
— 1 —

Protection structures in multithreaded systems
Lanfranco Lopriore

Dipartimento di Ingegneria dell’Informazione, Università di Pisa, via G. Caruso 16, 56126 Pisa, Italy.
E-mail: l.lopriore@iet.unipi.it

Abstract — We consider a single-address-space system which implements a form of segmen-
tation with paging within the framework of the multithreaded model of program execution. A
salient problem of a system of this type is the definition of the set of mechanisms enforcing
memory protection. We present a paradigm for protection system design that is based on the
well-known concepts of protection domains and access rights. The resulting environment guar-
antees an effective separation of the memory resources of the different processes, whose
loosely-coupled interactions correspond to explicit actions of information sharing. Within the
boundaries of a single multithreaded process, a less stringent protection requirement is to con-
fine the consequences of a programming error in the thread that originated the error. These
results are obtained by taking advantage of techniques of symmetric-key cryptography to rep-
resent access privileges in memory at the level of the single pages that form a segment.

Keywords — process, protection, revocation, single address space, symmetric-key cryptogra-
phy, thread.

1. INTRODUCTION

In a traditional virtual memory environment, each process references its own virtual space.
An address generated by a given process corresponds to an information item which is different
from that identified by the same address in the virtual space of a different process. This virtual
space separation enforces protection; a process has no means of accessing the private informa-
tion items of any other process. On the other hand, if an object is shared between two or more
processes, complex synonym problems arise, for instance, in a virtual-address cache (as multi-
ple copies of the same object may be stored in different virtual cache positions) and in the cir-
cuitry for virtual-to-physical address translation (e.g., the translation lookaside buffer) [1], [2],
[3]. A solution is to allocate the shared object at the same address in the virtual space of each
process involved in the sharing (presently, and in the future) [4]. Alternatively, it is possible to
map the physical memory frame that contains the shared object to the respective local pages; in
this case, the shared object must be located at the same address within each page [2]. Both so-
lutions must be supported by explicit intervention of the operating system.

In a different approach, all processes share a single, virtual address space, and no separation
exists between the virtual spaces of different processes [5], [6], [7]. In this approach, informa-
tion sharing between processes is straightforward – a given process will be able to access a
shared object by simply using the object address – but provision of mechanisms for private ob-
ject protection is mandatory.

We shall refer to a multithreaded environment in which each process gives rise to concur-
rent, independent execution flows called threads [8], [9]. An salient feature of an environment

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80244581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

— 2 —

of this type is that a switch of the execution flow between two threads of the same process is
not overwhelmed by the high time costs that are usually connected with context switches be-
tween different processes, to save the processor state into the descriptor of the original process
and then restore the processor state with quantities taken from the descriptor of the new proc-
ess. The threads of the same process operate on a common pool of memory resources; interac-
tions between these threads are frequent, and should be supported by information sharing
mechanisms at low cost in terms of processing time. On the other hand, interactions between
different processes are comparatively rare, and efficiency in information sharing between them
is not a stringent requirement. Thus, the two different interaction levels, between the threads of
the same process and between different processes, correspond to dissimilar efficiency require-
ments.

As far as protection is concerned, the protection system should be able to limit the conse-
quences of malevolent attacks to the private information items of a given process that originate
from a different process. Any illegitimate access should be blocked, and any attempt to protec-
tion privilege stealing should be prevented. This means that the protection system should guar-
antee an effective separation of the memory resources of the different processes, whose loose-
ly-coupled interactions should correspond to explicit actions of information sharing. On the
other hand, within the boundaries of the same multithreaded process, a less stringent protection
requirement is to confine the consequences of a programming error in the thread that originat-
ed the error. Consider a process that supports dynamic extensibility in the form of plug-ins im-
plementing new functionalities, for instance [10]. Plug-ins are usually considered trustworthy,
but not free from errors [11]. If the main program and a plug-in share access to a common pool
of objects, we are in the presence of a security vulnerability.

With reference to a single-address-space environment that supports the notion of segmenta-
tion with paging, we shall present a solution to the problems outlined above that is based on the
application of techniques of symmetric-key cryptography [12], [13]. The rest of this paper is
organized as follows. Section 2 presents our paradigm of memory reference and protection,
which is based on the well-known concepts of protection domains and access rights [14], [15],
[16]. Section 3 describes an implementation scheme for the protection system that relies on ad-
hoc hardware inside the processor and the memory management unit, and takes advantage of
techniques of symmetric-key cryptography to represent access privileges in memory at the lev-
el of the single pages that form a segment. We shall show that in our approach cryptography is
hidden in the implementation level, behind the application program interface as defined by a
set of system primitives, the protection primitives. Section 4 outlines the relation of our work
to previous work and discusses the proposed system from the point of view of the design goals
introduced above. Section 5 gives concluding remarks.

