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Abstract— This paper presents an efficient computational
method for solving the input-constrained, continuous time,
infinite horizon, linear quadratic regulator problem to within
a user specified tolerance. The infinite dimensional input
trajectory is approximated with a piecewise linear function on a
finite time discretization to ensure input constraint satisfaction.
This approximate problem is then a standard finite dimensional
quadratic program and is solved by conventional methods,
generating an upper bound for the optimal value function.
The finite time discretization is then refined by subdividing
the intervals estimated to cause the largest decrease in the
cost function. Convergence of the solution of this discretized
problem towards the optimal continuous-time solution, as the
discretization is refined, is proved. Exploiting the strict convex-
ity of the original infinite dimensional problem, the gradient of
the cost function with respect to the continuous-time input can
be computed to generate a lower bound for the optimal cost.
For computational efficiency, a lower bound for the solution of
the discretized control at a very fine discretization can be used
instead. The algorithm terminates when the difference between
the upper and lower bounds meets a user supplied tolerance.

I. INTRODUCTION

The efficient and accurate solution of constrained optimal
control problems is a fundamental topic in both the theory
and application of optimal control, and has been studied
intensely by the optimization and control communities for the
last fifty years. See [1], for example, for a general overview
of the problem. In particular, model predictive control re-
quires a robust, online solution of a sequence of optimal
control problems as the state, or state estimate, of the system
becomes available after each measurement. The general opti-
mal control problem for nonlinear models is nonconvex, and
it is therefore difficult to establish optimality in the online, or
indeed even offline, settings. Most industrial applications of
model predictive control, however, employ linear models; for
linear discrete-time models, the constrained optimal control
problem, although infinite dimensional, is (strictly) convex,
and optimality can be achieved with finite computation for
any feasible initial state.

A brief, current review of the numerical methods applied
to the continuous-time constrained linear quadratic regulator
problem is given in [2]. In this paper, we present a new al-
gorithm having guaranteed accuracy for solving this optimal
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control problem. We show that the algorithm is guaranteed
to converge, and we compute a novel lower bound on the
continuous-time optimal cost so that the algorithm can be
terminated with a guarantee on the distance to optimality. To
the best of our knowledge no other algorithm provides such a
guarantee. To increase the algorithm’s efficiency when used
in an online environment, we compute and store quadrature
formulas for the integration of the dynamic model and the
stage cost on the infinite horizon time interval, and we base
termination on a lower bound for the discretized optimal
cost at a very fine discretization. The algorithm is shown
through numerical examples to be efficient, so that its use in
model predictive control of fast or large-scale processes is
feasible. Due to space limitations we omit all proofs, which
are available in a companion publication [3].

Notation: Given two reals (integers) a, b with a < b,
Ra:b (Ia:b) denote all reals (integers) x such that a ≤ x ≤ b.
|x| is the Euclidean norm of x. We denote (x, y) , [ xy ] and
〈x, y〉 is the inner product. Given a matrix A and positive
integers a, b, c, d, the symbol Aa:b,c:d denotes the selection
of rows a to b and columns c to d, and Aa:b,: denotes the
selection of rows a to b and all columns. Given a set S,
int(S) denotes its interior.

II. BACKGROUND

A. Optimal control problem

In this paper we address the computation of the opti-
mal solution to the continuous-time infinite-horizon input-
constrained linear quadratic regulation problem:

P(x) : min
u(·)

V (x, u(·)) ,
∫ ∞

0

`(x(t), u(t))dt, (1a)

subject to x(0) = x and

ẋ = f(x, u) , Ax+Bu, for all t ∈ [0,∞), (1b)
u(t) ∈ U for all t ∈ [0,∞). (1c)

The state (x) and input (u) have dimension n and m,
respectively. The cost function is: `(x, u) , 1

2 (x′Qx+u′Ru).
Assumption 1: The pair (A,B) is stabilizable and the pair

(C,A), C , Q
1
2 , is detectable. Q and R are symmetric

positive definite matrices. The constraint set U has the form:

