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Abstract

In this paper we study large angle rotational maneuvers of a space telescope with

pointing constraints. The spacecraft attitude control design is formulated and

solved by means of potential functions, thus simplifying the problem of frequent

reorientation maneuvers. A novel approach is proposed, where a time varying

control gain is chosen such that its instantaneous value depends both on the

spacecraft kinetic energy and on the distance of the spacecraft from the forbidden

directions. As a result, the spacecraft is able to reach points in the potential field

arbitrarily close to a constraint and to maneuver with autonomous capability of

guidance and control. A case study illustrates the effectiveness of the proposed

methodology.

Nomenclature

E = quaternions matrix, see Eq. (9)

k = dimensionless control parameter

i, j,k = body reference frame unit vectors

I = principal moment of inertia

I = inertia matrix

M = control torque

n = unit vector
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qi = quaternion (with i = {0, 1, 2, 3})
O = spacecraft’s center-of-mass

T = transformation matrix, see Eq. (5)

TB(x, y, z) = body reference frame

TI(X, Y, Z) = inertial reference frame

t = time

V = artificial potential

δ = slew angle

γ = solar array sun angle, see Eq. (2)

η = dimensionless control parameter

ω = spacecraft’s angular velocity (ω = ‖ω‖)
Ω = angular velocity matrix, see Eq. (8)

Subscripts

0 = initial

⊕ = Earth

δ = depending on attitude

ω = depending on angular velocity

f = final, desired

� = Jupiter

� = Moon

P = scientific payload

� = Sun

SA = solar array

� = target

th = threshold

Superscripts

h = high value

l = low value

· = time derivative

max = maximum

∧ = forbidden cone’s aperture angle
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Introduction

In some space applications, such as satellite surveillance and communication, a spacecraft

must perform accurate pointing and slewing manoeuvres, whereby the spacecraft is rotated

along a large angle amplitude trajectory. In many circumstances it is also required that the

sensitive payload does not intercept bright objects such as the Sun, Earth and Moon, to avoid

possible damage to the optical instruments. The importance of this subject has stimulated

an active research, and different approaches have been reported in the literature(1–5).

The ways in which these maneuvers are performed are important and, indeed, a natural

choice is to deal with the reorientation problem within a time-optimal framework. In partic-

ular, the unconstrained problem has been addressed from different viewpoints(6, 7), including

the combined case of time and propellant optimization(8). Time-optimal spacecraft slewing

maneuvers with path constraints are much more difficult to synthesize. As a matter of fact,

inclusion of path constraints requires augmenting the Hamiltonian function with additional

terms describing those constraints(9). Even though the resulting problem can, in principle,

be tackled using an indirect approach, the path constraints create particularly difficult chal-

lenges. For these reasons Melton(10,11) has recently proposed resorting to direct methods,

which offer the theoretical advantage of easier problem management. However, it is known

that an optimal solution of a spacecraft reorientation maneuver, or even a feasible solution,

cannot be automatically guaranteed(10). Therefore, often the optimality of a maneuver may

be of lesser importance than the capability of actually generating a feasible trajectory using

modest computational efforts and simple implementation.

From this viewpoint an interesting option is offered by potential function based methods.

These are inspired by robotics control and have been proposed to simplify frequent reorienta-

tion maneuvers of spacecraft with autonomous re-targeting capabilities(12–16). An interesting

feature of potential function methods is that the control torques are evaluated in closed
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form, thus facilitating the on-board implementation with reduced software requirements and

clear advantages over other available control systems. However, some limitations have been

pointed out that could hinder their practical use. For instance, Ref. [17] emphasized a pos-

sible intrinsic disadvantage of potential methods due to the fact that the spacecraft, while

avoiding the forbidden directions, moves substantially away from its nominal path. The aim

of this paper is to show that the above drawbacks can be circumvented with a suitable choice

of both the potential function and the control law. To better explain these points, it is useful

to briefly summarize the potential function approach.