2. THE PROTECTION SYSTEM

We shall refer to a virtual memory system that combines segmentation and paging. The vir-

— 3 —

tual space is partitioned into fixed-size pages. The primary memory is partitioned into frames,
and the size of a frame is equal to the page size. The secondary memory is partitioned into
blocks, and the size of a block is equal to the page size. A page is the elementary unit of infor-
mation transfer between the primary memory and the secondary memory. A segment is a col-
lection of pages that are contiguous in the virtual space. The number of pages that form a given
segment is called the segment size, and is segment specific. Segments are aimed at containing
information items that are logically correlated at the level of the program structure, e.g., a pro-
gram module.

2.1 Protection contexts and handles

In our protection paradigm, access control is exercised at the level of a single page. Two ac-
cess rights are defined on a page, the READ access right that makes it possible to read the page
contents and the WRITE access right that makes it possible to modify these contents. The pro-
tection system allows us to define a limited number of protection contexts C0, C1,..., Cw, where
quantity w is protection system specific and is the same for all segments. For each given seg-
ment S, a protection context specifies a collection of access rights for the pages that form this
segment. An exception is the w-th protection context Cw, called the OWN protection context,
which corresponds to a single access right, the OWN access right defined at the segment level.
Possession of the OWN access right for a given segment implies possession of both the READ

and the WRITE access rights for all the pages that form this segment.

Let us refer to the example illustrated in Figure 1. Segment S is formed by three pages. The
specification of the protection contexts for S takes the form of a protection array featuring one
element for each page. The element for the generic page Pj is partitioned into two protection

WR

0 1 1 1 0 0 1 1

0 1 1 1 0 1 0 1

0 0 1 1 0 0 0 1

P0

P1

P2

Segment S

Protection array

Figure 1. A three-page segment S, its protection array, current domain register CDR and a handle H
referencing S.

Handle H0 0 1 1 0
Port TSegment name S

CDR0 1 0 0

C2

OWN

— 4 —

fields, the R field and the W field. Each protection field consists of w - 1 bits, which are num-
bered starting from the rightmost position. If asserted, the i-th bit of the R field, i = 0, 1,..., w -
2, specifies that the i-th protection context Ci contains the READ access right for page Pj, and
similarly for the W field and the WRITE access right. It follows that the extent of the i-th protec-
tion context of segment S is specified by the i-th column of the R and the W fields of the pro-
tection array.1,2 In the example of Figure 1, we have a three-page segment S and five protection
contexts (w = 5). The first of them, C0, contains both the READ and the WRITE access rights for
all the pages. Protection context C1 contains the READ access right for all the pages and the
WRITE access right for page P0. Protection context C2 contains the READ access right for pages
P0 and P1, and the WRITE access right for page P1. Protection context C3 specifies no access
rights at all. Being defined at segment level rather than at page level, protection context C4 is
not included in the protection array. This protection context implicitly contains the OWN access
right for segment S, corresponding to both read and write access permissions for all the pages
that form S.3

A port specifies an access privilege in terms of one or more of protection contexts. We shall
use a square bracket notation to indicate the protection contexts that form the given port, e.g., T
= [1, 2] indicates that port T is formed by protection contexts C1 and C2. Possession of a port
for a given segment is certified by possession of a handle referencing this segment. Handle H
is a pair {S, T}, where S is a segment name and T is a port. In a handle, the port takes the form
of a w-bit natural number that is interpreted as a bit vector. If bit i of port T is asserted, i = 0, 1,
…, w - 1, then the port includes the i-th protection context Ci. In this implementation, port T =
[1, 2] takes the form of a natural number featuring bits 1 and 2 asserted and all the other bits
cleared. A port featuring bit w - 1 asserted grants the OWN access right on the corresponding
segment.

2.2 Protection domains

A protection domain is the specification of a subset of all protection contexts that acts as a
limitation on the protection privileges held by a thread associated with that domain. At any
given time, the protection domain associated with the thread running at that time is called the

1. A single page size is a simplifying assumption that does not affect generality. Even if the hardware supports a
single page size, the protection system may well support multiple page sizes. A result of this type can be easily
obtained by designing the hardware for small pages, which means a protection array with many elements. The
protection system will consider consecutive pages as forming a single, large page, by replicating the bit config-
uration of the corresponding elements of the protection array. Our system does not provide protection at a gran-
ularity level smaller than a single page. On the other hand, we may wish to take advantage of small pages to
support forms of fine-grained data protection.

