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Grid Architectures and the European DataGrid
Andrea Domenici

Abstract—The term “Grid” is used in reference with wide
area (possibly planetary) computer networks that enable
very large communities of users to access massive compu-
tational facilities, ideally with the same transparency and
ease that users of electrical devices, whether industrial ma-
chines or home appliances, expect from the electrical power
grid. This paper introduces the basic concepts of Grid ar-
chitectures, drawing upon the experience of the European
DataGrid project, one of the most important enterprises in
this field, aimed at providing support to scientific commu-
nities involved in High Energy Physics, Earth Observation,
and Biology.

Keywords— Computational Grids, European DataGrid,
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I. Introduction

COMPUTING POWER should be like electrical power:
cheap, available, reliable. Recalling the development

of electrical power, Ian Foster and Carl Kesselman, the
authors that made the term computational grid popular,
observe [1] that
“the truly revolutionary development was not, in fact, elec-
tricity, but the electric power grid”.

The above sentence may be surprising at first, but it is
quite obvious if we think how difficult it would be to use
electric power without an infrastructure that delivers power
from various sources (as diverse as hydroelectric, fossil-fuel,
nuclear, and wind-farm plants) to a huge number of devices
(as diverse as home appliances and industrial machines).
This infrastructure is made of such hardware components
as transformers and power lines, but it is a set of well de-
fined standards that turn those components into a proper
infrastructure. Such standards concern, for example, line
voltages and frequencies, or the design of plugs and outlets.
By analogy to the power grid, a computational grid

should deliver computational power to user applications.
The “computational power plants” are the computers con-
nected to the Internet, machines of different size, archi-
tecture and capabilities, ranging from single desktops to
supercomputers. The Internet itself is intended to become
the foundation of the computational grid, providing the
basic interconnection services. Thus,
“a Computational Grid is a hardware and software in-
frastructure that provides dependable, consistent, pervasive,
and inexpensive access to high-end computational capabili-
ties” [1].

The power grid analogy helps us realize that this compu-
tational infrastructure will be defined by a set of standards
and services: we call such a set of standards and services
a Grid architecture. The analogy, of course, should not be
pushed too far, since computing power is obviously very dif-
ferent from electrical power. Computing power is the power
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to store, transmit, and transform information. While elec-
tricity can only be produced and consumed, information is
meant to be communicated and shared. A computational
grid can then give us something that the power grid cannot:
the ability to collaborate by sharing information.

Therefore, Grids must support large scale collaboration
among many individuals working for different organizations
towards common goals. This implies that Grid services are
not limited to giving access to computers, but they must
also provide means to support collaborative work.

We expect that computational grids will enhance re-
source utilization and allow sharing of computational re-
sults to a scale and with a transparency that far exceed
those afforded by existing infrastructures such as the Web.
Just as the Internet arose by integrating many smaller-
scale internets, it is likely that a global Grid (the Grid)
will emerge from many computational grids. The Grid,
however, will not replace the Internet but rather integrate
it within itself. It will also co-exist and interoperate with
the Web. We may observe that the Web and the Grid,
presently at least, have different implicit aims: while the
Web is focused on data access and end-user interaction,
the Grid is focused both on data and computation access,
and on collaborative computation. However, emergingWeb
technologies such as Web Services converge towards the
Grid approach, so that Grid and Web technologies are
likely to support each other.

Several Grid projects are active now, including, but
not limited to, the European DataGrid (Sec. III) and
LHC Computing Grid (cern.ch/lcg) in Europe, Gri-
PhyN (www.griphyn.org) and PPDG (www.ppdg.net)
in the USA, ApGRID (www.apgrid.org) and TWGRID
(www.twgrid.org) in Asia. Some projects, such as
DataTAG (www.datatag.org) have the harmonization and
interoperation of existing Grids as their main objective.

In the following sections we will introduce some gen-
eral ideas about Grid architectures (Sec. II), then we will
present one of the main Grid projects currently being devel-
oped (Sec. III) and describe some aspects of its architecture
(Sec. IV).

II. Architecture of a Grid

The high-level requirements for the Grid infrastructure
obviously include those that have driven the development
of the Internet: interoperability across different hardware
and software architectures, transparency with respect to lo-
cation, satisfactory performance and reliability. More spe-
cific to the Grid is the goal of enabling very large dynamic
collaborations across different administrative structures.
These structures are organizations that own resources and
share them with other organizations they collaborate with;
the collaborations are dynamic since the quantity and qual-
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ity of resources, of users, and of activities to carry out can
vary rapidly over time.