Basically, a scalar nonnegative (artificial) potential function is defined so that it has a

global minimum at the desired final attitude, and has regions of high potential corresponding

to the forbidden directions. The spacecraft controls are then chosen in such a way that the

rate of change of the potential is negative. According to the Lyapunov’s direct method, this

guarantees that the spacecraft dynamics converges towards the desired direction. To simplify

the control system design it has been suggested(12–14) that the potential gradient be made

proportional to the spacecraft kinetic energy through a constant control gain k. In other

terms, the artificial potential function may be formulated by including appropriate terms

involving the measured angular velocity components. This is possible because the choice of

the artificial potential function is not unique.

Unfortunately, good reorientation capabilities are conflicting with such a simple control

law. Indeed, loosely speaking, high values of the control gain correspond to a slow spacecraft

movement, whereas small values of k correspond to rapid reorientation maneuvers. Of course,

due to saturation problems, the spacecraft cannot be accelerated up to an arbitrarily high

rotational velocity, otherwise the control torques would not be able to slow down the vehicle

when it passes near an obstacle or approaches the pointing direction. On the other hand,

too high gain values would provide unacceptably long time responses.
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The contribution of this paper is to show that a good compromise solution is a time

variant control gain whose value depends both on the spacecraft kinetic energy and on the

distance from the forbidden directions. The new control law is based on simple physical

considerations and permits the spacecraft to reach points in the potential field arbitrarily

close to a constraint and to maneuver with autonomous capability of guidance and control.

Problem Description

Assume that a spacecraft must perform a reorientation maneuver characterized by a pay-

load pointing direction with respect to an inertial reference frame TI(X, Y, Z). During such

a maneuver the spacecraft must avoid different pointing constraints and, at the same time,

guarantee a minimum angle between the solar array nominal plane and the Sun-spacecraft

direction(16), see Fig. 1.

For mathematical convenience a payload unit vector nP and a solar array unit vector

nSA are now introduced. Both unit vectors are fixed with respect to the spacecraft’s main

body. The pointing constraints are specified in terms of m ≥ 1 forbidden directions with

respect to the inertial frame and serve to avoid that the scientific payload is damaged by

bright sky regions, due to the Sun or other celestial bodies, see Fig. 1(a). This is equivalent to

guaranteeing that during the whole reorientation maneuver the following constraints are met:

1) the unit vector nP remains outside m right circular cones generated around the forbidden

directions, and 2) the unit vector nSA lies inside a suitable right circular cone generated

around the Sun-spacecraft direction. For instance, Fig. 1 shows the pointing constraints due

to Sun, Earth, Moon and Jupiter. Undesired spacecraft orientations are expressed through

mathematical inequalities in the form

δi � Arccos(nP · ni) > δ̂i for i = 1, . . . ,m (1)
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Figure 1: Sketch of the geometric constraints (adapted from Ref. [16]).
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whereas the constraint due to the solar array pointing requirement can be written as

γ � Arccos(nSA · n�) < γ̂ (2)

where γ̂ is shown in Fig. 1(b).

Assume that the spacecraft has to align the scientific payload line-of-sight with a target

direction (defined through the unit vector n�) whose components are known in the inertial

reference frame TI , see Fig. 1(b). The attitude control law must assure that the target

direction is caught and maintained within specified limits. This amounts to stating that, at

the end of the reorientation maneuver, both the final angle δf between the target direction

and the scientific payload line-of-sight, and the modulus of the spacecraft’s angular velocity

‖ωf‖ must be sufficiently small, i.e.

δf ≤ δmax and ‖ωf‖ ≤ ωmax (3)

where δ is the angle between the directions of nP and n�, viz.

δ � Arccos(nP · n�) (4)

In other terms, the problem consists of finding a suitable control law such that the target

direction is reached within the prescribed requirements given by Eqs.(3), and the geometric

constraints (1)-(2) are met along the whole spacecraft reorientation maneuver.