2. In a well-known protection model, the protection state is depicted in the form of an access matrix featuring a
row for each protected object and a column for each protection context [14], [17]. Element in column i and row
j of the access matrix specifies the access rights included in the i-th protection context on the j-th object. The
protection array is a hardware implementation of an access matrix in which the protected objects are the seg-
ment pages. The element of the access matrix for the i-th protection context and j-th page corresponds to the i-
th bit of the two protection fields, the R field and the W field, of the j-th element of the protection array.

— 5 —

current domain. Suppose that thread q holds handle H = {S, T}, and let D be its current do-
main. The possibility to take advantage of the access privileges granted by H is restricted to
those contexts specified by port T that are also part of the current domain D. Thus, q may take
full advantage of H only if D includes all the protection contexts that form T. A single excep-
tion is the OWN context, which is implicitly included in the current domain; this means that a
port including the OWN context always grants full access rights to the corresponding segment.

At any given time, a register of the central processor, the current domain register CDR,
specifies the composition of the current domain. The size of this register is w - 1 bits; if the i-th
bit is asserted, then the current domain contains the i-th protection context, Ci. In the example
of Figure 1, the current domain contains a single protection context, C2. The port of handle H
includes protection contexts C1 and C2, however C1 is not part of the current domain (bit 1 of
CDR is cleared) and is masked out. It follows that the running thread can only take advantage
of the access rights in protection context C2, i.e., the READ access right for pages P0 and P1,
and the WRITE access right for page P1.

2.3 Encrypting handles
Handles are never stored in memory in plaintext. Instead, they are always stored in the form

of unintelligible ciphertext. In the transformation, we take advantage of a double encryption
and symmetric-key ciphers. In detail, we associate a segment encryption key kS with each seg-
ment S. A further key, called the process encryption key kQ, is associated with each process Q,
and is shared by all the threads that form this process. At any given time, a register of the proc-
essor, the process key register PKR, contains the key of the father process of the running
thread.

From now on, we shall use the * symbol to denote a ciphertext. Let H = {S, T} be a handle,
q be the thread holding this handle, and Q be the father process of q. Furthermore, let S* be the
result of encrypting quantity S by using a symmetric-key cipher with key kQ, and let T* be the
result of encrypting quantity {S*, T} by using a symmetric-key cipher with key kS. Quantity
H* corresponding in ciphertext to handle H is given by relation H* = {S*, T, T*} (Figure 2).
Quantity T* is called the validation field, and is aimed at validating H*.

Figure 3 shows the reverse conversion of handle H* = {S*, T, T*} into the corresponding
plaintext H. Process encryption key kQ is used to decrypt quantity S* into segment name S.
Key kS associated with S is then used to encrypt pair {S*, T}, and the result is compared with

3. The idea of limiting the set of accessible pages to a subset of all pages on a per-process basis is certainly not
new. For instance, in the Itanium processor architecture, each entry of the translation lookaside buffer (TLB) is
tagged with a protection key (not cryptographic) that makes it possible to control the access rights granted by
that entry [18]. The running process is associated with a set of registers, the protection key registers. When the
virtual address selects a TLB entry, the protection key of this entry is compared with each protection key regis-
ter. If a match is found, the access is permitted and the access rights are specified by the matching register, oth-
erwise an exception is raised. Protection keys are especially important as far as page sharing is concerned.
They allow an easy implementation of the protection domain concept. Processes with different permissions are
allowed to access shared objects while using the same TLB entries.

— 6 —

T* to validate H*; validation is successful only if a match is found. If validation is successful,
quantity H is given by pair {S, T}.

Thus, quantity S* is obtained by using an encryption key, kQ, which is process specific and
is independent of the segment, whereas quantity T* is the result of a double encryption involv-
ing both kQ and an encryption key, kS, which is segment specific and is independent of the
process.