U ,
m∏
i=1

Ui, where Ui , [umin
i , umax

i ],

and contains the origin in its interior.
We define X∞ as the set of initial states such that P(x) has

a solution. In order to rewrite the infinite-horizon problem
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P(x) as an equivalent finite-horizon problem, we define a
suitable ellipsoid invariant set as follows. Let P be the unique
symmetric positive definite solution to the Riccati equation:

0 = Q+A′P + PA− PBR−1B′P. (2)

Given a positive scalar α, we consider the following set:

Xf , {x ∈ Rn | x′Px ≤ α}. (3)

Clearly, Xf is an invariant (ellipsoidal) set for the uncon-
strained closed-loop system: ẋ = Ax + Bu, u = Kx,
with K = −R−1B′P . Because U contains the origin in
its interior, if α is sufficiently small, then for any x ∈ Xf
there holds Kx ∈ U. Hence, u(t) = Kx(t) remains feasible
at all times with respect to the constraint (1c) once x(t)
has entered Xf . Finding the largest ellipsoid (of arbitrary
shape, i.e. with P not fixed) contained in the polytopic set
P , {x ∈ Rn | Kx ∈ U} can be posed as an LMI
problem [4]. However, because P is fixed, the largest α such
that Xf ⊆ P can be found directly as shown in [3].

Given T > 0, we replace P(x) by the following finite-
horizon optimal control problem:

PT (x) : min
u(·)

VT (x, u(·)) , Vf (x(T ))+∫ T

0

`(x(t), u(t))dt, (4a)

subject to x(0) = x and

model (1b) and constraint (1c) for all t ∈ [0, T ], (4b)

in which Vf (x) , 1
2x
′Px with P computed from (2). We

denote by u0(·) the input trajectory solution to PT (x) and
by x0(·) the associated state trajectory.

Proposition 2: For any x ∈ X∞, there exists a finite T >
0 such that the solution to PT (x) satisfies x0(T ) ∈ Xf .

If T is chosen large enough to ensure that x0(T ) ∈ Xf ,
then it is possible to show (see, e.g., [5]–[7] for equivalent
arguments in discrete-time constrained LQR problems) that
P(x) and PT (x) yield the same minimum and the infinite-
horizon input trajectory defined as:

u0
∞(t) ,

{
u0(t) if t ∈ [0, T ],

Ke(A+BK)(t−T )x0(T ) if t > T,
(5)

is the minimizer of P(x).

B. Input parameterizations (holds)

Let γ be a discretization of the interval [0, T ], defined as
a sequence of Jγ ∈ I>0 intervals {Ij , [tj , tj+1] | j ∈
I0:Jγ−1} having the following properties:
• int(Ij) ∩ int(Ik) = ∅ for any j 6= k,
•
⋃
j∈I0:Jγ−1

Ij = [0, T ].

Hence, t0 = 0 and tJγ = T . We also denote the length of
Ij as ∆j , tj+1 − tj , and we assume that each ∆j satisfies
∆j = 2qj∆ with qj ∈ I≥0 and ∆ > 0, in which case we say
that γ ∈ Γ∆. In order to consider a finite parameterization

of the function u : [0, T ]→ Rm, it is customary in sampled-
data control of continuous-time systems (see, e.g. [8]) to
assume that the input is constant in each interval Ij , i.e.

u(t) = uj for all t ∈ Ij . (6)

Formally, given a discretization γ we define UγZOH as the set
of all measurable functions u : [0, T ] → Rm satisfying the
zero-order hold (ZOH) parameterization (6) in which uj ∈ U
for all j ∈ I0:Jγ−1.

