
OntheRobust Synthesis of LogicalConsensusAlgorithms

forDistributed IntrusionDetection ?

Adriano Fagiolini a,b, Antonio Bicchi b,c

aDIEETCAM, Faculty of Engineering, Università degli Studi di Palermo, Italy

bInterdepartmental Research Center “E. Piaggio”, Faculty of Engineering, Università di Pisa, Italy

cDepartment of Advanced Robotics, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy

Abstract

We introduce a novel consensus mechanism by which the agents of a network can reach an agreement on the value of a shared
logical vector function depending on binary input events. Based on results on the convergence of finite–state iteration systems,
we provide a technique to design logical consensus systems that minimize the number of messages to be exchanged and the
number of steps before consensus is reached, and that can tolerate a bounded number of failed or malicious agents. We provide
sufficient joint conditions on the input visibility and the communication topology for the method’s applicability. We describe
the application of our method to two distributed network intrusion detection problems.

Key words: Consensus, distributed algorithms, intrusion detection, security.

1 Introduction

Many control problems with distributed or networked
systems require that agents reach an agreement on cer-
tain information, by merging their own uncertain and
possibly incomplete estimates through neighbor–to–
neighbor interaction strategies. In the simplest case,
the information to agree about can be represented by
real numbers or vectors, and global agreement can be
reached by the use of linear iterative strategies [16].
These strategies require that every agent repeatedly up-
date their own real states as weighted combinations of
their own local values and those of their neighbors. Ex-
amples of problems falling into this linear framework are
the rendezvous problem for a set of mobile robots [21]
and the clock synchronization problem for a group of
distributed processes [23]. A vast literature has recently
established under which connectivity properties of the
system’s communication topology, global agreement
can be reached on e.g. the average of the agents’ initial
values (see e.g. [1, 4, 11, 16, 20]). Other problems, such
as general functions consensus [7] and optimal sensing

? Corresponding author A. Fagiolini, Tel. +39 091 23863613,
Fax. +39 050 2217051.

Email addresses: fagiolini@unipa.it
(Adriano Fagiolini), bicchi@centropiaggio.unipi.it
(Antonio Bicchi).

coverage with a team of mobile robots [6], still involve
agreement on real information, but need nonlinear,
ad–hoc iterative strategies. In [6] a team of robots can
adjust their locations moving toward the centroid of
the corresponding Voronoi regions. In other application
domains, agents have to consent on information repre-
sented by (possibly) infinite set–valued data and need
to use aggregation strategies operating on such data.
A nonlinear iterative strategy is described in [8] which
enables a team of robots to simultaneously self–localize
and build a map of the surrounding environment, by
merging continuous sets that represent locally estimated
uncertain positions of detected features. Misbehavior
detection in multi–robot systems with event–based co-
existence rules is solved via a consensus strategy by
which robots can reconstruct the occupancy map of
other robots’ neighborhoods [3].

Moreover, when dealing with distributed and open sys-
tems, one has necessarily to deal with the event that
some agents may exhibit unexpected behavior, due to
spontaneous failure or even malicious programming. Ro-
bust clock synchronization in systems where processes
can exchange locally estimated confidence intervals of
the clock has been shown to be solvable via a nonlinear
iterative strategy that is resilient to possible measure-
ment inconsistency [15]. More in general, failure manage-
ment has been studied in distributed computing, under

Preprint submitted to Automatica March 11, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80246257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the framework of so–called Byzantine Generals problem
(see e.g. [12, 14]), which addresses how to ensure that
all agents of a network reach a consensus also in the
event that a bounded number of them experiences fail-
ures. In this framework, communication between neigh-
boring agents is allowed via the exchange of “oral” mes-
sages, i.e. there exist wired/dedicated connections be-
tween any two communicating agents, which enables ma-
licious agents to send different, possibly conflicting val-
ues to different neighbors. It has been established that,
to tolerate up to γ malicious agents (possibly conspir-
ing together), there are two necessary conditions on the
minimum number n of agents, i.e. n ≥ 3γ, and on con-
nectivity c of the communication topology (c ≥ 2γ+ 1).
More recently, the problem of uncooperative agents has
received an increasing attention in the control commu-
nity [3, 17, 24], most likely due to the strong push given
by the foreseen actual implementability of multi–robot
systems in a near future. Here, a broadcast communica-
tion model can be adopted, since communication is wire-
less, which implies that agents are only able to transmit
identical values to all their neighbors. In this context,
the requirement on the number of agents is no longer
needed, but the connectivity one is still in place [2].

In the present work, we focus on control problems where
a team of agents must cooperatively compute a logical
vector function that returns a set of decisions depending
on a set of input events. Agents have partial accessibil-
ity to the input events, very simple local computation
and broadcast communication capabilities, and may be
affected by failures. This problem involves reliable net-
work information diffusion that can be achieved by the
use of techniques based on Robust Flooding (RF) or
Exponential Information Gathering (EIG) [14]. RF is a
protocol requiring that every agent forward all incom-
ing messages to its outgoing links, except the ones from
which it has received the messages. In its basic formu-
lation, RF introduces a high communication overhead,
due to redundant relay of multiple copies of each mes-
sage [18]. Protocol’s variations such as the initialization
of every message with a life–time counter, which is de-
creased every time that the message is relayed, and the
subsequence discard of the messages that are out of their
life span, can reduce the amount of messages circulat-
ing in the network only heuristically. In a network with
moderate connectivity, if every agent has k neighbors,
and the counter strategy with a limit of h hops is used,
then every data packet will spawn on the order of kh

copies [18]. Moreover, since communication links have
finite capacity, messages are dropped when their buffers
become full. To prevent that all messages for the con-
versation between a given couple of agents are systemat-
ically dropped, strategies enforcing fair link utilization
by the agents must be implemented, which requires com-
putationally expensive authentication mechanisms (typ-
ically based on public key cryptography), assuring that
a message generated by an agent occupies its reserved
memory buffer slot [18]. Furthermore, the alternative of

EIG algorithms requires that every agent send their ini-
tial estimates and relay the ones that they receive for
γ+1 rounds, while recording all such values in a labelled
tree that memorizes them by the communication path
they have been received. While EIG algorithms are able
to solve the agreement problem under the worst failure
conditions (occurring when agents may exhibit any ar-
bitrary behaviors and can communicate via “oral” mes-
sages), they are known to be costly for the amount of lo-
cal storage used, and for the dimension of the messages
that are exchanged [14]. The labelled tree has indeed
γ + 2 levels, and each node at level k, 0 ≤ k ≤ γ, has
exactly n− k children. EIG algorithms become also un-
necessarily redundant with broadcast communication.

To overcome the limitations of existing methods from the
distributed algorithm literature, we propose a technique
which adopts a dynamic system approach. Our method
allows the design of logical interaction strategies by us-
ing which agents can reach an agreement on the value of
the shared logical vector function, via the exchange of
binary values of their local estimates of the input events.
The technique builds upon known results on the conver-
gence of finite–state iteration systems [22] and previous
work by the authors [10], and it is valid for networks
with fixed topologies. Our method requires centralized
knowledge of the communication topology during an ini-
tial design phase, whose aim is to find secure minimum–
length paths connecting every input event with every
agent, so that the input’s information can robustly flow
over the network with the minimum number of steps and
messages. After such a phase, every agent needs only
to know what are their neighbors and how to combine
their states. This is to be compared with the linear iter-
ative strategies surveyed in in [5,16], where a centralized
design phase is not needed, and it is only required to
check that all possible communication graphs are dou-
bly stochastic. Moreover, by formalizing our interaction
strategy as a logical dynamic system, the dimension of
every agent’s state is also minimized, since only the re-
sult of the computation performed during the latest one–
hop interaction needs to be maintained.

The paper is organized as follows. The logical consen-
sus problem is formalized in Section 2. Results on the
convergence of binary dynamic systems are recalled in
Section 3. The problem of reaching consensus on a single
input with and without faulty agents is settled in Sec-
tion 4 and 5. The design of logical consensus systems for
robust computation of generic logical vector functions
with fixed topology networks is described in Section 6.
Application to two distributed intrusion detection prob-
lems is shown in Section 7.