3. PROTECTION SYSTEM IMPLEMENTATION

The protection system is conceived to be implemented by a hardware/software complex that
includes ad-hoc hardware inside the processor and the memory management unit (MMU), and
a set of protection primitives that form the process interface of the protection system (Table I).
In the following, we shall show an implementation scheme that hypothesizes a possible divi-
sion of the protection system functionalities between the hardware level and the software level.
Different implementations may well be devised; however, every implementation should encap-
sulate the protection system so that processes are prevented from tampering the system and al-
tering its intended behavior, even if the underlying algorithms and implementation details are
publicly known. An effective solution relies on the usual concept of the two control modes, us-
er and privileged. The protection primitives are executed as privileged operations. In this ap-

Figure 2. Translation of handle H = {S, T} into the ciphertext form H* = {S*, T, T*}.

S TH

kQ

S* T*TH*

kS

Figure 3. Validation of handle H* = {S*, T, T*} and subsequent translation into the plaintext form
H = {S, T}.

kQ

=

S TH

kS

S* T*TH*

valid

— 7 —

proach, a call to a protection primitive produces a system call that traps into the operating sys-
tem kernel and invokes the protection system; the system call switches from user mode to
privileged mode.

3.1 System tables

The information items relevant to process protection are gathered in a system table called
the process table. This table features one entry for each process. The entry for a given process
contains the process encryption key kQ and the identifier SQ of a special segment, called the
process descriptor, which is associated with Q and identifies Q to the other processes. The size
of a process descriptor is a single page, and physical memory space is not allocated for this
segment. A single access right is defined on a process descriptor, i.e., the OWN access right. As
will be illustrated later, process descriptors are used for handle transmission between different

Table I. Protection primitives.

hReg ← hLoad(addr)
Converts the ciphertext handle stored in memory location addr into a plaintext, and loads this
plaintext into handle register hReg.
addr ← hStore(hReg)
Converts the plaintext handle stored in handle register hReg into a ciphertext, and stores this
ciphertext into memory location addr.
addr2 ← newSegment(size, addr1)
Allocates a new segment of the given size and stores a ciphertext handle for this segment into
memory location addr2; the port in this handle includes all the protection contexts. The initial
configuration of the protection array of the new segment is taken from the memory region at
address addr1.
deleteSegment(hReg)
Deletes the segment referenced by hReg. Requires access right OWN in hReg.
addr ← hReduce(hReg, msk)
Eliminates protection contexts from the handle in hReg as specified by msk, converts the result into
a ciphertext, and stores this ciphertext into memory location addr.
addr ← hTranscode(hReg2, msk, hReg1)
Eliminates protection contexts from the handle in hReg1 as specified by msk, converts the result into
a ciphertext by using the key of the process identified by the process descriptor referenced by
hReg2, and stores this ciphertext into memory location addr. Requires access right OWN in both
hReg1 and hReg2.
readProtection(addr, hReg)
Copies the contents of the protection array of the segment referenced by hReg from the page table
of this segment into the memory region at address addr.
writeProtection(hReg, addr)
Replaces the contents of the protection array of the segment referenced by hReg, stored in the page
table of this segment, with quantities taken from the memory region at address addr. Requires
access right OWN in hReg.
addr ← newSegmentKey(hReg)
Generates a new segment key and associates this key with the segment referenced by hReg. Uses
the new key to convert the plaintext handle stored in hReg into a ciphertext, and stores this
ciphertext into memory location addr. Requires access right OWN in hReg.
newProcessKey(hReg)
Generates a new process key and associates this key with the process corresponding to the process
descriptor referenced by hReg. Requires access right OWN in hReg.

— 8 —

processes.

In our hypothesis of a single address space, a single segment table ST is shared by all proc-
esses. The segment table features an entry for each segment allocated in the virtual space. The
entry for a given segment S contains: i) the segment encryption key kS; ii) the segment size, ex-
pressed in terms of the number of pages that form the segment; and iii) the memory address of
the page table of the segment. The page table is aimed at storing information concerning both
allocation of the virtual pages in the physical memory and page protection.

Inside the MMU, a segment table cache (STK) is aimed at containing the segment table en-
tries relevant to recently-accessed segments, for fast access to these entries. STK is accessed
by using a segment name S as the access key. If no STK entry matching S is found, STK re-
solves the miss by accessing the segment table and loading the contents of the segment table
entry reserved for S into STK. If the segment table contains no entry for S, then quantity S does
not identify an existing segment, and an exception of addressing violation is raised to the proc-
essor.

The page table of segment S features one entry for each page that forms S. The entry for
page P contains: i) the two protection fields, R and W; ii) a presence bit V that specifies wheth-
er space has been allocated for P in the primary memory, or the page is stored only in the sec-
ondary memory; iii) the number F of the primary memory frame reserved for P; iv) the number
B of the secondary memory block reserved for P. Inside the MMU, a page table cache (PTK)
contains the page table entries relevant to recently-accessed pages. PTK is accessed by using a
pair {S, P} as the access key, i.e., the name of a segment and the name of a page in this seg-
ment.