Mathematical Model

Consider a body axes reference frame TB(x, y, z) with its origin in the spacecraft’s center-

of-mass O, where x, y and z are the principal axes of inertia of the spacecraft and let i, j,k
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be the corresponding unit vectors. The unit quaternion is chosen to globally represent the

spacecraft attitude without singularities(18). Using the Euler’s eigenaxis rotation theorem,

the angular orientation of TB relative to the inertial frame TI is expressed through the well

known transformation matrix T:

T =

⎡⎢⎢⎢⎢⎣
q20 + q21 − q22 − q23 2 (q1 q2 − q0 q3) 2 (q0 q2 + q1 q3)

2 (q1 q2 + q0 q3) q20 − q21 + q22 − q23 2 (q2 q3 − q0 q1)

2 (q1 q3 − q0 q2) 2 (q2 q3 + q0 q1) q20 − q21 − q22 + q23

⎤⎥⎥⎥⎥⎦ (5)

where q � [q0, q1, q2, q3]
T is the quaternion unit vector(6) associated with T. In other terms,

if w is an arbitrary vector, its components [w]TB expressed in the body axes reference frame

are transformed from TB to TI through the equation:

[w]TI = T [w]TB (6)

For the sake of simplicity, in the following the notation [w] ≡ [w]TB will be adopted. The

Euler’s rotational equations of motion for the (rigid) spacecraft, about its center-of-mass O,

are:

[M ] = I [ω̇] + Ω I [ω] (7)

with

I �

⎡⎢⎢⎢⎢⎢⎣
Ix 0 0

0 Iy 0

0 0 Iz

⎤⎥⎥⎥⎥⎥⎦ ; Ω �

⎡⎢⎢⎢⎢⎢⎣
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤⎥⎥⎥⎥⎥⎦ (8)
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whereas the kinematic equations of angular motion are:

[q̇] = E [ω] with E � 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

In Eq. (7), vector [M ] � [Mx, My, Mz]
T is the total external moment about O, [ω] �

[ωx, ωy, ωz]
T is the angular velocity of the spacecraft relative to TI , whereas Ix, Iy, and Iz

are the vehicle’s principal moments of inertia. In this paper the only external moments are

given by the control system, the disturbance torques being negligible.

Lyapunov-Based Controller

In the following we assume ideal thrusters, capable of generating independent contin-

uous torques along the three principal axes in the range [−Mmax
i , Mmax

i ]. According to

McInnes [13], a continuous control torque can be generated using pulse-width, pulse-frequency

modulation of cold gas thrusters. As an alternative, the necessary continuous control torque

can also be obtained with electric thrusters. However, in the latter case, a bank of thrusters

is probably necessary. In fact, the maximum thrust of a single electric thruster suitable for

attitude control usually does not exceed a few hundred millinewtons.

To introduce the control law, consider the state vector x � [qT, ωT]T and an artificial

potential function, defined as:

V (x) � Vδ + Vω (10)
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where

Vδ � λ1
δ2

2

(
fγ +

m∑
i=1

fi

)
(11)

Vω � 1

2 ηMmax
[ω]T I [ω] (12)

and

fγ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

λ2 + (γ̂ − γ)2
if γ ≤ γ̂

γ2/ (λ2 γ̂
2) if γ > γ̂

; fi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

λ2 +
(
δi − δ̂i

)2 if δi ≥ δ̂i

2 δ̂2i /
[
λ2

(
δ̂2i + δ2i

)]
if δi < δ̂i

(13)

In Eqs. (11)–(12) λ1, λ2, and η are dimensionless positive design parameters, and Mmax

(which is used to make Vω dimensionless) is the maximum value of the control torques

modulus, that is

Mmax � max
{
|Mmax

x |, |Mmax
y |, |Mmax

z |
}

(14)

Note that both Vδ and Vω are functions of the state vector x, because δ = δ(q) via Eqs. (4),

(5) and (6). Also, V (x) > 0 ∀x �= xf (xf is the target state) and V (x) → ∞ as ‖x‖ → ∞.