2 Problem Statement

We consider distributed control problems where p deci-
sions depending on the occurrence of m events must be

2



shared by a group of n agents, A1, . . . ,An. Events are
conditions, such as the discovery of an intruder in a spe-
cific region or the failure of a component in a compu-
tation system, that can occur at different geographical
locations. Decisions are group–level actions that have to
be performed in response to such events. A set of m bi-
nary input variables u1, . . . , um are associated with the
events, and a set of p binary output variables, y1, . . . , yp,
are associated with the decisions. An input–output re-
lation of the type

y1 = f1(u1, . . . , um) ,
...

yp = fp(u1, . . . , um) ,

(1)

where each fi : Bm → B is a logical function, expresses
the connection between the two sets of variables. We will
refer to Eq. 1 as the logical decision system and rewrite it
more concisely as y = f(u), where u = (u1, . . . , um)T ∈
Bm and y = (y1, . . . , yp)

T ∈ Bp are the input and output
vectors, respectively, and f = (f1, . . . , fp)

T , with f :
Bm → Bp, is a logical vector function.

Agents are placed at different geographical locations and
may have heterogeneous sensors, which implies that each
input component uj may be measurable only by a subset
of them. This property can modeled by introducing a
visibility matrix V ∈ Bn×m, being a binary matrix s.t.
V (i, j) = 1 if, and only if, the i–th agent Ai can read
the input component uj . Moreover, agents are able to
exchange messages with each others, but may not be
able to communicate with all the members of the group,
which can be described by a communication matrix C ∈
Bn×n, where C(i, k) = 1 if, and only if, the agent Ai
can receive a message from the agent Ak. The matrix C
is instrumental to define the notion of communication
neighbors, or in shortC–neighbors, of an agentAi, being
identified by the non–null elements of C’s i–th row.

The evaluation of f requires in general full knowledge of
the input vector u. A possible solution can be obtained
where a single centralized decision process Pc receives all
measures of the input vector components uj , computes
the output vector y, and sends it back to all agents.
This naive approach is unsatisfactory at least for three
reasons: First of all, it is non–scalable since the amount
of data to be exchanged through the network and pro-
cessed by Pc increases with the number of agents, rather
than only with the dimensions m and p of the decision
task; secondly, the approach requires an explicit message
routing management to ensure that every agent reaches
and is reached by Pc; third, it represents a system with a
single–point of failure represented by Pc and may be un-
able to cope with communication failures, unless coun-
termeasures based on e.g. message relay are introduced.

We pursue a different approach where agents are aware

of the logical functions f1, · · · , fp, and must coopera-
tively estimate the output of the logical decision system
y = f(u). Each agent Ai has a binary vector state Xi =
(Xi,1, · · · , Xi,q) ∈ B1×q, where q is a proper dimension,
and an output decision vector Yi = (yi,1, · · · , yi,p) ∈
B1×p. Let X = (XT

1 , . . . , X
T
n )T ∈ Bn×q be the state of

the agents’ network. The agent’s state is updated ac-
cording to an iterative rule of the form Xi(t + 1) =
Fi(X(t), u(t)), where t is a discrete time, and the agent’s
output is computed via a binary output function Yi(t) =
Gi(Xi(t), u(t)). The maps Fi : Bq × Bm → Bq and
Gi : Bq × Bm → Bp are required to comply with the
agent’s local visibility and communication abilities, i.e.
they can only depend on Ai’s state, the state of its C–
neighbors, and on the input components uj that it can
read. Let Y = (Y T1 , . . . , Y

T
p )T ∈ Bp×q be the agents’

network output. The evolution of all agents’ network is
thus described by the logical iterative system{

X(t+ 1) = F (X(t), u(t)) ,

Y (t) = G(X(t), u(t)) ,
(2)

where F = (FT1 , . . . , F
T
n )T and G = (GT1 , . . . , G

T
n )T .

Hence, we recast the problem of computing the decision
system in Eq. 1 as that of allowing a network of agents
to consent on the output of a logical vector function,
which we will refer to as the problem of reaching Logical
Consensus (LC).

In this context, we want to solve the following problem,
which is dealt with in Section 4:

Problem 1 (LC in Virtuous Scenarios) Given the
logical decision system of Eq. 1, communication and
visibility matrices C and V , design a logical consensus
system as in Eq. 2, that is compliant with C and V and
ensures logical consensus, from all initial state X(0) and
inputs u, on the centralized decision system y∗ = f(u),
i.e.

Y (t) = 1n (y∗)T , for some t > t′ ,

where 1n is an n× 1 binary vector with all entries to 1.

We also want to solve the same consensus problem within
a scenario with possible faults or security attacks, which
is dealt with in Section 5:

Problem 2 (LC in Malicious Scenarios) Assuming
that at most γ agents may share incorrect/corrupted
data, design a robust logical consensus system ensuring
all correct agents Ai to consent on the correct decision,
i.e.

Yi(t) = (y∗)T , for some t > t′ .

Finally, we assume that the input vector u is piece–wise
constant, indicating that it may be constant or slowly–
changing with respect to the convergence speed of the
system in Eq. 2.

3



3 Convergence of Logical Dynamic Systems

Consider the simplest Boolean algebra described by the
sextuple (B,+, ·,¬, 0, 1), where B = {0, 1} is a domain
set, + and · are binary operations representing the log-
ical sum and product, respectively, ¬ is a unary oper-
ation representing the logical complement, 0 (null) and
1 (unity) are the domain’s smallest and biggest values,
respectively. Consider the partial order relation ≤ de-
scribed by the axioms: 0 ≤ 0, 0 ≤ 1, 1 ≤ 1. An ele-
ment λ ∈ B is referred to as a scalar. Given an inte-
ger number n, a Boolean vector v and a Boolean ma-
trix A are elements belonging to the sets Bn and Bn×n,
respectively. Given two vectors v = (v1, . . . , vn) and
w = (w1, . . . , wn), and two square matrices A = {ai,j}
and B = {bi,j}, we define the scalar product as

wT v
def
=
∑n
i=1 vi · wi ∈ B ,

the product Av as the vector whose i–th element is the
scalar product between the i–th row of A and the vector
v, and the product AB as the matrix whose (i, j)–th
element is the scalar product between the i–th row of
A and the j–th column of B. In other words products
between a matrix and a vector and between two matrices
are computed in the usual way, by only replacing the sum
and product on reals with those of the Boolean algebra.

Consider an autonomous logical system of the form{
x(t+ 1) = F (x(t)) ,

x(0) = x0 ,
(3)

where x0 is an initial state and F : Bn → Bn is an
endomorphism on Bn involving only operations of the
binary algebra. It is worth noting that, as Bn is a finite
domain set, the evolution of a generic logical system can
either converge in finite time to an equilibrium point or
be captured by a cycle. The convergence of these systems
is studied in [22], from which we recall the following
Def. 1–4 and the results described in the remainder of
this section.

First we need to introduce a metric on Bn:

∆ : Bn × Bn → Bn

(x, y) 7→ (x1 ⊕ y1, · · · , xn ⊕ yn)
,

where ⊕ is the exclusive disjunction

⊕ : B× B→ B
(xi, yi) 7→ (¬xi yi) + (xi ¬yi)

,

This metric, called binary vector distance, is indeed a
distance on Bn, since it satisfies the following axioms:

∆(x, y) = ∆(y, x), ∆(x, y) = 0 iff x = y, ∆(x, y) ≤
∆(x, z) + ∆(z, y), for all x, y, z ∈ Bn.

Definition 1 (Boolean Eigenvalues/Eigenvectors)
A scalar λ ∈ B is an eigenvalue of a Boolean ma-
trix A ∈ Bn×n if there exists a vector x ∈ Bn, called
eigenvector, s.t.

Ax = λx .

Definition 2 (Boolean Spectral Radius) The spec-
tral radius of a Boolean matrix A ∈ Bn×n, denoted with
ρ(A), is its biggest eigenvalue in the sense of the order
relation ≤.

Proposition 1 Every Boolean matrix A ∈ Bn×n has at
least one eigenvalue. Hence ρ(A) always exists.

Proposition 2 A Boolean matrix A ∈ Bn×n has
Boolean spectral radius ρ(A) = 0 if, and only if, one of
the two following equivalent conditions hold:

• PTAP is a strictly lower or upper triangular matrix
for some permutation matrix P ;

• An = 0 (the n–th Boolean matrix power of A).