Besides the fact that restricting u(·) to the set UγZOH makes
problem PT (x) finite dimensional, it also ensures that u(t) ∈
U for all t ∈ [0, T ]. In [2], we argued that a better choice is
to assume the input piece-wise linear in each interval, i.e.

u(t) = (1− ηj(t))uj + ηj(t)vj for all t ∈ Ij , (7)

in which ηj(t) ,
t−tj
∆j

for all j ∈ I0:Jγ−1. Formally, given a
discretization γ we define UγPWLH as the set of all measurable
functions u : [0, T ] → Rm satisfying the piece-wise linear
hold (PWLH) parameterization (7) in which (uj , vj) ∈ U2

for all j ∈ I0:Jγ−1. Notice that for all j ∈ I0:Jγ−1, we have
that ηj(tj) = 0 and ηj(tj+1) = 1. Thus, if (uj , vj) ∈ U2,
then u(t) ∈ U for all t ∈ Ij .

C. Discretized optimal control problem

Given a discretization γ and choosing either ZOH or
PWLH, i.e. defining Uγ , UγZOH or Uγ , UγPWLH, we
can obtain a suboptimal solution to PT (x) by solving the
following discretized optimal control problem:

PγT (x) : min
u(·)∈Uγ

VT (x, u(·))

subject to x(0) = x and model (1b) . (8)

We rewrite PγT (x) as an equivalent discrete-time constrained
LQR problem and solve it via Quadratic Programming
(QP). Then, under certain conditions we accept the achieved
solution or we refine the discretization γ.

III. PROPOSED ALGORITHM: THEORY

A. LQR discretization for ZOH via matrix exponential

Given an interval Ij , assuming to use the ZOH parame-
terization (6), it is well-known [8], [9] that we can compute
an equivalent discrete-time system evolution as:

xj+1 = Ajxj +Bjuj , (9)

where: xj , x(tj), Aj = eA∆j , Bj =
∫∆j

0
eAsBds.

Moreover: VT (x, u(·)) =
∑Jγ−1
j=0 `j(xj , uj) + Vf (x(T )),

where `j(xj , uj) ,
∫ tj+1

tj
`(x, u)dt = 1

2 (xjQjxj+u
′
jRjuj+

2x′jMjuj), in which[
Qj Mj

M ′j Rj

]
=

∫ ∆j

0

e[
A B
0 0 ]

′
s [Q 0

0 R

]
e[
A B
0 0 ]s ds. (10)

The above formulas allow one to compute all matrices
(Aj , Bj , Qj , Rj ,Mj) by solving a system of ordinary dif-
ferential equations (ODE). However, Van Loan [10] showed
that all above matrices can be found by means of a single
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matrix exponentiation as follows. First, define a block upper
triangular matrix C and partition its exponential as follow:

C ,

[
−A′ I 0 0

−A′ Q 0
A B

0

]
eCτ ,

[
F1(τ) G1(τ) H1(τ) K1(τ)

F2(τ) G2(τ) H2(τ)
F3(τ) G3(τ)

F4(t)

]
.

(11)
Then, obtain:

Aj = F3(∆j), Bj = G3(∆j), Qj = F ′3(∆j)G2(∆j),

Rj = R∆j +
[
B′F ′3(∆j)K1(∆j)

]
+
[
B′F ′3(∆j)K1(∆j)

]′
,

Mj = F ′3(∆j)H2(∆j). (12)

B. LQR discretization for PWLH via matrix exponential

Computation of (Aj , Bj , Qj , Rj ,Mj) for ZOH via matrix
exponential formulas (11)-(12) is typically faster and more
accurate than via ODE solver. We devise here a similar
procedure for PWLH. To this aim, in each interval Ij ,
we (formally) consider an augmented system with state
z , (z(1), z(2)) ∈ R2n, in which z(1)(t) , x(t) and
z(2)(t) , u(t) − uj = ηj(t)(vj − uj), and constant input
wj = (uj , vj) ∈ R2m. This system evolves in Ij as:

ż = [A B
0 0 ] z +

[
B 0

− Im
∆j

Im
∆j

]
wj , (13)

where Im is the identity matrix of dimension m×m. If we

set A∗ , [A B
0 0 ], B∗ ,

[
B 0

− Im
∆j

Im
∆j

]
, Q∗ ,

[
Q 0
0 0

]
and define

C and its partitioned exponential as in (11) with (A,B,Q)
replaced by (A∗, B∗, Q∗), under PWLH (7) we obtain that:

zj+1 = A∗jzj +B∗jwj , `∗j (zj , wj) ,
∫ tj+1

tj

`(x, u)dt

=
1

2
(z′jQ

∗
jzj + w′jR

∗
jwj + 2z′jM

∗
j wj), (14)

where

A∗j = F3(∆j), B
∗
j = G3(∆j), Q

∗
j = F ′3(∆j)G2(∆j),

Rj =

[ R
3
R
6

R
6
R
3

]
∆j +

[
B′F ′3(∆j)K1(∆j)

]
+[

B′F ′3(∆j)K1(∆j)
]′
, M∗j = F ′3(∆j)H2(∆j). (15)

Finally, by noticing that z(2)(tj) = 0, in the discrete-time
evolution and cost function we can remove z(2) to obtain:

xj+1 = Ajxj +Bjwj , (16)

VT (x, u(·)) =

Jγ−1∑
j=0

`j(xj , wj) + Vf (x(T )), (17)

where `j(xj , uj) = 1
2 (x′jQjxj + w′jRjwj + 2x′jMjwj), in

which Aj = A∗j 1:n,1:n
, Bj = B∗j 1:n,:

, Qj = Q∗j 1:n,1:n
, Mj =

Q∗j 1:n,:
, and Rj is defined in (15). We observe that in (16)

the discrete-time evolution of the system under PWLH is still
described by a linear system with the original state xj and
augmented input wj = (uj , vj). In the sake of space, from
now on we will focus only on PWLH, but all derivations and

results will apply directly to ZOH, which can be seen as a
particular PWLH in which wj = (uj , uj).

Given the above premises, problem PγT (x) can be rewritten
as a conventional discrete-time constrained LQR problem.
Let u , (w0, w1, . . . , wJγ−1) be an augmented input se-
quence of length Jγ . Then, PγT (x) can be re-written as:

PγT (x) : min
u∈U2Jγ

V γT (x,u) ,
Jγ−1∑
j=0

`j(xj , wj)+Vf (xJγ ),

subject to x0 = x and model (16) . (18)

Proposition 3: For each γ, each x, the map u 7→ V γT (x,u)
is Lipschitz continuous, differentiable and convex.

C. Gradient of the optimal cost and optimality functions

Given x ∈ Rn and u(·) ∈ Uγ (or equivalently u ∈ U2Jγ ),
let φ(t;x, u(·)) be the solution at time t of (1b) with initial
condition x(0) = x, and let {λ0, λ1, . . . , λJγ} be the solution
of the discrete-time adjoint system defined by:

λJγ = PxJγ , λj = A′jλj+1 +M ′jwj +Qjxj , (19)

in which xj = φ(tj ;x, u(·)). Notice that (19) defines a
backward recursion j = Jγ − 1, Jγ − 2, . . . , 0. Let Hj :
Rn × R2m × Rn → R be defined as:

Hj(x,w, λ) , `j(x,w) + λ′(Ajx+Bjw). (20)

Then, the gradient of the cost function with respect to the
augmented input sequence u is given by:

∇uV
γ
T (x,u) , gγ(x, u(·)) = vec{gγ0 , g

γ
1 , . . . , g

γ
Jγ−1},

in which, for j = 0, 1, . . . , Jγ − 1:

gγj (x, u(·)) , ∇wjHj(xj , wj , λj+1) =

M ′jxj +Rjwj +B′jλj+1, (21)

and vec{·} forms a column vector of given vectors gγj .
In the algorithm described in the next section, we solve

a sequence of problems PγT (x) with varying γ. We need an
optimality function [11] for each problem, i.e. a continuous
function of the control u(·) that is strictly negative when
u(·) is not optimal for PγT (x) and is zero when u(·) is
optimal for PγT (x). Since the initial state x does not vary, we
omit it in future notation for simplicity. Thus, the optimality
function θγ : Uγ → R≤0 for problem PγT (x) is defined
by: θγ(u(·)) ,