The goal of enabling such collaborations involves sup-
port for diverse and sophisticated authentication and au-
thorization mechanisms and policies. The foreseen size and
complexity of the collaborations pose more stringent and
exacting requirements on the “classic” features of interop-
erability, performance, and reliability. Finally, scalability
is an essential property of any solution for problems in the
domain of Grid architectures.

A. Virtual organizations

The concept of virtual organization (VO) is used to re-
fer to the collaborations described above. Grids are as-
sumed to be deployed in situations where different institu-
tions (e.g., universities) provide resources (e.g., computers
and instruments) that are used by people from the same or
other institutions, who take part in different projects (e.g.,
scientific experiments); sharing of resources is controlled by
well defined rules. A virtual organization is then a set of
individuals or institutions defined by such sharing rules [2].
Let us consider a hypothetical example: the universities

of Durango and Pisa link their computing centers into a
Grid (DuPiGrid); some researchers from Durango, Pisa,
and Belgrade collaborate in a Radio Frequency Astron-
omy experiment (RFA); some researchers from Helsinki and
Mumbai need resources for an X-Ray Astronomy experi-
ment (XRA); finally, a Swiss-based private company needs
resources for Imaging Applications (IA).

Let us now assume that researchers from the RFA ex-
periment have costless unlimited access to DuPiGrid, and
that their data may be private or public. Researchers from
the XRA experiment have costless access to DuPiGrid re-
sources left available by RFA, and also their data may be
private or public. People from the IA activity pay for DuPi-
Grid resources left available, and their data are private;
their fees are shared between Durango and Pisa according
to effective resource usage.

The above collaborations and sharing rules define three
VO’s (RFA, XRA, and IA).

Many variations on the example above can be envisioned:
the number of possible ways to structure VO’s is in practice
unlimited. No matter how VO’s are structured, they have
some common characteristics that Grid architectures must
accommodate:
• the numbers both of individual end users and of resources
may be very large;
• membership to VO’s is dynamic, as users may join and
leave any time; resource availability is also dynamic;
• sharing rules may change in time;
• the institutions providing resources must retain full au-
tonomous control on them.

Grid architectures support VO by providing Grid-wide
mechanisms for authentication, authorization, and ac-
counting. These mechanisms cannot replace the existing
mechanisms used in the various Grid sites, since this would
violate the requirement tha each site has full autonomous
control on its resources. Instead, the Grid mechanisms

must present a uniform and location-transparent view of
the resource access policies to the users, while mapping
this view to several different local mechanisms.

B. Main design criteria

The general approach to the design of Grid architectures
is referred to as “The Hourglass Model”: an hourglass has
a wide top, a wide base, and a narrow neck inbetween. The
top represents the large set of Grid applications, the base
stands for the large set of architectures and technologies of
the underlying resources, and the neck represents a rela-
tively small number of services and protocols that enable
applications to access the resources. Quoting from [2], the
hourglass neck is
“a narrow set of core abstractions and protocols . . . onto
which many different high-level behaviors can be mapped . . .
and which themselves can be mapped onto many different
underlying technologies”.
The design of Grid architectures emphasizes reuse of ex-

isting technologies and the definition of protocols.

C. The layered Grid architecture

A Grid architecture [2] is best described as a layered
structure whose strata are as follows (Fig. 1):

Collective

Resource

Connectivity

Fabric

Fig. 1. The Grid layers.

Fabric : the set of interfaces to local resources. A resource
may be a single computer or a cluster that behaves logically
as a single resource, a disk server, a network link or inter-
face, and the like. The software that controls the resources
directly constitutes the Fabric layer.
Connectivity : protocols for secure and efficient communi-
cation, such as IP, TCP, UDP, TLS/SSL, and more.
Resource : protocols enabling sharing of individual re-
sources. The Resource protocols enable remote access to
single resources, provided by such services as information
on resource state, negotiation, control, and monitoring.
Collective : global protocols to coordinate multiple re-
sources. The Collective protocols define services that
provide applications with a uniform and unified view of
the Grid: applications interact with the Collective layer,
which in turn coordinates the available resources to satisfy
the needs of the applications. Such services include job
scheduling, workload management, data replication, au-
thentication and authorization, and monitoring.
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The two middle layers, Connectivity and Resource, cor-
respond to the neck of the hourglass.

D. The Globus (TM) Toolkit

The Globus (TM) Toolkit [3], maintained by the Globus
Project (www.globus.org) can be considered as a refer-
ence implementation for Grid architectures. The toolkit
consists in a core set of protocols and services with associ-
ated Application Programming Interfaces (API), Software
Development Kits (SDK), i.e., libraries, and user interfaces.
In the following, we will mention only some of the toolkit
components, at the three higher levels.