Remark 1 (Spectral Radius Computation) The
above propositions provide a procedure for the compu-
tation of ρ(A). Indeed, by Prop. 1, we have ρ(A) ≥ 0.
Hence, one has first to check if A admits only the eigen-
value λ = 0, which can be done, based on Prop. 2, either
by showing a permutation matrix P (namely, a reorder-
ing of A’s rows and columns) that brings A into strictly
lower or upper triangular form, or by checking if An

equals the null matrix. If unsuccessful, one can conclude
that ρ(A) = 1 implying that the scalar λ = 1 is an eigen-
value of A, while nothing can be said for the scalar λ = 0.

Definition 3 (Contractive Map) A mapF : Bn → Bn
is said to be contractive w.r.t. the binary vector distance
∆ if there exists a matrix M ∈ Bn×n s.t.

• ρ(M) < 1 (which implies ρ(M) = 0), and
• ∆(F (x), F (y)) ≤M ∆(x, y), for all vectors x, y ∈ Bn.

Definition 4 (Incidence Matrix) The incidence ma-
trix of a logical map F is a Boolean matrix B(F (x)) =
{bi,j}, where bi,j = 1 if, and only if, the i–th component
of F (x) depends on the j–th component of the input vec-
tor x, i.e.

∃ x̄ ∈ Bn s.t. F (x̄) 6= F (x̄⊕ ej) ,

where ej is the j–th basis vector of Bn.

Theorem 1 A map F : Bn → Bn is contractive if, and
only if, the following equivalent conditions hold:

• ρ(B(F (x))) = 0;

4



• PTB(F (x))P is strictly lower or upper triangular, for
some permutation matrix P ;

• B(F (x))q = 0, with 0 ≤ q ≤ n;
• ∃ q ≤ n s.t. F q (F ’s composition with itself q times) is

a constant map, i.e. it is independent of x(0). �

Corollary 1 A contractive map F globally converges to
a unique equilibrium.

Finally, we can provide the following definition:

Definition 5 A logical map F : Bn × Bm → Bn is
(C, V )–compliant if, and only if, its incidence matrix
B(F (X,u)) satisfies the logical vector inequality

B(F (X,u)) ≤ (C V ) .

4 Linear Logical Consensus Systems

First of all, we need to determine if a given combination
of input visibility and agent communication topology
allows the j–th input uj to be propagated to the entire
network, or in other words which part of the graph is
reachable from uj . The binary vector Vj contains 1 for
all entries representing agents that can “see” or measure
the input uj , and thus that are reached from the input in
one step. Note also that all binary vectors CkVj , for k =
0, 1, . . . , contain 1 for all entries representing agents that
can receive the values of input uj through a sequence of k
messages, and thus that are reached from the input after
exactly k+ 1 steps. More precisely, if we add a fictitious
node representing uj to the communication graph, the
i–th element of CkVj is 1 if, and only if, there exists at
least one path of length k + 1 from the fictitious node
to the one representing the agent Ai. By definition of
graph diameter diam(G), all agents that are reachable
from an initial set of agents are indeed reached in at
most diam(G) steps. It also holds that diam(G) ≤ n−1.
Let us denote with κ(C, Vj) the visibility diameter of
the pair (C, Vj) being the number of steps after which
the sequence {CkVj} does not reach new nodes/agents.
Given a pair (C, Vj), we can introduce the reachability
matrix Rj , assigned with input uj ,

Rj =
(
Vj CVj C

2Vj · · · Cn−1Vj
)
,

whose columns “span” a subgraph GR(NR, ER) of
G(N,E), where NR is the node set representing agents
that are reachable from uj , ER is an unspecified edge
set that will be considered during the design phase,
N = {1, . . . , n}, and E = {(i, j) |C(i, j) = 1} is the
edge set of available links. Consider the j–th span vector
obtained as the logical sum of Rj ’s columns:

I
(n)
j =

∑n−1
k=0 C

kVj =
∑n−1
k=0 Rj(:, k) ,

whose i–th element equals unity if, and only if,
there exists a path of any length from the ficti-
tious node representing uj to the node representing
Ai. Given a pair (C, Vj), we define the span of the
reachability matrix Rj(C, Vj) as the reachable set

NR = {i | I(n)
j (i) = 1}. The unreachable set is obtained

by complementation: NR̄ = N \NR.

Definition 6 A pair (C, Vj) is (completely) reachable
if, and only if, the span of Rj(C, Vj) is the entire graph
(i.e. NR = N), or equivalently if

I
(n)
j = 1n .

Example 4.1 Consider e.g. a network with n = 5
agents characterized by the following communication
matrices and j–th visibility vector:

C =



1 1 0 0 1

1 0 1 0 1

1 1 1 1 1

0 1 1 1 1

0 0 0 0 1


, Vj =



1

0

0

0

0


.

First note that, in this example, only agent A1 is able to
measure uj. The reachability matrix associated with the
j–th input is

Rj = (Vj CVj · · · C4Vj) =



1 1 1 1 1

0 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 0 0


.

The span vector is I
(n)
j = (1, 1, 1, 1, 0)T , and thus the

reachable subgraph is NR = {1, 2, 3, 4}, whereas the un-
reachable one is NR̄ = {5}. The visibility diameter, be-
ing the number of steps within which all the agents in NR
are reached, is κ(C, Vj) = 3. �

Consider now how to design a consensus map F : Bn ×
B → Bn that is (C, Vj)–compliant and that allows the
information on uj to be propagated throughout the net-
work. It should be evident that the design can only con-
cern the reachable subgraph GR(NR, ER), while noth-
ing can be done for the unreachable one. Note that the
presence of a non–empty unreachable subgraph GR̄ in
our context where node consensus is sought indicates
that the design problem is not well–posed. This would
require further actions, such as the introduction of new
nodes, a better deployment of the existing ones as well

5



as an enhancement of their visibility and communica-
tion capabilities, but this goes beyond the scope of the
work and will not be considered.

An intuitive yet optimal way to propagate the input uj
is obtained every agent that can directly measure the
input send their local estimates to their C–neighbors
without overlapping, which in turn will send them to
other C–neighbors that have not been received yet, and
so on and so forth. If we select from the graph G only
the edges representing links through which one message
has been sent according to this strategy, we obtain a so–
called Input Propagation Spanning Tree (IPST), which is
rooted at the fictitious node representing uj and which
reaches every agent in NR. It also encodes an optimal
message exchange scheme by following which all reach-
able agents can be informed on the value of uj with
minimum number of messages and steps. To find such
an IPST is instrumental to solve our problem and it
can be based on the vector sequence {CkVj} 1 . Indeed,
note that CkVj = C(Ck−1Vj), which tells us that in the
optimal propagation scheme the agents that are reach-
able after k steps must have received a message contain-
ing the estimate of uj from one of the agents that were
reachable after k− 1 steps. Any consecutive sequence of
agents that are extracted from non–null elements of the
sequence is (C, Vj)–compliant by construction.

Therefore, an IPST of input uj can be found by consid-
ering the sequence of vectors indicating, for all steps k,
which agents are reached for the first time

Lkj =

 Vj if k = 1 ,

Ck−1Vj ¬
(∑k−2

h=0 C
hVj

)
if k > 1 .

Let k̄ be the first step at which no new agents are reached,

i.e. L
(k̄)
j = 0. It trivially holds that

κ(C, Vj) = min
k
{k |Lkj = 0} = k̄ − 1 .

At the generic step k of the design phase, it is possible to
chose the update rule Fi : Bn×B→ B of every agent Ai
s.t. Lkj (i) = 1. In particular we have

xi(t+ 1) = C∗i,: x(t) + Vj(i)uj ,

with

C∗i,: =

{
0 if k = 1 ,

eThi if k > 1 ,

1 As described below, the computation of an IPST involves
only logical operations on binary vectors and, hence, is very
efficient from both memory and computation viewpoints.

where ehi being the hi–th vector of the canonical basis,
and

hi = min
h
{Ci,h Lk−1

j (h) = 1} .

Note also that C∗ = S C ≤ C, where S is a suitable
selection matrix. The design phase ends at the step k̄.

Moreover, let P be a permutation matrix that reorders
the agents by order their update function Fi are decided
during the design phase. Let also C̃∗ = PTC∗P and
Ṽj = PTVj be the corresponding communication matrix
and visibility vector, respectively. It should be evident
that, in the reordered coordinates, we have

C̃∗ =



0 0 · · · 0 0

C̃0,1 0 . . . 0 0
...

...
...