∑Jγ−1
j=0 θγj (u(·)), in which θγj (u(·)) ,

〈gγj (x, u(·)), w∗j (x, u(·))− wj〉, and w∗j (x, u(·)) is:

w∗j (x, u(·)) , arg min
z
{〈gγj (x, u(·)), z〉 | z ∈ U2}. (22)

Proposition 4: For any x ∈ Rn, the function θγ(u(·)) is
an optimality function for PγT (x). Moreover, V γT (x, u(·)) +
θγ(u(·)) is a lower bound for V γ,0T (x).

Finally, let θ∆(u(·)) denote θγ(u(·)) for the special case
when γ = γ∆ , {I0, I1, . . . , IJγ−1} where each Ij =
[tj , tj + ∆], i.e. each constituent interval Ij has length ∆.
We will refer to γ∆ as the finest discretization.

Proposition 5: θ∆(u(·)) ≤ θγ(u(·)) and VT (x, u(·)) +
θ∆(u(·)) is a lower bound for V γ,0T (x) for all γ ∈ Γ∆.
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IV. PROPOSED ALGORITHM: IMPLEMENTATION
A. Conceptual algorithm

We refer to γ′ ∈ Γ∆ as a refinement of γ ∈ Γ∆ if some of
the intervals {I ′j} defining γ′ are obtained by bisecting one
or more intervals in the set {Ij} that defines γ and if the
remaining intervals in γ′ are the same as the corresponding
intervals in γ. If V 0

T (x) and V γ,0T (x) are, respectively, the
optimal value functions of PT (x) and PγT (x) then, clearly

V γ,0T (x) ≥ V 0
T (x), (23)

for all x ∈ Rn, γ ∈ Γ∆, and admissible ∆ ∈ (0, T ). We
now state the (conceptual) optimization algorithm to solve
PT (x).

Algorithm 6: Require: ∆, ε > 0, γ ∈ Γ∆, c ∈ (0, 1).
1: Solve PγT (x) yielding control u(·) ∈ Uγ , and compute
θ∆(u(·)).

2: Refine γ (repeatedly) until θγ(u(·)) ≤ cθ∆(u(·)).
3: If θ∆(u(·)) ≤ −ε, go to Step 1. Else, go to Step 4.
4: Replace ε ← ε/2, ∆ ← ∆/2. Bisect largest interval in
γ. Go to Step 1.

A procedure for refining γ (repeatedly) is given below.
In Step 4, ε ← ε/2 and ∆ ← ∆/2 may be replaced,
respectively, by ε← c1ε and ∆← c2∆ where c1, c2 ∈ (0, 1).
The control u(·) obtained in Step 1 satisfies θγ(u(·)) = 0; if
γ′ is the refined discretization obtained in Step 2, and u(·)
is not optimal for Pγ

′

T (x), then θγ
′
(u(·)) < 0.

B. Refinement strategy

Step 2 of Algorithm 6 requires repeated refinement of the
discretization γ until the condition θγ(u(·)) ≤ cθ∆(u(·))
is satisfied. Since the length of each interval in the current
discretization γ is an even multiple of the current ∆ and since
the length of all intervals in the refined discretization should
also be a multiple of ∆, the refinement strategy consists
of bisecting each interval with length greater than or equal
to 2∆ and selecting a subset whose bisection satisfies the
condition in Step 2, as detailed.