At the Connectivity level, the Globus (TM) Toolkit em-
ploys the Internet protocol suite (IP, TCP. . . ), and intro-
duces the Grid Security Infrastructure (GSI) [4], [5]. The
GSI extends the Transport Layer Security (TLS) proto-
cols [6] to provide single sign on and delegation. This
means that a Grid user logs on to the Grid just once and
afterwards can access any Grid resource without having to
be authenticated again. A program started by the user can
spawn other processes, possibly remotely, delegating them
the user’s authorization, so that they can access resources
on the user’s behalf.

At the Resource level, we mention the Grid Resource Al-
location Manager (GRAM) and GridFTP. The former is
responsible for allocating computing resources and for con-
trolling and monitoring the processes running on them [7].
The latter is an enhancement of FTP, providing such fea-
tures as third-party transfers, parallel transfers, and inte-
gration with GSI authentication [8].

At the Collective level, we consider the Meta Directory
Service (MDS), that gathers information from resources
and makes them available to applications and to other Grid
services [9].

III. The European DataGrid

The European Union has funded the three-year European
DataGrid (EDG) project (http://eu-datagrid.web.cern.ch),
aimed at setting up a computational and data-intensive
grid of resources dedicated to the analysis of data com-
ing from scientific exploration. This Grid is characterized
as “data-intensive” since the scientific activities that will
use it are expected to produce and process huge quantities
of data, in the order of several Petabytes (1015 bytes). A
large share of this data will come from High Energy Physics
experiments, but also Earth Observation and Biomedical
activities are involved.

The project started in January 2001 and is approaching
its completion. Its main partners are:
• CERN, European Organization for Nuclear Research
(www.cern.ch);
• ESA/ESRIN, European Space Agency (www.esa.int);
• CNRS, Centre National de la Recherche Scientifique
(France) (www.cnrs.fr);
• INFN, Istituto Nazionale di Fisica Nucleare (Italy)
(www.infn.it);
• NIKHEF, Nationaal Instituut voor Kern en Hoge Energie
Fysica (Netherlands) (www.nikhef.nl);

• PPARC, Particle Physics and Astronomy Research
Council (UK) (www.pparc.ac.uk).
The EDG project collaborates with national European

projects, such as INFNGRID (www.infn.it/grid) in Italy,
or UK-GridPP (www.gridpp.ac.uk) in the UK.
The project has achieved the goal of deploying a testbed,

i.e., an experimental Grid composed of 12 computing cen-
tres in five European countries, with a computing power of
1075 CPU’s and a storage capacity of 15 Terabytes.

IV. EDG Architecture

The EDG middleware is very complex and continually
evolving, so that even a high-level description of its main
components would go beyond the limits of this paper.
In the following some of the basic concepts underlying
this software will be introduced, without attempting to
give complete and accurate descriptions of its components.
Please be aware that the names used may differ from those
found in the most recent documentation.

A. The EDG Fabric

The Fabric [2], [10], i.e., the physical infrastructure of the
EDG testbed is a set of farms, clusters of ethernet-linked
hosts. The the hosts are usually PC’s that run Linux Red-
Hat 6.2, currently being upgraded to RH 7.3. The hosts in
a farm have different functions: some provide computing
power, while other provide storage capacity. The former
are called Worker Nodes (WN); a cluster of WN’s is seen
by the Grid as a single resource, called a Computing Ele-
ment (CE). The hosts that provide storage usually control
RAID pools or mass storage systems (tape libraries). Such
hosts, or their clusters, are resources called Storage Ele-
ments (SE). A User Interface (UI) is a host that users
connect to for accessing the Grid. The user commands
that submit jobs to the Grid, monitor their execution, and
retrieve computation results, run on UI’s. Other machines
may be dedicated to special functions, such as hosting var-
ious Grid services.
A farm does not necessarily have all possible types of

hosts, and some hosts, like the UI’s, may not necessarily
belong to a farm. A Grid site might provide only com-
puting power (CE’s) or storage capacity (SE’s). However,
CE’s and SE’s are often linked together through a fast con-
nection.
Each resource is controlled by a Local Resource Manage-

ment System (LRMS), that performs such tasks as accept-
ing jobs and dispatching them to worker nodes. Some of
the LRMS’s that can be used are PBS [11] and Condor [12].
The LRMS is interfaced to the Grid by a Resource Man-
agement System (RMS).