0 · · · C̃κ−1,κ 0 0

0 · · · 0 0 0


, (4)

which has a strictly lower–block triangular form, and
Ṽ ∗j = PT Vj = (1, · · · , 1, 0, · · · , 0)T . In the new coor-
dinates, the reachability property of the system should
be more apparent. Indeed the reachability matrix
Rj(C̃

∗, Ṽj) is

1T 0 0 . . . 0 0 0

0 C̃0,1 0 . . . 0 0 0

0 0 C̃2,3C̃1,3 . . . 0 0 0
...

...
...

0 0 0 . . . 0 C̃κ−1,κ · · · C̃1,κ 0

0 0 0 . . . 0 0 0


,

where the upper–left matrix block (related to the reach-
able subgraph) contains exactly one element to 1 in all
rows, and the two lower matrix blocks (related to the
unreachable subgraph) are 0. Finally, observe that all

products C̃i+1,jC̃i,j are well–defined since the column

number of C̃i+1,j equals the row number of C̃i,j by con-
struction.

Example 4.2 (Cont’d) Consider the design phase of
the network of Example 4.1. For k = 1 we have L1

j =

(1, 0, 0, 0, 0)T and thus the update function of agent A1

is chosen with C∗1,h = 0. For k = 2 we have L2
j =

(0, 1, 1, 0, 0)T and thus the update functions of agents A2

and A3 are chosen with C∗2,h = C∗3,h = (1, 0, 0, 0, 0). For

k = 3 we have L3
j = (0, 0, 0, 1, 0)T and thus the update

function of agent A4 is chosen with C∗4,h = (0, 1, 0, 0, 0).

For k = 4 we have L4
j = 0 and thus κ(C, Vj) = 3. C∗5,h is

6



undetermined since agent A5 is unreachable and can be
set to null. The corresponding communication matrix is

C∗ = PT (CS)P =



0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0


,

where P is the identity matrix and S is a suitable selection
matrix. The corresponding consensus system, restricted
to the reachable agents, is

x1(t+ 1) = uj(t) ,

x2(t+ 1) = x1(t) ,

x3(t+ 1) = x1(t) ,

x4(t+ 1) = x2(t) ,

which indeed can optimally propagate the input uj. �

We can now discuss the correctness of the above de-
scribed linear consensus system. The following theorem
is a solution to Problem 1.

Theorem 2 (Linear Logical Consensus) Given a
reachable pair (C, Vj), where C is a communication
matrix and Vj is a visibility vector, the linear logical
consensus system{

x(t+ 1) = C∗ x(t) + Vj uj(t) ,

x(0) = x0 ,

where x0 is an initial state and the pair (C∗, Vj) is an
IPST of input uj, is (C, Vj)–compliant and, for all piece-
wise constant inputs uj(t) = ūj, globally converges in at
most κ(C, Vj) steps to the equilibrium

x̄ = 1nūj .

Proof 1 The consensus state x̄ = 1nūj is an equilibrium
and is globally stable. Indeed, the update rule gives

x(t+ 1) = C∗1n ūj + Vj ūj = Ṽj ūj = 1nūj

since Ṽj = C∗ 1n + Vj = 1n. Moreover, the incidence
matrix of the system is

B(F (x)) = C∗ ,

which is similar to the strictly lower triangular matrix in
Eq. 4. Then, the global stability of the equilibrium follows
from Theorem 1.

To prove the convergence time, consider the system in
coordinates sorted by the order their update function are
chosen during the design phase. Since C̃∗ is a block lower
triangular matrix, the system can be solved block–wise
via Gauss’ method. Indeed we have

z0(t+ 1) = u(t) ,

z1(t+ 1) = C̃0,1 z0(t) ,
...

zl(t+ 1) = C̃l−1,l zl−1(t) ,
...

zκ(t+ 1) = C̃κ−1,κ zκ−1(t) ,

where zi is the i–th block of reordered components.
The system’s evolution with constant input ūj is

thus: z0(1) = ūj, z1(2) = C̃0,1 z0(1) = ūj, · · · ,
zκ(κ) = C̃κ−1,κ zκ−1(κ− 1) = ūj, which proves that the
consensus is reached after κ steps.

Example 4.3 Consider a network of n = 5 agents with
the following pair of communication and visibility matri-
ces (note that two agents are able to measure the input):

C =



1 1 0 0 1

1 0 1 0 1

0 1 1 1 1

0 1 1 1 1

1 0 1 0 1


, Vj =



1

1

0

0

0


. (5)

Consider applying the design procedure above and re-
ordering the agents into 2 disjoint groups based on the
agent that can measure the input. An IPST in the re-
ordered coordinates is characterized by the matrices

C̃∗ =



0 0 0

1 0 0

1 0 0

0 0

0 0

0 0

0 0 0

0 0 0

0 0

1 0


, Ṽ ∗j =



1

0

0

1

0


.

The corresponding linear logical consensus system is

x1(t+ 1) = uj(t) ,

x2(t+ 1) = uj(t) ,

x3(t+ 1) = x2(t) ,

x4(t+ 1) = x2(t) ,

x5(t+ 1) = x1(t) ,

7



operating condition di

correct agent 0

inverted agent 1

stuck on 0 Fi(x, uj)

stuck on 1 ¬Fi(x, uj)

Table 1
Possible operating modes of the generic i–th agent

and the visibility diameter κ(C, Vj) = 2.

Consider the evolution of the system from the initial state
x0 = (x0

1, x
0
2, x

0
3, x

0
4, x

0
5)T and input uj(t) = ūj for t ≥ 0.

Direct computation gives x(1) = (ūj , ūj , x
0
2, x

0
2, x

0
1)T and

x(t) = x(2) = (ūj , ūj , ūj , ūj , ūj)
T for t ≥ 2. �

5 Dealing with Agent Failure

Consider the case where some agents may incorrectly
update their binary states, because of internal failures
due to spontaneous malfunctioning or malicious inter-
vention. In this work we assume that a faulty agent may
either update its state xi with the complement of the
correct value Fi(x, uj), or be stuck at the constant val-
ues 0 or 1. As a consequence, the behavior of a generic
agent Ai can be described by an equation of the type

xi(t+ 1) = Fi(x(t), uj(t))⊕ di , (6)

where Fi : Bn × B → B is the nominal update function
and di ∈ B is a binary disturbance that can take on the
forms listed in Table 1. We say that an agentAi is correct
if it applies the nominal update function Fi to determine
its state xi (i.e. di = 0), and fault otherwise.

The presence of a faulty agent may in general prevent
the establishment of the correct consensus within a net-
work of agents exploiting the linear logical update rule,
Fi = C∗(i, :)x+ Vj(i)uj , as shown in the following ex-
ample.

Example 5.1 (Linear Consensus Failure) Consider
a network composed of n = 5 agents that need to consent
on the input uj through direct visibility and message ex-
change. Suppose that the network is characterized by the
communication and visibility matrices

C =



1 0 1 0 0

0 1 1 1 0

1 1 1 1 0

0 0 0 0 0

1 1 1 0 1


, Vj =



1

1

0

1

0


.

The corresponding linear logical consensus system is

x1(t+ 1) = uj ,

x2(t+ 1) = uj ,

x3(t+ 1) = x1(t) ,

x4(t+ 1) = uj ,

x5(t+ 1) = x1(t) .

If, for example, agent A1 is faulty (d1 6= 0), the equilib-
rium point that is reached by the system is

x̄ = (uj ⊕ d1, uj , uj ⊕ d1, uj , uj ⊕ d1)T 6= 1nuj ,

which shows that the network is inconsistent and has not
reached the desired consensus. �

Our problem is equivalent to make a binary vote based
on a number of independent evaluations, some of which
may be compromised or faulty. It is well known that, to
tolerate up to γ faults, it is sufficient that the voter al-
ways have at least r = 2γ + 1 independent evaluations,
so that at least γ + 1 of them, the majority, are guaran-
teed to be correct and consistent [12].