Suppose the current discretization γ consists of the inter-
vals {I0, I1, ..., IJγ−1}. Because the current u(·) is optimal
for PγT (x), then θγj (u(·)) = 0 for all j ∈ Jγ , {0, 1, ..., Jγ−
1}. If Ij is bisected, yielding Ij1 = [tj , tj1] and Ij2 =
[tj1, tj+1], let wj be replaced by wj1 = wj in Ij1 and
wj2 = wj in Ij2, and let xj1 and λj1 denote the value of x(·)
(the current state trajectory) and λ at time tj1. If this is done
for each j ∈ J ⊆ Jγ , then the gradients gγj1(x, u(·)) and
gγj2(x, u(·)) of the cost with respect to wj1 and wj2 may be
computed from (21) yielding (γ′ is the refined discretization):

θγ
′
(u(·)) =

∑
j∈J

θγ
′

j (u(·)), (24)

where θγ
′

j (u(·)) , 〈gγj1(x, u(·)), w∗j1(x, u(·)) − wj1〉 +
〈gγj2(x, u(·)), w∗j2(x, u(·))− wj2〉 and w∗j1(x, u(·)) is:

w∗j1(x, u(·)) , arg min
z
{〈gγj1(x, u(·)), z〉 | z ∈ U2}, (25)

and a similar definition for w∗j2(x, u(·)). By ordering the
intervals of Jγ in increasing value of θγ

′

j (u(·)), i.e. starting

from the most negative, J is chosen as the subset of Jγ
with smallest cardinality such that the condition in Step 2
is satisfied by θγ

′
(u(·)). If no such J can be found, the

procedure is repeated with γ replaced by the discretization
with every Ij bisected.

C. Practical algorithm with stopping condition

All discrete-time matrices appearing in the various steps of
Algorithm 6 can be computed and stored offline for a (finite)
number of possible interval sizes, in geometric sequence of
ratio 2, using the formulas derived in Section III. It can also
be noticed that the computation of w∗j (·) in (22) does not
require solving a linear program because U (and hence U2

also) is a box constrained set. Thus, each component of w∗j (·)
is either the minimum value, zero, or the maximum value,
respectively, when the corresponding component of gγj (·) is
positive, zero, or negative. The same considerations apply to
the computation of w∗j1(·) in (25) and w∗j2(·).

For a given ∆, the loop in Steps 1-3 is always exited in a
finite number of iterations because, otherwise, the refinement
of γ would reach γ∆ and then we would have θγ(u(·)) =
θ∆(u(·)) = 0, which makes the condition to proceed to
Step 4 true. However, as written, Algorithm 6 never termi-
nates because it would keep entering Step 4, reducing ∆
and then going to Step 1. A practical variant would include
a stopping condition such as V γT (u(·))− V LBT (u(·)) ≤ ρ in
Step 4 where V LBT (u(·)) is a lower bound to the optimal cost
and ρ is suitably small. Such a lower bound is discussed in
Appendix A. However, since computation of V LBT (u(·)) is
possibly expensive, for repeated use e.g. in MPC implemen-
tation, we suggest to use the stopping condition:

−θ∆(u(·)) ≤ ρ. (26)

Thus, the algorithm terminates when the solution to PγT is a
close approximation to that at the finest discretization γ∆.

V. PROPERTIES OF THE ALGORITHM

Assumption 7: T is large enough that x0(T ) obtained by
solving PγT (x) in Step 1 satisfies x0(T ) ∈ Xf .

A. The space of control and state trajectories

We need to define the following space:

U , {u : [0, T ]→ Rm | u(·) measurable,
u(t) ∈ U ∀t ∈ [0, T ]}. (27)

Since u(·) ∈ U , it follows that u(·) ∈ Lp , Lp([0, T ],Rm)
for all 1 ≤ p ≤ ∞ where

Lp([0, T ],Rm) = {u : [0, T ]→ Rm | u(·) measurable,
||u(·)||p <∞}, (28)

and ||u||p ,
[∫ T

0
|u(t)|pdt

]1/p
, ||u(·)||∞ ,

ess sup[0,T ] |u(t)|. The space Lp is a Banach space.
The spaces Lp, p = 1, 2, . . . ,∞ are nested; i.e. p < q
implies Lq ⊂ Lp. In fact, since [0, T ] has finite measure T ,