It is worth noting that when the running process releases the processor and a new process is
assigned the processor, the contents of both the segment table cache STK and the page table
cache PTK are not invalidated. This is a consequence of the single address space paradigm:
memory mapping information is independent of the process.4

3.2 Memory addressing

Inside the processor, a set of registers, the handle registers, are used for both memory ad-
dressing and protection. Each handle register is aimed at storing a handle in plaintext. Let hReg
denote a handle register, and H = {S, T} be the handle contained in hReg. We say that hReg ref-

4. In a typical organization of a translation lookaside buffer (TLB), a process identifier field is used in each TLB
entry for storage of the memory mapping information relevant to more than a single process at a time [1], [19].
In this approach, a TLB register, which we shall call the process identifier register (PIDR), contains the identi-
fier of process being executed at that time. When a process switch takes place, the identifier of the new process
is written into PIDR. When the TLB is accessed to find the TLB entry corresponding to the present address,
only those entries are considered whose process identifier field matches the contents of PIDR. In contrast, in
our approach, the address translation information contained in both the segment table cache STK and the page
table cache PTK is independent of the process. If two or more processes share an address space portion, the
corresponding memory mapping information is not replicated. Consequently, the use of the overall cache
capacity is significantly enhanced, and more cache space is available for the active processes.

— 9 —

erences segment S. A virtual memory address addr consists of a pair <hReg, d>, where quanti-
ty d is a displacement in the segment referenced by hReg (Figure 4). The most significant bits
of the displacement d identify a page P within S, and the least significant bits specify the offset
f of the referenced information item in this page.

Let q be the running thread and suppose that q issues virtual address addr = <hReg, d>.
Translation of addr into the corresponding physical address in the primary memory is preceded
by the necessary validation of the access privileges held by q. In detail, the actions involved in
the address translation are as follows:

1. The segment table ST is accessed and the entry STS corresponding to segment S is
selected. The segment size is extracted from this entry and is compared with page number
P. If P is greater than the segment size, an exception of addressing violation is raised to the
processor; otherwise,

2. The page table PT of segment S, identified by a field of STS, is accessed to find the entry
PTP corresponding to page P. The contents of the R protection field of this entry (or, if the
access is for write, the contents of the W protection field) are extracted from the table.

3. The bitwise AND of the protection field, CDR and port T is evaluated5. If the result is 0,
and the most significant bit of T (corresponding to the OWN protection context) is cleared6,
the access right required to accomplish the access successfully is lacking, and an excep-
tion of violated protection is raised; otherwise,

Figure 4. Translation of a virtual address into a physical address in the primary memory.

kS

TS

Segment table

R W

<hReg, d>

f
P

F

Primary memory

Page table

Handle registers

T

size

select

hRegi

CDR

r/w control

>

V B

virtual address

fro
m

/to
 th

e
ce

nt
ra

l p
ro

ce
ss

or

AND

— 10 —

4. Frame number F is paired with offset f to obtain the address of the referenced information
item in the primary memory, and the memory access is finally accomplished.

3.3 Protection primitives
We shall now introduce a number of protection primitives, and we shall delineate the activ-

ities involved in the execution of each of them. We shall hypothesize that the given primitive is
executed by thread q of process Q. To simplify presentation, we shall not mention self-explain-
ing or obvious actions, such as the check of the access rights required to access a given memo-
ry location, and the activities of the two caches, the segment table cache STK and the page ta-
ble cache PTK.

A first example of a protection primitive is the load primitive hLoad, which has the form
hReg ← hLoad(addr). This primitive allows us to load handle H* = {S*, T, T*) from memory
location addr, where it is stored in ciphertext form, into handle register hReg. Execution in-
cludes the actions, illustrated in Figure 3, which are necessary to validate H* and convert it in-
to the corresponding plaintext H. In detail, execution is as follows:

1. The primary memory is accessed and handle H* is loaded from memory location addr into
the processor.

2. The encryption key kQ of the running process Q is read from the process key register PKR.
This key is used to decrypt quantity S* and obtain the name S of the segment referenced by
H*.

3. A search is made in the segment table to find the table entry reserved for segment S and
extract the encryption key kS of this segment.