In our context, we assume that every sensor reading is
correct as well as the computation of the nominal update
function Fi, but a faulty agent Aj may be subject to the
disturbance term dj 6= 0, which alters its final decision
and the data that it shares via message exchange. Under
this hypothesis, the strategy to update every agent state
can be the following. If Ai is able to see the input uj ,
its update rule can simply be xi(t + 1) = uj . If Ai is
unable to see uj , its state can be updated by applying the
majority rule on r estimates xh out of the ones received
from its C–neighbors:

xi(t+ 1) =

{
0 if card(S0(t)) > card(S1(t)) ,

1 if card(S0(t)) < card(S1(t)) ,
(7)

where Sz(t) = {h |Ci,h = 1, xh(t) = z} (note that
the case card(S0(t)) = card(S1(t)) cannot occur since
r is odd). The above majority rule can be written by
using only binary operations. Indeed, Eq. 7 requires
that Ai sets to 1 its state if, and only if, at least
γ + 1 messages received from its C–neighbors contain
values xh set to 1, i.e., if there exists a choice of in-
dices i1, · · · , iγ+1 ∈ Ki, with Ki = {h |Ci,h = 1},
s.t. xi1 = 1, xi2 = 1, · · · , xiγ+1

= 1, or equiva-
lently s.t. xi1xi2 · · · xiγ+1 = 1. Having denoted with
Si = S(Ki, γ + 1) the set composed of (γ + 1)–tuples
from elements extracted from Ki, the rule can be writ-
ten as xi(t+ 1) =

∑
H∈Si Πh∈Hxh.

Note that, if γ∗ ≤ γ is the actual number of faults,
the number λγ∗ of tuples in Si that are guaranteed to

8



give the correct estimate of uj equals the number of
combinations of γ+1 elements extracted from the index
set of the remaining correct agents, which is composed
of 2γ + 1− γ∗ elements, i.e.

λγ∗ =

(
2γ + 1− γ∗

γ + 1

)
=

(2γ + 1− γ∗)!
(γ + 1)!(γ − γ∗)!

.

In the worst case we have γ∗ = γ and thus λγ = 1,
which guarantees that there exists at least one such se-
cure product.

Moreover, starting from an initial condition in which
the maximum fault number constraint is satisfied, it is
necessary that uj is propagated while guaranteeing that
the constraint remains satisfied. To this aim, consider

the sequence of binary vectors I
(k)
j , each containing a

non–null element for the agents that are reached from uj
with multiplicity r in at most k steps:

I
(k)
j (i) =


Vj(i) k = 1 ,

I
(k−1)
j (i) k > 1, card(Kk

i ) < r ,

1 k > 1, card(Kk
i ) ≥ r ,

with Kk
i = {h |C(i, h)I

(k−1)
j (h) = 1}. Let

κri = min
k
{k | I(k)

j (i) = 1}

be the step at which Ai is first reached with multiplic-
ity r from uj and κr(C, Vj) = max{κr1, · · · , κrn} be the
visibility diameter with multiplicity r. We can introduce
the reachability matrix

Rrj (C, Vj) =
(
I

(1)
j I

(2)
j · · · I(n)

j

)
,

whose columns tell us which agents can be securely
reached from input uj .

Definition 7 A pair (C, Vj) is said to be (completely)
reachable with multiplicity r, or r–reachable for short, if
the span of the reachability matrix Rrj (C, Vj) is the entire
graph or equivalently

I
(n)
j = 1n .

Let K∗i ⊆ Kκi
i a minimum index set s.t. card(K∗i ) = r.

We can now discuss the robustness of the above de-
scribed nonlinear consensus system. The following the-
orem is a solution to Problem 2.

Theorem 3 (Robust Nonlinear Consensus) Given
a maximum number γ of possible faults and a (2γ + 1)–
reachable pair (C, Vj), where C is a communication

matrix and Vj is a visibility vector, the nonlinear logical
system {

x(t+ 1) = F ∗(x(t), uj(t)) ,

x(0) = x0 ,
(8)

where x0 is an initial state and F ∗ = (F ∗1 , · · · , F ∗n)T ,
with

F ∗i : Bn × B→ B

(x, uj) 7→

 uj if Vj(i) = 1 ,∑
H∈S∗

i
Πh∈Hxh if Vj(i) = 0 ,

with S∗i = S(K∗i , γ + 1), is (C, Vj)–compliant and, for
all piecewise constant inputs uj(t) = ūj, globally con-
verges in at most κ2γ+1(C, Vj) steps to an equilibrium
x̄ = (x̄1, · · · , x̄n)T s.t.

x̄i = ūj

for all i corresponding to correct agents, i.e. with di = 0.

Proof 2 Let us first show that the state

x̄ = 1nūj ⊕ (d1, · · · , dn)T

is an equilibrium of the system in Eq. 8, perturbed
by a disturbance vector d = (d1, · · · , dn)T satisfy-
ing the maximum fault number constraint, i.e. with
card ({i | di = 1}) ≤ γ. We need to show that

F (x̄, ūj)⊕ d = x̄ .

Let us proceed by considering the agents as they are

reached by the sequence of vectors I
(k)
j . If Ai is reached

after one step (i.e. it is able to directly measure the input
being Vj(i) = 1), its perturbed update function gives

xi(t+ 1) = ūj ⊕ di = x̄i ,

which trivially satisfies the condition. If Ai is reached
after two steps, its update function depends on messages
xh received from a subset composed of 2γ+ 1 agents that
were reached after one step. Since we have xh = ūj⊕dh =
ūj¬dh + ¬ūjdh, Ai’s perturbed update function gives

xi(t+ 1) =
(∑

H∈S∗
i

Πh∈Hxh

)
⊕ di =

= (ūj A+ ¬ūj B)⊕ di ,

with A =
∑
H∈S∗

i
Πh∈H¬dh and B =

∑
H∈S∗

i
Πh∈Hdh.

Recall that Ai is guaranteed by hypothesis to receive at
least γ + 1 correct estimates of ūj from its neighbors
and that the cardinality of every tuple in S∗i is exactly
γ + 1. Therefore, there always exists a tuple H ∈ S∗i s.t.
dh = 0 for all h ∈ H, and thus s.t. Πh∈H¬dh = 1, which

9



implies A = 1. Moreover, provided that the maximum
fault number constraint is satisfied, there does not exist
a tuple H ∈ S∗i s.t. dh = 1 for all h ∈ H, which implies
B = 0. Therefore, we finally have

xi(t+ 1) = (ūj A+ ¬ūj B)⊕ di = ūj ⊕ di = x̄i .

The fact that x̄ is an equilibrium is proved by carrying on
the same reasoning for all agents as they are encountered

by I
(k)
j . For every correct agent Ai, the disturbance is

null, i.e. di = 0, which guarantees that they all consent
on the value

x̄i = ūj ⊕ di = ūj ⊕ 0 = ūj .

Let us also prove that x̄ is the unique equilibrium and that
is global stable. Without loss of generality, suppose that
the agents are sorted by the order they are reached by the

vectors I
(k)
j . Consider first the agents that are reached

after one step. Their update function F ∗i is independent
of the state and thus their corresponding rows in the in-
cidence matrix are null. If Ai is an agent reached after k
steps, its updated function F ∗i depends on a subset com-
posed of 2γ + 1 agents that were reached after k′ < k
steps, and that necessarily need to have an index h < i.
Therefore, the incidence matrix of F ∗ is strictly lower
triangular. In the general case, agents are reached by the

vectors I
(k)
j in generic order, but they can be reordered by

a permutation matrix P according to the sequence of vec-

tors I
(k)
j itself. This also implies that B(F ∗) is similar to

a strictly lower triangular matrix and thus its spectral ra-
dius needs to be null, i.e. ρ(B(F ∗)) = 0 (see Theorem 1).
In conclusion, the update function F ∗ is contractive, i.e.
it possesses a unique, globally stable equilibrium point x̄.
The proof of the convergence time follows on the same
line of the linear consensus approach above, and thus it
is omitted. Finally note that F ∗ is (C, Vj)–compliant by
construction.

Example 5.2 (Cont’d) Consider again the network of
Example 5.1. Suppose that at most γ = 1 agents may be
compromised and incorrectly setting their state.

The required multiplicity is r = 2γ+ 1 = 3, which is sat-
isfied by the pair (C, Vj) as shown by the vector sequence

I
(1)
j =



1

1

0

1

0


, I

(2)
j =



1

1

1

1

0


, I

(3)
j =



1

1

1

1

1


,

I
(4)
j = I

(3)
j .

The synthesis of the robust nonlinear consensus is feasible
and gives the update rule

x1(t+ 1) = u(t) ,

x2(t+ 1) = u(t) ,

x3(t+ 1) = x1(t)x2(t) + x1(t)x4(t)+

+x2(t)x4(t) ,

x4(t+ 1) = u(t) ,

x5(t+ 1) = x1(t)x2(t) + x1(t)x3(t)+

+x2(t)x3(t) .