‖u(·)‖p ≤ T (1/p−1/q)‖u(·)‖q, (29)
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so that ‖u(·)‖q → 0 implies ‖u(·)‖p → 0 for all p, q ∈
I≥1 ∪∞, p < q and all u ∈ U . It is also possible to show
that, for all p, q ∈ I≥1 ∪∞, ‖u(·)‖p → 0, u(·) ∈ U , implies
‖u(·)‖q → 0. Since u(·) is bounded and T is finite, it follows
that the solution x(·) = φ(·;x, u(·)) of (1b) is absolutely
continuous for any (x, u(·)) ∈ Rn × U .

Proposition 8: Problem PT (x) has a solution u0(x) ∈ U
at each x ∈ Rn.

Proposition 9: The function u 7→ VT (x,u) is continuous
and Frechet differentiable in U , where U is endowed with
the Lp metric for any p ∈ I≥1 ∪∞.

The next result follows from Theorem 3.1 in [13].
Theorem 10: For each x ∈ Rn, u0(x) : [0, T ] → U is

Lipschitz continuous.

B. Convergence of Algorithm 6

As discussed before, the loop in Steps 1-3 is always exited
in a finite number of iterations. Let I index the sub-sequence
(of iterations) in which Step 4 is entered and let ui(·), εi,
γi and ∆i denote, respectively, the values of u(·), ε, γ and
∆ at iteration i of the algorithm, i ∈ I. Clearly εi and ∆i

both converge to 0 as i I−→ ∞ (i.e. i → ∞, i ∈ I). Let δi
denote the length of the largest interval in the discretization
γi ∈ Γ∆i

; clearly δi → 0 as i I−→∞.
From Theorem 10, u0(·), the optimal control for PT (x), is

Lipschitz continuous. Let κ denote the Lipschitz constant for
u0(·) and let u∗i : [0, T ]→ U denote the sample-hold version
of u0(·), in a PWLH sense, obtained by sampling u0(·) at the
times {tj} specified by the discretization γi. That is, u∗i (·)
is defined in (7) with uj = u0(tj) and vj = u0(tj+1).

Proposition 11: u∗i (·)
I−→ u0(·) in Lp (any p ∈

{1, 2, . . . ,∞}) as i→∞.
We can now state the main result of this section:
Theorem 12: For all x ∈ Rn, VT (x, ui(·))

I−→ V 0
T (x) as

i→∞.
Corollary 13: Let {ui(·) | i ∈ I} be a sequence of

controls generated by the algorithm. Then ui(·)
I−→ u0(·)

in Lp (any p ∈ {1, 2 . . . ,∞}) as i→∞.

VI. SIMULATION RESULTS

We present a few illustrative simulation results. Other
results are reported in [3]. Computations are performed in
Matlab (R2011b) on a MacBook Air (1.8 GHz Intel Core i7,
4 GB of RAM). The discretized constrained LQR problems
are solved using quadprog.m 1, using both input and state
sequences, {wj} and {xj}, as decision variables (see, e.g.,
[14], [15]). Timing is measured with tic and toc.

We consider the double integrator:

ẋ = [ 0 1
0 0 ]x+ [ 0

1 ]u (30)

with: Q = C ′C, C = [ 1 0 ], R = 0.1 and input constraints
U = [−1, 1]. We consider an initial state of x =

[
1
−2.5

]
as

in [16] and we use T = 10. The initial discretization is made
by five (equal) intervals of length ∆j = 2. The initial values

1With options: ’interior-point-convex’ algorithm, function tol-
erance of 10−10 and variable tolerance of 10−8.
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Fig. 1. Left axis: Algorithm sub-optimality, −θ∆(u(·)), and true sub-
optimality, V γ,0T (x) − V 0

T (x). Right axis: number of intervals, Jγ , and
cumulative solution time (in ms.) at the first five iterations
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Fig. 2. Optimal input u(·) ∈ Uγ achieved during the first four iterations

for ∆ and ε are, respectively, 0.125 and 0.10; the parameter
c is chosen equal to 0.8.

