to obtain substructure projection

consistently further increases the computational costs of GTM-

HTMM with respect to GTM-SD. In fact, the GTM-HTMM

learning process has to be iterated over a larger dataset

including all proper subtrees in the original data, while GTM-

SD can straightforwardly achieve such projection by parsing

only the non-extended dataset.

C. Experimental Comparison with SOM-SD

In this section, we evaluate GTM-SD against the SOM-SD

model [6], a recursive neural network for structured data also

founding on a bottom-up approach. The experimental compar-

ison is based on two datasets: the (m-db-s-0) corpus, that has

been used for the 2005 INEX competition for structured data

classification and that has been won by the SOM-SD model

[26], and the Melody corpus [27].

The INEX 2005 dataset comprises 9361 XML formatted

documents represented as trees with maximum outdegree

L = 32, labeled by 11 thematic categories, with consistently

varied class distributions, such that node labels represent 1 out

of 366 possible XML-tags. Standard splits into training and

test sets are available for both datasets [6], such that INEX

2005 comprises 4820 training structures and 4811 test samples.

Node labels for the INEX data represent categorical informa-

tion which, in our generative framework, is best modeled by

a multinomial emission distribution, resulting in the µGTM-

SD model described by equations (13)-(16). As discussed in

Section III-B, parameter update for such a constrained multi-

nomial emission model requires to perform a gradient descent

loop regulated by a learning step δ. A preliminary experimen-

tal evaluation has been performed to study the behavior of

µGTM-SD learning as a function of the δ metaparameter. In

particular, a 7× 7 µGTM-SD has been trained for 50 epochs

on the INEX 2005 data (training set only), using different δ

values from {0.005, 0.001, 0.0005, 0.0001} and with an inner

multinomial learning loop of 100 iterations. No information

concerning tree classification has been used to evaluate the

metaparameter choice: rather, only learning stability has been

taken into account by evaluating the log-likelihood behavior

as a function of the learning epochs. Figure 10 shows the

log-likelihood corresponding to the different δ values: values
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Fig. 10. Behavior of the log-likelihood for different values of the learning
step size δ in the inner learning loop of the multinomial µGTM-SD (see (15)).
Log-likelihood refers to a 7×7 µGTM-SD trained on the INEX 2005 data for
50 epochs, with an inner multinomial learning loop of 100 iterations. Values
of δ ≥ 0.01 have been tested and result in strong numerical problems, with
impaired learning convergence.

of δ > 0.0001, yield to unstable learning with oscillating log-

likelihoods, while for δ = 0.0001 the log-likelihood shows the

expected smooth behavior, which suggest to use this value (and

a maximum of 100 inner loop iterations) for the experimental

comparison with SOM-SD. Notice that the EM process is

expected to produce a monotonically increasing likelihood:

the decreasing parts of the curves that can be observed in Fig.

10 for δ > 0.0001 are due to the gradient descent loop that is

used to approximate the update of the constrained multinomial

emission. Such gradient descent loop is not part of the EM and

produces the non-monotonic behavior due to the well known

numerical problems introduced by large learning rates. An

adequate choice of the δ values restores the correct monotonic

behavior (e.g. see δ = 0.0001 in Fig. 10). Larger learning rates

can be used if supported by an appropriate exponential decay

policy that reduces the learning step as the iterations of the

gradient descend loop progress.

Classification performance on the INEX 2005 data has been

evaluated for varying configurations of the neural and genera-

tive topographic maps: [28] describes an extensive validation

of SOM-SD performance for varying network configurations

(i.e. 45 networks), that include different map sizes, maximum

number of training iterations as well as several values of the

metaparameter µ, which regulates the structure/label tradeoff

(values of µ close to 1 give more credit to the label over the

structural part). For the purpose of this paper, we confront

GTM-SD with the top-5 SOM-SD configurations in [28] for

each of the map-sizes. Table II shows the metaparameters

values and the corresponding classification error on the INEX

2005 test set: notice how, coherently with the results in [28],

SOM-SD shows a marked sensitivity with respect to the choice

of the metaparameters. Classification on a fresh test tree is

obtained by a simple 1 nearest neighbor (1-NN) rule on a

SOM-SD fitted to the training set [28].