As an example, suppose that agent A1 uncoopera-
tively sets its state with the perturbed update func-
tion x1(t + 1) = ūj ⊕ d1, d1 6= 0. After three steps
the network converges to the equilibrium point x̄ =

(ūj ⊕ d1, ūj , ūj , ūj , ūj)
T

, where all correct agents con-
sent on the values ūj. As another example, suppose
that agent A3 applies the uncooperative update function
x3(t+ 1) = (x1(t)x2(t) + x1(t)x4(t) + x2(t)x4(t))⊕ d3,
with d3 6= 0. Again the network reaches the equilib-

rium point x̄ = (ūj , ūj , ūj ⊕ d3, ūj , ūj)
T

, and all correct
agents are able to consent on the value of ūj. �

Remark 2 It is straightforward to show that, for γ = 0,
Theorem 3 produces a linear logical consensus system
that is equivalent to the one obtained by Theorem 2. In
principle, one could use the nonlinear approach even for
the case γ = 0; however, the reachability test and design
approach presented for the hypothesis of virtuous scenario
are simpler and thus should be used when possible.

Remark 3 (Link failures) The introduction of the bi-
nary disturbance vector d in Eq. 6 has enabled the anal-
ysis of a logical system’s behavior in the event of process
failure. It also allows discussing how consensus systems
designed according to Theorem 3 behave in the presence of
communication failures involving message loss, i.e. when
some messages from a sender agent Ah may not reach
their recipient agent Ai. Message loss can be caused by a
number of factors, including signal degradation over the
network medium, channel congestion, corrupted packets
rejected in–transit, faulty networking hardware [19].

As these systems are synchronous, every agent Ai must
receive, at every step t, the status of all theirC–neighbors,
in order to update their current state xi through the func-
tion Fi(x, uj). If the current status of an agent Ah is not
received from time t̄ + 1, a reasonable choice for Ai is
that of holding the most recently received value xh(t̄). In
dealing with this type of malfunctioning, the worst case
occurs when the failure of a link is permanent, i.e. when
no message from a sender Ah can ever reach its recipi-
ent Ai. Let M be the set of agents whose messages are
lost by at least one of their recipients. From the time t̄+1,

10



the dynamic behavior of all agents in M , as seen from all
other the agents, is described by Eq. 6, where dh(t) ≡ 0
if Ai can receive Ah’s messages, or

dh(t) =

{
Fh(x(t), ūj) if xh(t̄) = 0

¬Fh(x(t), ūj) if xh(t̄) = 1
, for t > t̄ .

otherwise. Under the hypotheses of Theorem 3, where γ
is the maximum number of failures in the incoming links
of every agent Ai, all agents i 6∈M correctly converge to
a state x̄i = ūj. Moreover, observing that also the agents
i ∈ M are correct processes (only their outgoing links
are failed), they correctly compute the update function
Fi. Hence, the entire system converges to the consensus
state x̄ = 1nūj.

6 Distributed Synthesis of Logical Maps

In the previous Sections 4 and 5, we have presented two
strategies allowing all (correct) agents of a network to
consent on the value of the j–th input uj . It is worth
noting that, given a logical map f , only a subset of its
inputs are actually needed for its computation, which is
captured in the following:

Definition 8 A binary input uj is essential for a deci-
sion system y = f(u) ∈ Bp if, and only if, the incidence
matrix of f satisfies the following relation∑p

i=1B(f(u))(i, j) = 1 .

Given a map f with µ ≤ m essential inputs, consider a
simplified logical map f∗ : Bµ → Bp obtained by fixing
the values of all its non–essential inputs. Note that f∗ is
equivalent to f , i.e. it possesses the same truth table.

We can now show how the agents can agree on a generic
decision system , which is the main result of the paper:

Theorem 4 (Distributed Synthesis) Given an in-
put visibility matrix V , a communication matrix C, and
a maximum number γ of faults, a generic decision sys-
tem y = f(u), with f : Bm → Bp and u a piecewise
constant input, can be computed in a distributed way if
the following feasibility inequality holds:

(¬I(n)
1 · · · ¬I(n)

m )T1n ≤ ¬
(
B(f(u))T 1m

)
. (9)

Moreover, network consensus on the decision y can be
obtained if every agent Ai run the logical consensus rule

Xi(t+ 1) = Fi(X(t), u(t)) ,

Yi(t) = Gi(Zi(t)) = (f∗1 (Zi(t)), · · · , f∗p (Zi(t))) ,

where X ∈ Bn×µ and Y ∈ Bn×p are the network’s state
and output, respectively, µ is the number of f ’s essential
inputs, f∗ = (f∗1 , · · · , f∗p ) is a simplified map equivalent

to f involving only such inputs, Fi = (Fi,1, · · · , Fi,µ)T ,
where Fi,j is designed by applying Theorem 2, if γ = 0,
or Theorem 3, if γ ≥ 0, to the j–th essential input, Zi =
(Zi,1, · · · , Zi,µ), and

Zi,j =

{
uj if Vj(i) = 1

Xi,j otherwise
.

Proof 3 Let us first prove the feasibility inequality. Its
left term is the binary vector

(¬I(n)
1 · · · ¬I(n)

m )T1n =


∑n
i=1 ¬I

(n)
1 (i)

...∑n
i=1 ¬I

(n)
m (i)

 ,

whose j–the component,
∑n
i=1 ¬I

(n)
j (i), equals the unity

if, and only if, I
(n)
j (i) = 0 for some i, i.e., at least an agent

is unreachable from input uj. In this case, the unique
possibility to expect the problem feasibility is that input uj
is unnecessary for the computation of f .

By applying De Morgan’s law, the inequality’s right term
can be written as

¬(B(f(u))T 1m) = ¬


∑p
i=1 bi,1

...∑p
i=1 bi,p

 =


Πp
i=1¬bi,1

...

Πp
i=1¬bi,p

 ,

which is a vector whose j–th element, Πp
i=1¬bi,j, equals

the unity if, and only if, bi,j = 0 for all i, i.e. none of
the decision functions fi depends on uj. The inequality
itself simply expresses the requirement that network must
be reachable from every input that is essential for the
computation of f .

Furthermore, whenever the inequality is satisfied, every
input can be (robustly) propagated through the network
according to the state update rule Fi of Theorem 2 if γ = 0
or Theorem 3 if γ ≥ 0. Recall from Remark 2, that the two
theorems produce two equivalent linear logical consensus
systems for γ = 0, but the first design procedure is simpler
and thus preferable when possible.

As for the output decision function Gi, observe that, if a
generic agent Ai is able to measure the j–th input, it can
directly use it to evaluate the decision function f . If not,
it can use the corresponding local state component Xi,j

that, after consensus is reached, will contain the agreed

11



value uj. This strategy can be formally described by in-
troducing a fictitious variable Zi,j that equals uj in the
first case, Xi,j otherwise, which concludes the proof.

Example 6.1 Consider the following task involving
computation of three decisions y = (y1, y2, y3) depending
on four inputs u = (u1, u2, u3, u4):

y1(t) = u1(t)¬u3(t) ,

y2(t) = u3(t) ,

y3(t) = ¬u2(t)u4(t) + u1(t) + ¬u2(t)¬u4(t) .

(10)

Assume that a network of n = 4 agents is available, which
is characterized by the visibility and communication ma-
trices

C =


1 1 0 0

0 1 0 1

0 1 1 0

1 0 0 1

 , V =


1 0 0 0

0 1 1 0

0 1 0 1

1 0 1 0

 .

Let us suppose for simplicity that no fault can occur (γ =
0), so that a linear logical consensus rule can be adopted
to propagate each input. The span vectors of the inputs
are I1 = I2 = I3 = (1, 1, 1, 1)T and I4 = (0, 0, 1, 0)T ,
which tell us the network is completely reachable from
u1, u2 and u3, while only agent A3 is reachable from u4.

Moreover, based on the incidence matrix of the decision
function f ,

B(f(u)) =


1 0 1 0

0 0 1 0

1 1 0 0

 ,

input u4 is not essential for its computation, and thus no
problem is posed by the fact that the network is unreach-
able from it. The distributed synthesis problem is solvable
since the feasibility inequality is indeed satisfied. Further-
more, the computation of function f3 formally depends
on u4, but a distributed evaluation of the function cannot
involve it. To remove this input, we can replace it with
any value chosen at convenience, e.g. u4(t) = 0, which
gives the simplified decision function

y1(t) = u1(t)¬u3(t) ,

y2(t) = u3(t) ,

y3(t) = u1(t) + ¬u2(t) .