B. The EDG layers and services

The EDG has a layered architecture similar to the one
described in Sec. II-C.
In Fig. 2 the rounded boxes represent some of the main

services within the layers. Each of those services depend on
services at lower levels, and possibly also on services at the
same level. For example, the Job Management may be used
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Fig. 2. The EDG layered architecture.

to sequence the submission of a group of jobs composing a
single application, such as a series of computations in the
analysis of a set of experimental data, each computation be-
ing executed by a different program. A description of each
job, written in the Job Description Language (JDL) [13], is
given to the Grid Scheduler, that must (i) find a CE that
is available and satisfies the job’s requirements (such as
processor speed, memory, software environment. . . ), and
(ii) locate the data needed by the job. In order to find a
convenient CE (the brokering, or matchmaking function-
ality), the Grid Scheduler components rely on the Infor-
mation and Monitoring service, that maintains status and
configuration information about the Grid’s resources, such
as CPU speed, available memory, number of queued jobs,
and so on. In order to locate the data, the Grid Sched-
uler relies on the Replica Management [14] service. In the
Grid, a file can be replicated, i.e., reproduced in several
copies to optimize access time and minimize contention on
the SE’s. The Replica Management service keeps track of
the replicas and is able to determine which replica is most
convenient for a job running on a given CE. New replicas
can be created, if needed. To perform this task, the Replica
Management service uses the Replica Catalog (RC) service,
which is similar to a distributed database holding the in-
formation needed to locate the replicas of each file.

Fig. 3 shows the dependencies implied by the interactions
described above. Services are represented as packages, and
arrows represent usage dependencies.

User

Monitoring

Computing Element Storage Element Replica Catalog

Information and Monitoring

Replica Management

Job Management

BrokeringJob Submission

Grid Scheduler

Fig. 3. Some dependencies in the EDG architecture.

C. Services and protocols

The EDG architecture brings together and integrates
many pre-existing “non-Grid” components, along with
third-party Grid software, taken especially from the Globus
(TM) Toolkit, upon which the original EDG middleware is
built. A good share of software development in EDG con-
sists in interfacing all these components. Most components
are distributed client/server systems, so each of them is de-
fined by a protocol that specifies how the client and server
subsystems interact, and by a client API that specifies how
the clients invoke the service. The two subsystems are then
implemented by a server process and a client library.

If we take the Replica Management service as an exam-
ple, we may observe how components are integrated. One
of its low-level components is GridFTP, used to transfer
files between sites. GridFTP is defined by the GridFTP
protocol [8] and the GridFTP client API, expressed as a
set of function prototypes in C. Another component is the
Replica Catalog [15]. In the first releases of the EDG soft-
ware, the RC was implemented as an LDAP directory. An
LDAP directory [16], [17] is a hierarchical database that is
accessed remotely with the LDAP protocol. Client API’s
and libraries are available in various languages, and the C
API and library have been adopted by EDG (and by the
Globus (TM) Toolkit). The LDAP server, in turn, stores
the directory in a relational database backend. The Replica
Management itself does not currently have a server, hence
it does not have a protocol, since most of its work is done
by its subsystems, so the top-level component of this ser-
vice is just a library that implements the Replica Manage-
ment API. In the earlier releases, this API was in C++.
The API includes operations that access the RC to man-
age information about replicas and use GridFTP to create
or delete replicas.

Given the large number of components in the EDG soft-
ware, each with its protocols and API’s, it is clear that
much effort has been devoted to making them fit together.
In the later releases of the software, the architecture is mov-
ing towards a new model, called the Open Grid Services
Architecture (OGSA) [18] where most services will adhere
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to a uniform interfacing approach, based on Web Services.
A Web service is a distributed application whose protocol
is defined in terms of SOAP [19], [20] messages and is de-
scribed by a WSDL [21] specification. This specification is
software-readable and published on the Web, so that client
applications can easily find the service and interact with it.

V. Conclusions

Computational grids are taking shape and already pro-
viding services to large and sophisticated communities. In
particular, the European DataGrid project is entering its
final stage and in the next months it is due to deliver a
large Grid testbed hosting many software packages that
together form a fully operational Grid architecture, opti-
mized for handling great amounts of data from scientific
experiments that involve thousands of simultaneous users
from multiple institutions all over the world. A succes-
sor project, the LHC Computing Grid, is already working
to fine-tune this architecture to prepare the larger infras-
tructure that will be used by the Large Hadron Collider
(lhc-new-homepage.web.cern.ch) experiments scheduled
to start at CERN in 2006.

This paper has introduced some of the basic concepts
underlying these developments and sketched a very small
sample of the architectural issues met in an important Grid
project, in the hope of motivating more researchers and
professionals to further the study of this exciting new field
of computer technology.
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