As regards µGTM-SD, we have tested 5 positional config-

urations corresponding to maps with a grid of 7 × 7, 9 × 9,

TABLE II
CLASSIFICATION ERROR (I.E. PERCENTAGE OF INCORRECTLY

CATEGORIZED TEST TREES) FOR DIFFERENT CONFIGURATIONS OF THE

SOM-SD MAPS ON THE INEX 2005 TASK[28]

Map # Size Training iterations µ Best test error

1 55× 40 32 0.25 32.488
2 55× 40 128 0.85 22.51
3 77× 56 32 0.65 18.62
4 110× 80 32 0.05 12.62
5 110× 80 128 0.85 8.65

Average 18.9776
Std Dev 9.2495

10 × 10, 15 × 15 and 20 × 20 latent points. The number of

maximum EM iterations has been set to 50, as experimental
evidence shows that learning reaches stable log-likelihood

levels after 30-35 epochs: values of the maximum number

of training iterations above such threshold do not yield to

substantial variations in the results. Other relevant GTM-SD

metaparameters are the maximum number of inner loop iter-

ations and the learning step δ, that are set to 100 and 0.0001,
respectively, based on the results in Fig. 10. As any EM

process, GTM-SD is prone to performance fluctuations due to

different initial (random) assignments of the model parameters.

To account for this effect, performance results, for each map-

size, are based on 5 repetitions of the training-test procedure

with different random initialization of the parameters.

Figure 11 shows the root projection on the µGTM-SD

map for trees in the INEX 2005 training set. Two areas of

the µGTM-SD map are responsible for generating the roots,

that are the top-left and the bottom-right corner (visualized

separately in Fig. 11). Example trees are labeled on the

map with their dataset index (numbering follows that of the

original data [6]). The first portion in Fig. 11.a shows a clear

organization with trees on the top-left corner (e.g. T819, T202,

. . . ) corresponding to shallow structures (i.e. depth 2−3) with
small outdegree (i.e. 4 − 5), while trees on the bottom-right

(e.g. T3122, T1787, . . . ) correspond to deeper structures. In

particular, trees close to T3122 have the most complex structure

(e.g outdegree 32 and depth 5) which becomes increasingly

simpler as one moves to the bottom-right corner, where T1500

is shallower than T3122 but has a larger outdegree than T1787,

and T2364 has the smallest outdegree. Trees in Fig. 11.b

correspond to medium-sized structures that are smaller than

those on the bottom-right of Fig. 11.a, having a maximum

outdegree of 10. They become increasingly deeper and with a

more complex structure on the deep levels as one moves from

top-left (T2839) to bottom-right (T4).

Table III shows the µGTM-SD classification errors on

the training and test sets, averaged across the 5 training-

test repetitions. Class predictions on the test set for µGTM-

SD have been obtained by a simple 1-NN nearest neighbor

rule in the bi-dimensional latent space: i.e. a fresh tree is

categorized with the class of its nearest training tree projected

on the map. Training set classification is based on the second

nearest neighbor in the training set (the closest match would

be, clearly, the sample itself): Table III shows that test and

training error have a comparable magnitude, suggesting that

the learned models do not show significant overfitting. Further,
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Fig. 11. µGTM-SD maps for the INEX 2005 dataset showing root projection
for trees in the training set. Two separate areas of the map are used to project
roots, that is the top-left corner (a) and bottom right corner (b), which are
visualized separately for the sake of clarity.

TABLE III
CLASSIFICATION ERROR FOR DIFFERENT CONFIGURATIONS OF THE

µGTM-SD MAPS ON THE INEX 2005 TASK: TRAINING AND TEST ERRORS

ARE AVERAGED ACROSS 5 REPETITIONS.

Map # Size Training error Mean test error (dev)

1 7× 7 8.44 10.27 (1.74)
2 9× 9 9.16 10.60 (1.55)
3 10 × 10 6.96 8.36 (0.57)
4 15 × 15 8.16 7.84 (1.01)
5 20 × 20 5.55 7.42 (0.40)

Average 7.65 8.90
Std Dev 1.42 1.44

Table III shows that, overall, the standard deviation of the test

error between the 5 repetitions is not significant, witnessing a
good robustness of the model with respect to parameter ini-

tialization. Results show that GTM-SD reaches a competitive

classification performance already with small 7×7 maps, that
achieve best classification accuracies, comparable to that of

the top 110× 80 SOM-SD map which has roughly 70% more

free parameters than a 7× 7 positional GTM-SD.

The Melody corpus [27] is also based on real-world data,

such that each tree represents a music piece, where node labels

identify the notes being played, while the depth of the node

defines the duration of the corresponding note (i.e. the shorter

a note the deeper it is in the tree). The corpus comprises

420 monophonic themes of 20 worldwide well known themes
of different musical genres. Each theme has been played by

TABLE IV
CLASSIFICATION ERROR FOR THE BEST SOM-SD AND µGTM-SD MAPS

ON THE 3 FOLDS OF THE MELODY CORPUS [27].

Model Mean test error Std. Dev.