4. Key kS is used to convert pair {S*, T} into ciphertext, and the result is compared with
quantity T*. If a match is found, port T is validated; otherwise, an exception of violated
protection is raised and execution fails.

5. Segment name S and port T are paired to form handle H = {S, T}. This handle is finally
stored into handle register hReg.

The store primitive addr ← hStore(hReg) allows us to store handle H = {S, T} from handle
register hReg, where it is contained in plaintext form, into memory location addr. Execution
includes the actions, illustrated in Figure 2, which are necessary to convert H into the corre-
sponding ciphertext H*. In detail, execution is as follows:

1. The encryption key kQ of the running process Q is read from the process key register PKR.
This key is used to encrypt segment name S and obtain quantity S*.

2. A search is made in the segment table to find the table entry reserved for segment S and
extract the encryption key kS of this segment.

5. As pointed out previously (see Figure 1), a memory access performed by taking advantage of a given port ter-
minates successfully only if it is permitted by an access right in one of the protection contexts contained in the
port, provided that this protection context is also part of the current domain, as specified by CDR.

6. It should be recalled that the OWN protection context in the port for a given segment grants both the READ and
the WRITE access rights for all the pages that form the segment, and this protection context is always contained
in the current domain (independently of CDR). It follows that if the most significant bit of port T is asserted,
then the access right check is always successful.

— 11 —

3. Key kS is used to convert pair {S*, T} into ciphertext quantity T*.
4. Quantity H* = {S*, T, T*} is assembled and is finally stored into memory location addr.

Segment creation and deletion
The segment allocation primitive addr2 ← newSegment(size, addr1) can be used to allocate

a new segment. Argument size expresses the size (in pages) of the new segment. Argument
addr1 is the address of a memory region containing the initial configuration of the protection
array of the new segment (i.e., the R and W protection fields of each page). Execution of this
primitive stores a ciphertext handle for the new segment into memory location addr2; the port
in this handle will contain all the protection contexts, including the OWN context. The actions
involved in the execution of newSegment are as follows:

1. The virtual memory manager reserves a virtual space area of the given size for a new seg-
ment and returns the name S of this segment.

2. The physical memory manager reserves a new entry for S in the segment table, and allo-
cates a page table featuring one entry for each page that forms S. In the page table, the pro-
tection array is initialized with quantities taken from the memory region starting at address
addr1.

3. The encryption key kQ of the running process Q is read from the process key register PKR.
This key is used to encrypt segment name S and obtain quantity S*.

4. A new segment key kS is generated and is associated with segment S in the segment table.
5. Let T be a port containing a bit pattern of all 1’s to indicate all protection contexts. Key kS

is used to convert pair {S*, T} into ciphertext quantity T*.
6. Quantity H* = {S*, T, T*} is assembled and is finally stored into memory location addr2.

In point 1 above, a simple strategy for virtual space allocation is a sequential allocation: the
identifier of a given segment is equal to the identifier of the previous segment incremented by
the size of the previous segment. This strategy can be effectively implemented by using a
counter that at any given time contains the virtual address of the segment to be allocated next.
After allocation of a new segment, the counter is incremented by the size of the new segment.

The segment deallocation primitive deleteSegment(hReg) deletes the segment referenced by
handle register hReg. Execution of this primitive causes the physical memory manager to de-
lete both the page table of S and the entry reserved for S in the segment table. This primitive re-
quires the OWN access right in hReg

Physical memory allocation, deallocation and management are outside the scope of this pa-
per, and will not be discussed.

Handle reduction
An access privilege can be transferred between two threads of the same process by a simple

action of a handle copy. Suppose that q and q’ are both threads of process Q, and q’ holds han-
dle H*: q’ will copy H* into a memory segment shared with q, and q will read the handle from
this segment. In fact, both these threads are associated with the same process key, kQ. H* was
encrypted by using kQ, and consequently, q will be able to execute the hLoad protection primi-

— 12 —

tive successfully, as hLoad will use kQ to decrypt H*. Handle reduction is the action of limiting
the extent of a handle by eliminating part of the protection contexts from the port. An action of
this type may be necessary before transferring the handle, to limit the access privileges of the
recipient thread to a subset of the original privileges.

Let H = {S, T} be the handle contained in handle register hReg. Protection primitive addr ←
hReduce(hReg, msk) eliminates protection contexts from port T as specified by mask msk, and
saves the resulting ciphertext handle into memory location addr. msk is a bit pattern of the
same size as a port; for each bit that is cleared in msk, execution of hReduce clears the corre-
sponding bit in the port. In detail, execution is as follows:

1. The encryption key kQ of the running process Q is read from the process key register PKR.
This key is used to encrypt segment name S and obtain quantity S*.