The artificial potential function (10) is the sum of two terms: the first one (Vδ) depending

on the spacecraft attitude [see Eq. (11)] and, in particular, on the position of the scientific

payload line-of-sight (δ) or the solar arrays (γ) with respect to the direction of the pointing

constraints and of the target. The second (Vω), instead, depends only on the rotational

kinetic energy of spacecraft [see Eq. (12)]. Both potential functions (11) and (12), being

quadratic functions in δ and ‖ω‖, always assume non-negative values and vanish only if

δ = 0 and ‖ω‖ = 0, that is, when the spacecraft angular velocity is zero and the scientific

payload axis is aligned with the target direction.
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The terms in Eq. (11) inversely proportional to the square of the angular distance between

the scientific payload line-of-sight and the undesired space directions, create high potential

regions. These latter, when used in conjunction with an appropriate control law, are able

to guarantee that the constraints (1) and (2) are met along the whole spacecraft trajectory.

In particular, the expressions of fγ and fi for γ > γ̂ and δi < δ̂i are introduced in Eq. (13)

to push the state away from the forbidden region and avoid that a failure in the attitude

control system causes the spacecraft to violate the geometric constraints (1)–(2).

Having defined the potential function V , it is now necessary to evaluate its time derivative.

Bearing in mind Eqs. (10)–(12) and recalling Eq. (9), the rate of change of V is given by:

V̇ = [ω]T ET (∇Vδ)
T +

1

ηMmax
[ω]T I [ω̇] (15)

where

∇Vδ �
[
∂Vδ

∂q0
,
∂Vδ

∂q1
,
∂Vδ

∂q2
,
∂Vδ

∂q3

]
A nonlinear control law can be developed to enforce the condition

V̇ = −k [ω]T [ω] (16)

where k > 0 is a control gain to be chosen such that V̇ is negative semi-definite. Note

that V̇ = 0 implies that the spacecraft has reached the target condition (that is, δ = 0

and ‖ω‖ = 0) or is at a saddle point. Although isolated saddle points may occur, usually

these are unstable points(14) that cannot trap the system. Therefore, according to the global

invariant set theorem(19), the spacecraft trajectory globally asymptotically converges to the

desired (target) state.

Extensive simulations have highlighted the presence of saddle points when the number of
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geometric constraints is moderate (typically two or three forbidden cones). For topologically

complex regions, caused by the intersection of a number of forbidden conical constraints,

overlapping potential barriers could be created in regions that are not filled by an actual

physical constraint. In general this phenomenon tends to reduce (or even to prevent) the

rate of convergence of spacecraft dynamics toward the target direction. However, this is

usually a temporary problem because the space position of the forbidden cones varies with

time.

Return now to the problem of autonomous reorienting maneuver and consider the control

law

[M ] = −η kMmax [ω]− ηMmax
E

T (∇Vδ)
T + Ω I [ω] (17)

Recalling Eq. (7), the previous control law is shown to guarantee that V̇ meets Eq. (16) as

long as no saturation occurs. In particular, the independent parameters η and k permit to

tune the relative importance of the three terms in Eq. (17). However, when the required

control torques are outside the thruster operating range(14) (saturation condition), Eq. (17)

cannot be used, and is modified as(14)

Mi = sign (Mi) M
max
i if |Mi| > Mmax

i with i = {x, y, z} (18)

where sign (·) is the signum function. Because stability is not guaranteed in the presence

of control saturation, extensive simulations are needed to validate the control law in a real

mission scenario. In this case a different approach, which involves a backstepping technique,

has been recently proposed(20) to reduce both the peak control torque and the reorientation

time interval.