SOM-SD 42.65 12.32
GTM-SD 40.48 3.59

different musicians with different embellishments and varia-

tions due to performance errors: for each of the 20 original

scores, 21 different variations have been built (all of them with

4/4 meter signature) [27]. Again this is a classification task,

where each tree has to be assigned to the correct theme out

of the 20 possible. The tree labels come from a multinomial

alphabet of 12 symbols (notes) and the maximum outdegree

in the dataset is L = 8. The dataset is provided by the

authors in a standard 3-fold split, where each split contains

280 training trees and 140 test structures. As for the INEX

2005 data, we have tested several SOM-SD and µGTM-SD

configurations. In this case, only a single data fold has been

used to select the best performing model. The SOM-SD map

sizes and meta-parameters used for INEX 2005, and shown in

Table II, have been tested; similarly, we have tested different

sizes of µGTM-SD maps as in Table III. Table IV reports

the classification error on the best SOM-SD and µGTM-SD

maps, averaged over the 3 test sets in the folds (also standard
deviation is reported). Again, µGTM-SD shows a competitive

classification performance with respect to SOM-SD, with a

lower classification error. The moderate standard deviation

of the former model confirms that µGTM-SD is a robust

model that is not subject to abrupt performance variations for

different training data.

V. CONCLUSIONS

Compositionality is a fundamental property when dealing

with tree structured data, as it closely reflects the compound

nature of hierarchical information. Instead of evaluating com-

plex structures as whole atomic entities, throughout a composi-

tional approach we are allowed to assess them in terms of their

constituent elements. We have introduced GTM-SD, the first

generative approach to compositional topographic mapping

of tree-structured data that founds on a scalable bottom-up

hidden tree Markov model, named SP-BHTMM and proposed

in Part I of this paper [2]. SP-BHTMM circumvents the typical

strong computational requirements imposed by the exploding

state space of a bottom-up state transition through the use

of a (finite) mixture of multinomials approximation, allowing

for parameter learning and inference procedures of the same

computational class of its top-down counterpart.

GTM-SD enforces a Markovian organization of the latent

space serving as topographic map, defining a unique, large hid-

den Markov model that can generate all possible structures and

substructures in the dataset. By this means, trees can be mod-

eled as compound entities whose constituents follow complex

causal relationships induced by the structural properties, rather

than being considered atomic i.i.d. samples as in the top-down

GTM-HTMM [7]. The substructure information sharing capa-

bility of GTM-SD straightforwardly yields to a topographic

projection for every substructure in the dataset. Substructure



16

projection is a fundamental capability when addressing the

exploratory analysis of collections of tree-structured data, as

it allows to determine which substructures are shared between

different trees by simply inspecting their projections on the

2D topographic map. Such an intuition has motivated the

development of a novel adaptive kernel for structures that

exploits Euclidean distances among projections on the GTM-

SD map [29] and that has state-of-the-art performance on

classification of tree-structured data.

Experimental results have shown that GTM-SD can effec-

tively generate topographically ordered maps of the sample

trees and their substructures, with competitive performance

with respect to both the top-down generative GTM-HTMM

as well as against the recursive neural approach of SOM-SD.

With respect to the latter, the experimental results highlight

that the continuous topographic map generated by the smooth

generative mapping of GTM-SD allows a finer grained dis-

crimination among the projected structures.

An issue that has emerged from the experimental analysis is

related to regulating the GTM-SD trade-off between structure-

based and label-based discrimination. The probabilistic formu-

lation of the model may itself provide well-founded tools to

address this problem. For instance, following the experimental

intuition, it might be interesting to explore the use of Bayesian

priors to fine tune the smoothness of the emission, thus

regulating the model bias with respect to the structure. Further,

it will be interesting to study the effect of adding contextual

information to substructure projection. In this paper, we have

focused on compositionality and, to this end, we have taken

into consideration only the compositional projection mode

based on the upwards parameter βi. However, as discussed

in Section III-C, GTM-SD defines a straightforward means

for contextualizing the projection of a subtree through the use

of the posterior distribution, at the little cost of an additional

downwards recursion. Notice that neither GTM-HTMM nor

SOM-SD offer contextualized projections since the former,

does not allow projection of substructures, while the latter is

a purely compositional model where context information only

flows from the leaves to the root.
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[15] P. Tiňo, I. Farkaš, and J. van Mourik, “Dynamics and topographic
organization of recursive self-organizing maps,” Neural Computation,
vol. 18, no. 10, pp. 2529–2567, 2006.

[16] M. Strickert and B. Hammer, “Merge som for temporal data,” Neuro-
computing, vol. 64, pp. 39 – 71, 2005, trends in Neurocomputing: 12th
European Symposium on Artificial Neural Networks 2004.

[17] T. M. Martinetz and K. J. Shulten, “A ”neural-gas” network learns
topologies”,” in Artificial Neural Networks, T. Kohonen, K. Mäkisara,
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