2. A search is made in the segment table to find the table entry reserved for segment S and
extract the encryption key kS of this segment.

3. Quantity T1 equal to the bitwise AND of port T and mask msk is evaluated, and key kS is
used to convert pair {S*, T1} into ciphertext quantity T1*.

4. Quantity H* = {S*, T1, T1*} is assembled and is finally stored into memory location addr.

Transcoding handles
Let q’ be a thread of process Q’ and q be a thread of process Q. If q’ holds handle H* and

transmits a copy of this handle to q, no actual transfer of access privilege takes place. In fact,
H* was encrypted by using the encryption key kQ’ of process Q’, and consequently q will not
be in the position to execute hLoad successfully, as this primitive will use the key kQ of Q to
decrypt the handle. Instead, H* should be transcoded before being transferred to q, that is, it
should be transformed into plaintext by using kQ’, and then converted back to ciphertext by us-
ing kQ.

The handle transcoding mechanism takes advantage of process descriptors. As has been an-
ticipated in Subsection 3.1, a process descriptor is a special segment associated with each proc-
ess and aimed at identifying the process; the entry of the process table reserved for process Q
contains the identifier SQ of the corresponding process descriptor.

Handle transcode proceeds as follows. Thread q’ of process Q’ uses hLoad to convert H*
into plaintext and load the result H = {S, T} into a handle register hReg1. Then, q’ issues pro-
tection primitive addr ← hTranscode(hReg2, msk, hReg1). The arguments of this primitive in-
clude a mask msk and the name hReg2 of the handle register containing a handle HQ = {SQ, TQ}
referencing process descriptor SQ. Execution reduces the access privileges contained in handle
H according to msk, converts the result into a ciphertext by using the key of the process Q iden-
tified by SQ and stores the ciphertext into memory location addr. In detail, execution is as fol-
lows:

1. Port T of handle H and port TQ of handle HQ are inspected to ascertain whether both of
them include the OWN protection context. If this is not the case, an exception of violated
protection is raised and execution terminates; otherwise

— 13 —

2. A search is made in the process table for an entry containing quantity SQ. The encryption
key kQ of process Q is extracted from this entry.

3. Key kQ is used to encrypt segment name S and obtain quantity S*.
4. A search is made in the segment table to find the table entry reserved for segment S and

extract the encryption key kS of this segment.
5. Quantity T1 equal to the bitwise AND of port T and mask msk is evaluated, and key kS is

used to convert pair {S*, T1} into ciphertext quantity T1*.
6. Quantity H* = {S*, T1, T1*} is assembled and is finally stored into memory location addr.

Thread q’ will use hTranscode to store the resulting ciphertext handle H* into a memory
segment for which thread q holds the READ access right. Thread q will be now in the position to
load H* into a handle register successfully, as this handle is encrypted by using the key kQ of
its own father process, Q.

Of course, after receipt of handle H*, thread q may well transcode H* and transmit it fur-
ther. On the other hand, the original owner of the handle, q’, can prevent any subsequent action
of handle transmission by taking advantage of the mask in the hTranscode primitive and elimi-
nating the OWN access right from the handle.

Access right revocation
Let S be the segment referenced by handle register hReg. Protection primitives readProtec-

tion(addr, hReg) and writeProtection(hReg, addr) make it possible to inspect and modify the
protection array of S. readProtection copies the contents of the protection array from the page
table of segment S into the memory region starting at address addr. writeProtection replaces
the contents of the protection array in the page table of segment S with quantities taken from
the memory region starting at address addr; this primitive requires the OWN access right in
hReg. readProtection and writeProtection can be used to exercise a form of access right review
and revocation at the level of the single pages of a given segment. By eliminating the access
rights from one or more protection contexts, we revoke these access rights from all threads that
hold handles including these protection contexts.

Indeed, our protection system supports further techniques for the revocation of access per-
missions. A process that holds a handle for a given segment with the OWN access right can
change the key of this segment by issuing protection primitive addr ← newSegmentKey(hReg).
Let S be the segment referenced by handle register hReg. Execution of this primitive generates
a new segment key and associates this key with S in the segment table entry reserved for S.
Then, the new key is used to convert the plaintext handle stored in hReg into a ciphertext,
which is finally saved into memory location addr. This is now the only valid handle referenc-
ing S (indeed, any attempt to issue hLoad and load a handle generated by using the old segment
password into a handle register is destined to fail).