We are now in a position to better discuss the effect of λ1 and λ2 in Eq. (11). The

introduction of λ2 > 0 implies that the potential function cannot take an infinite value and,
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at the same time, it is useful to shape the artificial potential slope. This is important because

an eccessive value of the artificial potential slope would be unmanageable from the control

law viewpoint. Indeed, as is shown by Eq. (17), a high value of ∇Vδ implies a control torque

that cannot be supplied by the attitude propulsion system, due to the thruster’s operational

constraints (18). On the other hand, the parameter λ1 > 0 allows one to scale the artificial

potential function and to limit its maximum value. In fact, high potential values would cause

unwanted overlapping phenomena, especially in the boundary regions around the undesired

space orientations. This in turn would create space regions with high potential that would

be almost unattainable by the spacecraft.

Variable Gain Control

The characteristics of the spacecraft response, whose control law is described by Eqs. (17)-

(18), are strongly dependent on the choice of the design parameter k. In particular, assuming

that the torque level is within its operational range and substituting Eq. (7) into (17), the

spacecraft angular velocity may be expressed as

[ω̇] + k ηMmax
I
−1 [ω] + ηMmax

I
−1

E
T (∇Vδ)

T = 0 (19)

Using a sufficiently high value of k, such that k ηMmax/Imin � 1 and k ‖ω‖ � ‖ET (∇Vδ)
T‖

(where Imin � min {Ix, Iy, Iz}), Eq. (19) is approximated by

[ω̇] + k ηMmax
I
−1 [ω] ≈ 0 (20)

The resulting dynamics is characterized by a fast angular velocity reduction. Indeed, the

spacecraft’s rotational motion is equivalent to that of a first order system with a small time

constant. This behavior is well suited during the pointing terminal phase, when the payload
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line-of-sight is nearly aligned with the target direction (more precisely when δ < δth, where

δth is a given threshold value of the slew angle), and the rotational velocity modulus is

sufficiently small. In fact, in such a situation the angular velocity should be quickly set to

zero in order to stop the spacecraft rotational motion at the desired target attitude.

It should be noted that a high value of k cannot be used when the scientific payload

axis is far from the target direction, and the rotational velocity modulus is not sufficiently

small, otherwise either a control input saturation occurs or an undesired slowing down of the

spacecraft reorientation maneuver takes place. The reason is that when the angular velocity

is high, such that the propulsion system torque is saturated, Eqs. (17) and (18) state that M

is essentially in opposite direction with respect to ω. This characteristics tends to slow down

the spacecraft rotational motion regardless of the value of δ (that is, the angular distance of

payload axis from the target direction).

On the other hand, too small a value of k would cause the violation of the pointing

constraints (1)-(2). In fact, because the thruster torques cannot exceed a maximum value,

the spacecraft must avoid approaching a pointing constraint with a high angular velocity,

otherwise the control system would be unable to arrest the spacecraft before the constraint is

violated. To further investigate this point it is useful to estimate the time interval Ti needed

by the control system to set to zero the spacecraft angular velocity about its i−th principal

axes (with i = {x, y, z}), starting from an initial angular velocity ωi0 �= 0.

The minimum time interval Ti is obtained when the absolute value of the control torque

is at maximum, i.e., when |Mi| = Mmax
i . In that case Ti = Ii ωi0/M

max
i , see Sidi(21). Cor-

respondingly, the absolute value of the generic rotation angle Δθi, which the spacecraft

performs before the angular velocity modulus is zeroed, is given by

Δθi = −Mmax
i T 2

i

2 Ii
+ ωi0 Ti =

ω2
i0
Ii

2Mmax
i

≤ ω2
0 I

max

2Mmin
(21)
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where Imax � max {Ix, Iy, Iz}, ω0 � ‖ω(t0)‖, and Mmin � min
{
Mmax

x , Mmax
y , Mmax

z

}
. To

avoid that during the slowing down maneuver the scientific payload axis may violate the

pointing constraints, it is sufficient to enforce the condition

ω2
0 I

max

2Mmin
≤ δmin � min

{
|δ1 − δ̂1|, . . . , |δm − δ̂m|

}
t=t0

(22)

Dropping the dependence on t0 (which is a generic time instant) the preceding equation

provides an estimate of the maximum acceptable value of the actual spacecraft’s angular

velocity modulus ω = ‖ω‖ during the reorientation maneuver, viz.