(11)

By computing an IPST for each input, we obtain the

following linear logical consensus system:
X1(t+ 1)

X2(t+ 1)

X3(t+ 1)

X4(t+ 1)

 =


u1(t) X2,2(t) X2,3(t)

X4,1(t) u2(t) u3(t)

X2,1(t) u2(t) X2,3(t)

u1(t) X4,1(t) u3(t)

 ,

where the generic agent’s state is Xi ∈ B1×q with q = 3.
Note that the i–th row of the right term of last equation
represents the i–th local update function Fi.

Moreover, each output decision map Gi can readily be
obtained by replacing in Eq. 11 every input uj that is not
visible from Ai with the corresponding state component
Xi,j. By doing this, we obtain

Y1

Y2

Y3

Y4

 =


u1 ¬X1,3 X1,3 u1 + ¬X1,2

X2,1 ¬u3 u3 X2,1 + ¬u2

X3,1 ¬X3,3 X3,3 X2,1 + ¬u2

u1 ¬u3 u3 u1 + ¬X4,2

 ,

where the dependence from t is omitted for brevity. �

Remark 4 The method proposed in Theorem 4 can be
straightforwardly extended to some switching–topology
networks, in which the topology switching signal is known.
However, such an extension would require an IPST to
be computed for each possible topology configuration, and
thus it would remain applicable only to small size net-
works.

7 Application to Intrusion Detection

7.1 Distributed Detection of Physical Intruders

Consider the problem of detecting possible physical
intruders within an indoor environment W. Suppose
that the environment is divided into m rooms, Wi,
i = 1, . . . ,m, separated by walls, and that n ≥ m guards
are responsible for patrolling the rooms. Each guard has
sensors with star–shaped visibility (Vi,j = 1 if, and only
if, an intruder in region Wj can be seen by agent Ai)
and can communicate only with neighboring guards
that are within line–of–sight (Ci,j = 1 if, and only if,
Ai can see Aj). Presence or absence of an intruder in
the j–th region Wj can be described by a binary in-
put uj and the guards’ network is required to compute
the logical decisions yi(t) = ui(t), i = 1, · · · ,m. Denote
with X ∈ Bn×m the alarm state of the system: Xi,j = 1
if agent Ai reports an alarm about the presence of an
intruder in regionWj . The alarm can be set because an
intruder is actually detected by the agent itself, or based
on the information exchanged with neighboring guards.

12



(a) t = 0 (b) t = 1 (c) t = 2 (d)

Figure 1. (a)–(c) Run of the linear consensus system with 2 intruders (rhombus) in regions W2 and W10, respectively. The
sequence in the figure shows that a correct agreement is reached (Xi’s components are represented by empty (filled) boxes
when no (at least one) intruder is detected in the corresponding region). (d) Available communication graph C.

In this context, our objective is to design a logical con-
sensus system of the formX(t+1) = F (X(t), u(t)), with
u = (u1, . . . , um)T , so that every agent can provide, at
consensus, consistent complete information on the en-
vironment if polled, i.e. Xi,j = Xk,j ∀i, k and ∀j. This
requires that F has a unique equilibrium depending on
the corresponding column of 1nf(u)T = 1nu

T .

In case of a virtuous scenario, we can apply Theorem 2,
which produces a linear logical consensus of the form
X(t + 1) = F X(t) + B u(t), where each row basically
expresses the rule that an observer alarm is set at time
t + 1 if it sees an intruder (through u), or if one of its
communication neighbors was set at time t. The visibil-
ity diameter is κ(C, V ) = 2, which will correspond to the
maximum number of steps before consensus is reached.
Fig. 1 shows snapshots from a typical execution of this
linear consensus system where every agents converge to
consensus after 2 steps. If all agents correctly set their
alarm states, the system correctly converges to a state
where all columns of X are either zero or one. However,
this system is not robust to permanent faults (Fig. 2).
A more conservative mechanism can be obtained by ap-
plying Theorem 3, with γ = 1, that generates a nonlin-
ear rule requiring that agent Ai sets an alarm regarding
Wj at time t+ 1 if at least two neighboring sensors hav-
ing visibility on Wj are in alarm at time t, or if it sees
an intruder (through u). The false alarm raised by the
misbehaving agent A1 is thus correctly handled by the
second system.

7.2 Detection of Malicious Users in Networked Dis-
tributed Systems

Consider a network of n hosts comprising a set Γ of fully
operational workstations and a set W of simpler com-
puters with limited functionalities. Neighboring hosts
can communicate via wired and/or wireless links. Au-
thorized users can log in at any host and are allowed to
create files, launch applications, open P2P connections,
etc. Protection against malicious users trying to spread
viruses or spyware through the network, to e.g. cause

Figure 2. Final network decisions with permanent fault ofA1

incorrectly setting its state to 0. The correct agreement is
not reached by the linear consensus system (left), whereas
Ai’s misbehavior is tolerated by the nonlinear one (right).

damage or gather classified information, is necessary.
We assume that traces of possible threats are known so
that a model–based approach to such intrusion detec-
tion problem can be adopted. We assume also that the
generic i–th host is able to measure input events gener-
ated by actions of a user on the same host and on neigh-
boring ones. The list of events corresponding to critical
user’s actions are reported in Table 2.

Two types of attacks are assumed to be possible depend-
ing on the host type the menace is started from. On a
fully operational workstation, a manifest evidence of an
attack is represented by having the user creating a file in
the host’s system folder, launching an application on it,
establishing a large number of connections with another
host j, launching a remote application on j, and then
establishing a large number of connections with a third
host k. From a simpler computer, an intruder may try to
get some hosts stuck by establishing a round connection
among them and creating no file.

The input event vector is u ∈ Bm, with

u = (a1, · · · , an, b1, · · · , bn, c1, · · · , cn,
d1,1, · · · , d1,n, d2,1, · · · , d2,n, · · · , dn,1, · · · , dn,n)T

,

13



Event Description

ai The user creates a file in its home folder on the i–th workstation

bi The user creates a file in the i–th workstation’s system folder

ci The user launches an application on the i–th workstation

di,j The user opens more than p TCP-IP connections between the i–th and j–th workstations

Table 2
Possible events generated by a malicious user trying to attack a distributed computer network.

and m = n2 + 3n. The two considered attacks can be
detected by the centralized decision task

y = (y1, y2)T = f(u) ,

where the logical vector function is

f : Bm → B2

u 7→

 ∑
i∈Γ bi ci

∑
j 6=i

(
di,j cj

∑
k 6=i,j dj,k

)
∑
i∈W ¬ai

∑
j 6=i

(
di,j ¬aj

(∑
k 6=i,j ¬ak dk,i

)) .

The communication matrix C is s.t. Ci,j = 1 if, and only
if, host j is a neighbor of host i. Moreover, input events
ai, bi, ci, for i = 1, · · ·N , can be directly seen from the i–
th host and its one–hop neighbors, while the input events
di,j , for i, j = 1, · · · , N , i < j, can be seen both form
the i–th and j–th hosts, and from their neighbors, i.e.

V = (Va, Vb, Vc, Vd) ,

with Va = Vb = Vc = V̄ , V̄ (i, j) = 1, if, and only if, host
j is a neighbor of host i, and

Vd(i, j) = V̄ (i, α(j)) + V̄ (j, α(i)) ,

with α(k) =
⌊
k
n

⌋
+ 1. We assume that at most γ hosts

can return incorrect estimates of a user action. We want
to realize a distributed network intrusion detector that is
able to discover a malicious user only via communication
and consensus.