We report in Figure 1 the following performance indicators
obtained during the first five iterations of Algorithm 6: (i)
algorithm sub-optimality, −θ∆(u(·)); (ii) true sub-optimality,
V γ,0T (x)−V 0

T (x); (iii) number of intervals, Jγ ; (iv) cumula-
tive solution time (in ms). Notice that the true optimal value
was considered V 0

T (x) = 5.3298957, value that would be
achieved at the sixth iteration of the algorithm. We notice that
both the algorithm sub-optimality and the true sub-optimality
decrease rapidly at each iteration, with the true one being
smaller than the algorithm one. The (cumulative) solution
time ranges from 10 ms of the first iteration to about 150 ms
of the fifth one. In practice, the achieved solution is already
very accurate at the end of the third iteration, which would
be achieved after about 50 ms.

We also present in Figure 2 the input function u(·) ∈
Uγ that is achieved during the first four iterations of the
algorithm. We notice the rapid improvement of u(·) even
after the second iteration, and practically no difference is
appreciable from the third to the four iteration.

Next, we present in Figure 3 the performance indicators
achieved with Algorithm 6 and stopping condition (26),
for different values of the stopping tolerance, ρ. We can
observe that a stopping tolerance of 10−2 appears sufficient
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to achieve an accurate solution in about 50 ms.

VII. CONCLUSIONS
This paper has presented a computational procedure for the

input-constrained, infinite horizon, linear quadratic regulator
problem. A novel feature of the procedure is the computation
of a lower bound on the original infinite dimensional problem
so that a termination criterion can be established. As far as
we are aware, this is the first algorithm that guarantees the ac-
curacy of the solution of the continuous time, infinite horizon
problem. For online computational efficiency, a lower bound
for the solution of the discretized control at a very fine dis-
cretization can be used instead. Another novel feature is the
use of matrix exponentiation formulas to perform all required
integrations of the state and adjoint differential equations.
The required exponentiation can be performed offline and
stored (using a small amount of memory), which significantly
increases both the accuracy and speed of the approach. The
convergence of the algorithm was established, and numerical
examples show that the computation is efficient. We see no
impediment to solving larger dimensional problems with this
approach.
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APPENDIX

A. A lower bound to the (continuous-time) optimal cost

Given x and u(·) ∈ U , let x(t) = φ(t;x, u(·)) and let
λ : [0, T ] → Rn denote the solution of the continuous-time
adjoint system defined by:

−λ̇(t) = A′λ(t) +Qx(t) (31)
λ(T ) = Px(T ). (32)

Then, as is well known:

∇xVT (x, u(·)) = λ(0). (33)

Let H : Rn × Rm × Rn → R be defined as

H(x, u, λ) , `(x, u) + λ′(Ax+Bu), (34)

and let DuVT (x, u(·)) : [0, T ] → Rm denote the Frechet
derivative of VT (·) at (x, u(·)) with respect to u(·). Then,
for all t ∈ [0, T ]:

g(x, u(·))(t) , [DuVT (x, u(·))(t)]′

= ∇uH(x(t), u(t), λ(t)) = Ru(t) +B′λ(t). (35)

Thus, the optimality function θ : U → R≤0 (θ does depend
on x) for problem PT (x) is defined by

θ(u(·)) ,
∫ T

0

〈g(x, u(·))(t), u∗(t;x, u(·))− u(t)〉dt, (36)

where u∗(·) is defined by

u∗(t;x, u(·)) , arg min
z
{〈g(x, u(·))(t), z〉 | z ∈ U}. (37)

Proposition 14: For any x ∈ Rn, the function θ(u(·)) is
an optimality function for PT (x). Moreover, V LBT (u(·)) ,
VT (x, u(·)) + θ(u(·)) is a lower bound for V 0

T (x).
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