ω ≤ ωmax �
√

2Mmin δmin

Imax
(23)

In other terms, the spacecraft cannot exceed a certain angular velocity (or rotational kinetic

energy) given by inequality (23), otherwise the control system is unable to safely arrest its

maneuver when a geometric pointing constraint is going to be violated (note, however, that

Eq. (23) is a sufficient condition).

The above considerations suggest using a variable control gain k whose instantaneous

value depends both on the actual slew angle δ and on the spacecraft angular velocity modulus

ω. More precisely, the suggested control law is as follows:

k =

⎧⎪⎪⎨⎪⎪⎩
kh if (δ < δth) ∪ (ω ≥

√
2Mmin δmin/Imax)

kl otherwise

(24)

where kh � kl is a high gain value that guarantees a sharp drop of spacecraft angular

velocity near the target direction or a forbidden region. Of course, Eq. (24) makes k to be

time dependent. However, to simplify its practical implementation, the value of k may be
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updated only at constant time intervals of length Δt.

Numerical Simulations

A large angle reorientation maneuver for a space telescope is now illustrated using the

previous methodology. In particular, the geometric-inertial data of the Infrared Space Obser-

vatory (ISO) are considered(16,22), whose principal moments of inertia are Ix = 6587 kgm2,

Iy = 7526 kgm2 and Iz = 3813 kgm2. The control torques are assumed in the range

Mx ∈ [−2.8, 2.8] Nm, whereas My and Mz are within [−3.6, 3.6] Nm. These values are

representative of thruster pairs mounted on the telescope periphery and capable of providing

a maximum thrust of about 1N. These values are consistent with those discussed in Ref. [13].

Assume that nP ≡ k and nSA ≡ i, and consider the pointing constraints due to Sun,

Earth, Moon and Jupiter. Recalling Fig. 1 and Eq. (1), the maximum solar array sun angle

and the aperture of the forbidden cone are shown in Table 1. The latter also defines the

gains of the control law, such as kh and kl, which have been chosen with a trial and error

procedure. A set of simulations are necessary to obtain a satisfactory result, because the

control law performances are affected by the value of the selected gains. Note that the

angular constraints for the reference spacecraft are compatible with the requirements of a

typical infrared telescope(22).

A slewing rest-to-rest (ωx0 ≡ ωy0 ≡ ωz0 = 0) maneuver of near 113 deg has been sim-

ulated, where the target is particularly difficult to be reached because its position is near

the intersection of two forbidden cones (see Fig. 2). At the beginning of the reorientation

maneuver, the components in the inertial reference frame TI of the scientific payload axis
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parameter value units

kh 1000
kl 1
Imax 7526 kgm2

Mmax 3.6 Nm
Mmin 2.8 Nm
Δt 10 s
η 1
λ1 1
λ2 0.01
γ̂ 30 deg
δth 5 deg

δ̂� 27 deg

δ̂⊕ 65 deg

δ̂� 24 deg

δ̂� 7 deg

Table 1: Geometric and control law data.

nP , the forbidden directions, and the target position n� are

[nP ]TI =

⎡⎢⎢⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎥⎥⎦ , [n�]TI =

⎡⎢⎢⎢⎢⎢⎣
1

0

0

⎤⎥⎥⎥⎥⎥⎦ , [n�]TI = −0.5

⎡⎢⎢⎢⎢⎢⎣
1

√
3

0

⎤⎥⎥⎥⎥⎥⎦ (25)

[n⊕]TI = 0.5

⎡⎢⎢⎢⎢⎢⎣
1

√
3

0

⎤⎥⎥⎥⎥⎥⎦ , [n�]TI =

⎡⎢⎢⎢⎢⎢⎣
0

1

0

⎤⎥⎥⎥⎥⎥⎦ , [n�]TI = −

⎡⎢⎢⎢⎢⎢⎣
0.0958

0.8962

0.433

⎤⎥⎥⎥⎥⎥⎦ (26)

Since the unit vectors nP and nSA are assumed to be orthogonal, the solar array cones

drawn in Fig. 2 are the auxiliary cones generated around the Sun-spacecraft direction with

semi-aperture angles equal to β � (90 deg − γ̂). These are useful to visualize the exclusion

cones for the payload pointing direction associated with the solar array cone within which the
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vector nSA is constrained to lie. Figure 2 also shows the payload line-of-sight time history.