By using the approach proposed in Section 6, we have
realized a distributed network intrusion detection sys-
tem for a system with n = 50 hosts, and thus m = 2650
input events. The size of each agent state is aligned with
332 bytes, which can be afforded by commercially avail-
able wireless connection types. Indeed, both the 802.11x
and the 802.15.4 protocols allow for exchanging mes-
sages of at most 2200 bytes and 169 bytes, respectively.
Thus, each agent can share its full state with one of its
neighbors by sending at most 2 messages of such com-
mercial protocols. We have assumed γ = 2 and cho-
sen a communication matrix C ensuring that each pair
(C, Vj) is 5–reachable. The obtained visibility diagram
is κ(C, V ) = 23. In the simulation, a malicious user is

500 1000 1500 2000 2500

0

1

Figure 3. Value of the input event vector
u = (a1, · · · , a50, b1, · · · , b50, c1, · · · , c50, d1,1, · · · , d50,50),
representing the activity of a malicious user, including
creation of a file in the system’s folder of host 33, launch of
an application on the same host, opening a large number of
connections from host 33 to host 50, remotely start of an
application on host 50, and opening of a large number of
connections from host 50 to host 1.

performing an attack of the first type that is “hidden” in
other normal operations: it creates a file in the system’s
folder of host 33, launches an application on the same
host, opens a large number of connections from host 33
to host 50, remotely starts an application on host 50, and
finally opens a large number of connections from host 50
to host 1. Moreover, in the simulation, a first compro-
mised host, host 23, always returns the opposite of the
value that it detects, while a second compromised host,
host 38, is stuck to the value 0. Fig. 3 reports the net-
work’s input representing the above described behavior
of the user. The centralized decision system applied to
the above described input gives y = f(u) = (1, 0)T , in-
dicating that an attack of the first type is recognized.
Each host is able to process local information as well
as information received from neighboring monitors, via
a distributed nonlinear consensus rule that is obtained
by applying Theorem 4. Fig. 4 reports the evolution of
the network consensus, while Fig. 5 shows that the to-
tal disagreement e = (e1, e2)T of local hosts w.r.t. the
centralized detection task f(u), i.e.

ei =
∑n
j=1 fi(X(j, :))⊕ fi(u) ,

where Xi,j is the i–th local monitor estimate of the j–th
input event, and

∑
represents here the sum of two real

numbers, converges to zero. The two figures show that
the entire network is able to detect the user malicious-
ness, as expected from theory, even in the presence of
the two compromised local monitors.

8 Conclusion

A novel mechanism enabling network consensus on the
value of decision functions depending on binary values

14



X1(t) X18(t) X36(t) X50(t)

(t = 0)

500 1000 1500 2000 2500

0

1

500 1000 1500 2000 2500

0

1

500 1000 1500 2000 2500

0

1

500 1000 1500 2000 2500

0

1

(t = 3)

500 1000 1500 2000 2500

0

1

500 1000 1500 2000 2500

0

1

500 1000 1500 2000 2500

0

1

500 1000 1500 2000 2500

0

1

(t = 6)

500 1000 1500 2000 2500

0

1

500 1000 1500 2000 2500

0

1

500 1000 1500 2000 2500

0

1

500 1000 1500 2000 2500

0

1

(t = 17)

500 1000 1500 2000 2500

0

1

500 1000 1500 2000 2500

0

1

500 1000 1500 2000 2500

0

1

500 1000 1500 2000 2500

0

1

Figure 4. Simulation run of a distributed computer network with 50 hosts. Local hosts are able to detect the user maliciousness
by running a distributed nonlinear logical consensus rule. Only 4 of the 50 hosts are reported, at 4 distinct iterations during
convergence to consensus, which is reached after 17 steps.

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

t [steps]

e1

0 5 10 15 20
0

5

10

15

20

25

30

35

40

t [steps]

e2

Figure 5. Total disagreement e = (e1, e2)T of local hosts
w.r.t. the centralized decision y = (1, 0)T . The convergence
of e to zero indicates that the first–type attack executed from
the malicious user is detected.

was introduced. Two design procedures for the synthe-
sis of optimal logical consensus systems with and with-
out agent failures was proposed. While the approach al-
lows the design of distributed update rules, the design
phase itself requires complete knowledge of the commu-
nication and visibility matrices. It is worth saying that,
in applications where sub–optimal communication paths
are acceptable, one would also consider heuristic flood-
ing approaches to propagate all binary inputs [13]. Fu-
ture work will study how to obtain a fully distributed
design synthesis. Some preliminary results toward this
direction can be found in [9].

References

[1] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Englewood Cliffs, 2003.

[2] Vartika Bhandari and Nitin H. Vaidya. On reliable broadcast
in a radio network. In ACM Symp. on Principles of Distr.
Computing, pages 138–147, 2005.

[3] A. Bicchi, A. Fagiolini, and L. Pallottino. Toward a society of
robots: Behavior, misbehavior, and security. IEEE Robotics
& Automation Magazine, 17(4):26–36, December 2010.

[4] VD Blondel, JM Hendrickx, A. Olshevsky, and JN Tsitsiklis.
Convergence in multiagent coordination, consensus, and
flocking. IEEE Conf. on Decision and Control, pages 2996–
3000, 2005.

[5] F. Bullo, J. Cortés, and S. Mart́ınez. Distributed Control of
Robotic Networks. Applied Mathematics Series. Princeton
University Press, 2009.

[6] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage
control for mobile sensing networks. IEEE Trans. on Robotics
and Automation, 20(2):243–255, 2004.

[7] Jorge Cortés. Distributed algorithms for reaching consensus
on general functions. Automatica, 44(3):726–737, March
2008.

[8] M. Di Marco, A. Garulli, A. Giannitrapani, and A. Vicino.
SLAM for a team of cooperating robots: a set membership
approach. IEEE Trans. on Robotics and Automation,
19(2):238–249, 2003.

[9] A. Fagiolini, S. Martini, D. Di Baccio, and A. Bicchi. A
self–routing protocol for distributed consensus on logical
information. In IEEE Intl. Conf. on Intelligent Robots and
Systems, pages 5151–5156, October 2010.

15



[10] A. Fagiolini, E.M. Visibelli, and A. Bicchi. Logical consensus
for distributed network agreement. In IEEE Conf. on
Decision and Control, pages 5250–5255, 2008.

[11] L. Fang, PJ Antsaklis, and A. Tzimas. Asynchronous
Consensus Protocols: Preliminary Results, Simulations and
Open Questions. IEEE Int. Conf. on Decision and Control
and Eur. Control Conference, pages 2194–2199, 2005.

[12] L. Lamport, R. Shostak, and M. Pease. The byzantine
generals problem. ACM Transactions on Programming
Languages and Systems, 4(3):382–401, 1982.

[13] H Lim and C Kim. Flooding in wireless ad hoc networks.
Computer Communications, 24:353–363, 2001.

[14] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1996.

[15] Keith Marzullo. Maintaining the time in a distributed system:
A loosely-coupled distributed service. Dissertation Abstracts
Intl. Part B: Science and Engineering, 46(1), 1985.

[16] R. Olfati-Saber, J.A. Fax, and R.M. Murray. Consensus and
cooperation in networked multi–agent systems. Proceedings
of the IEEE, 95(1):215–233, January 2007.

[17] F. Pasqualetti, A. Bicchi, and F. Bullo. Consensus
computation in unreliable networks: A system theoretic
approach. IEEE Trans. on Automatic Control, 57(1):90–104,
January 2012.

[18] R. Perlman. Network layer protocols with byzantine
robustness. PhD thesis, MIT, 1989.

[19] Charles P. Pfleeger and Shari Lawrence Pfleeger. Security in
Computing. Prentice Hall, 2004.

[20] W. Ren, R.W. Beard, and E.M. Atkins. Information
consensus in multi-vehicle cooperative control. IEEE Control
System Magazine, 27(2):71–82, 2007.

[21] Wei Ren and Randal W. Beard. Distributed Consensus in
Multi–vehicle Cooperative Control: Theory and Applications.
Springer, 2008.

[22] F. Robert. Itérations sur des ensembles finis — convergence
d’automates cellulaires contractants. Linear Algebra and its
applications, 29:393–412, 1980.

[23] L. Schenato and G. Gamba. A distributed consensus protocol
for clock synchronization in wireless sensor network. In IEEE
Conf. on Decision and Control, pages 2289 –2294, December
2007.

[24] S. Sundaram and C.N. Hadjicostis. Distributed function
calculation via linear iterative strategies in the presence
of malicious agents. IEEE Trans. on Automatic Control,
56(7):1495 –1508, July 2011.

16


	Introduction
	Problem Statement
	Convergence of Logical Dynamic Systems
	Linear Logical Consensus Systems
	Dealing with Agent Failure
	Distributed Synthesis of Logical Maps
	Application to Intrusion Detection
	Distributed Detection of Physical Intruders
	Detection of Malicious Users in Networked Distributed Systems

	Conclusion
	References