It is clear that all the constraints are met along the spacecraft reorientation trajectory. The

effectiveness of the control system is better appreciated with the aid of Fig. 3, where the

plots of δ⊕, δ�, δ�, and δ� show that they keep above the specified minimum values.

payload initial

direction

target

direction

Sun cone

Earth cone

Moon cone

Jupiter

direction

solar array

auxiliary cone

payload line-of-sight

Figure 2: Sketch of the spacecraft reorientation maneuver with the payload initial
direction, the target direction and the visible constraints.

Figure 4 illustrates the slew angle δ and the modulus of the spacecraft angular velocity ω.

It should be noted that, at the end of the maneuver, both constraints are met. In particular

the slew angle becomes smaller than 1× 10−2 deg in about 450 s.

Figure 5 shows the variations of the control gain k with time as well as the time histories

of the components of the control torque M in the body reference frame TB. In particular,

Mengali and Quarta (Rev. #2) 18 of 24



0 50 100 150 200 250 300 350 400 450 500 550
0

10

20

30

40

�
[d

eg
]

0 50 100 150 200 250 300 350 400 450 500 550
0

30
60
90

120
150

�
�

[d
eg

]

0 50 100 150 200 250 300 350 400 450 500 550
0

30

60

90

�
�

[d
eg

]

0 50 100 150 200 250 300 350 400 450 500 550
0

30

60

90

�
�

[d
eg

]

0 50 100 150 200 250 300 350 400 450 500 550
0

30

60

90

�
�

[d
eg

]

�̂
�

�̂
�

�̂
�

�̂

�̂
�

t [s]

Figure 3: Time variation of angles γ, δ⊕, δ�, δ�, and δ� during the slew maneuver.

the grey zones in the time history of k have been added to highlight the time intervals within

which ω > ωmax, see Eq. (23). During these time intervals k is at maximum (recall Eq. (24)),

the command torque is saturated and the spacecraft tends to decelerate the rotational motion
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Figure 4: Semi-logarithmic plots of slew angle and spacecraft angular velocity as a
function of time.

see Fig. 4.

Note the final increase of k that occurs when the slew angle achieves the threshold value

δth, see Fig. 4. In this situation the spacecraft quickly sets to zero its angular velocity

following a first-order dynamics, in accordance with Eq. (20). Also note that a saturation

exists in all of the control torque components.

Conclusions

A new methodology has been developed to handle large angle slew maneuvers with point-

ing constraints. The problem of attitude control has been formulated and solved through

artificial potential functions, thus considerably simplifying the spacecraft reorientation ma-

neuvers with autonomous re-targeting capabilities. Unlike the usual approaches available in

the literature, a time variant control gain is chosen to reduce the duration of the reorienta-
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Figure 5: Time histories of control torques Mx, My and Mz, and the control gain k.

tion maneuver. The rationale is that high values of the control gain correspond to a slow

spacecraft movement, whereas small values of k give rise to rapid reorientation maneuvers.

The control gain value depends both on the system kinetic energy and on the distance of

the spacecraft from the target direction. As a result, close connections between the control

law and fundamental physical quantities are established. More important, the spacecraft is

able to reach points in the potential field arbitrarily close to a constraint and to maneuver

with autonomous capability of guidance and control. Accordingly, autonomous avoidance

of undesired space orientations is obtained and constraints due to the solar array pointing
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requirements are met.
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