Handle invalidation obtained by changing the key of a given segment is a process-inde-
pendent action that affects any handle referencing this segment. In a different approach, we
change the key of a given process to invalidate all the handles held by this process. Let SQ be

— 14 —

the descriptor of process Q, and suppose that handle register hReg references SQ. Execution of
the newProcessKey(hReg) primitive generates a new process key and associates this key to Q.
To this aim, the new key is inserted into the process table entry reserved for Q. Execution ter-
minates successfully only if the handle in hReg includes the access right OWN for SQ.

4. DISCUSSION, AND RELATION TO PREVIOUS WORK

4.1 Forging handles
A handle can be successfully used to access an information item in memory only after it has

been loaded into a handle register. Processes cannot read or modify the contents of handle reg-
isters freely; instead, these registers can only be accessed in a protected fashion using the pro-
tection primitives. This aspect of handle register security is especially important as the con-
tents of these registers are in plaintext (not encrypted).

Ciphertext handles are mixed in memory with ordinary data. It follows that a process is free
to read and modify an existing ciphertext handle, or even to forge a new ciphertext handle from
scratch. Suppose that process Q assembles handle H* = {S*, T, T*} by using arbitrary bit pat-
terns for both the S* and the T* fields, and filling the T field with the bit pattern of all 1’s that
corresponds to full access privileges. In order to take advantage of H* for memory access, Q
will have to issue the hLoad protection primitive to load this handle into a handle register. Ex-
ecution of hLoad uses the encryption key kQ of process Q to decrypt quantity S* and obtain
segment name S. This action always terminates with success, however, if the virtual address
space is large and sparsely allocated, the probability that quantity S be a valid segment name is
negligible. In a situation of this type, the subsequent search in the segment table for the entry
reserved for segment S is destined to fail, and an exception of addressing violation is generat-
ed. Even in the improbable case that S is valid, execution of hLoad proceeds by encrypting pair
{S*, T} using the key kS of segment S. Then, the result is compared with quantity T*; in this
comparison, the probability of a casual match is negligible. Thus, hLoad is destined to fail. In
fact, the two events, the validity of S* and the congruence of T*, are largely independent. The
probability that both these events occur is evanescently low. We may conclude that handle
forging is virtually impossible.

An aspect of handle forging is a modification of the port of an existing, valid handle aimed
at producing an undue amplification of access privileges. Let H* = {S*, T, T*} be a handle, T1

be a port stronger than the original port T, e.g., a bit pattern of all 1’s, and H1* = {S*, T1, T*}
be the resulting, forged handle. The utilization of H1* for memory reference requires that H1*
is loaded into a handle register. In the execution of the hLoad primitive, T1 will be paired with
S* and the result will be encrypted by using the segment key for subsequent comparison with
the validation field T*. Of course, this validation is destined to fail.

We wish to remark that knowledge of a valid segment name does not represent a security
hole. A segment can be successfully accessed in the primary memory only after a handle refer-
encing this segment has been loaded into a handle register. The forging of a handle for a given

— 15 —

segment requires knowledge of both the process key and the segment key, but these keys are
hidden to processes.

4.2 Stealing handles
Validity of a given handle is restricted to the process on behalf of which this handle was en-

ciphered in memory. Let H = {S*, T, T*} be a ciphertext handle generated by using the encryp-
tion key kQ of process Q. Suppose that a second process Q’ steals H from Q and tries to take
advantage of H. To this aim, Q’ issues the hLoad primitive to load H into a handle register. In
the execution of hLoad, transformation of S* into S will use the encryption key of the process
issuing hLoad, that is, key kQ’; whereas S* was encrypted by using key kQ. As result, hLoad
will produce an arbitrary segment identifier S’. Even in the improbable case that segment S’ is
presently allocated in the virtual space, the subsequent action of handle validation is destined
to fail.

It is worth to note that the three components of ciphertext handle H* = {S*, T, T*} do not
need to be stored in contiguous memory locations. In fact, a process holding several ports for
the same segment, and the corresponding validations, needs to maintain a single copy of quan-
tity S*, while keeping track of the associations between S*, the ports and the validations in pro-
gram logic. This is a consequence of the fact that a validation includes the indication of the
corresponding segment; if a {T, T*} pair is associated with the wrong segment name, any at-
tempt to load the resulting ciphertext handle into a handle register is destined to fail.

4.3 Thread-level protection
As seen in the Introduction, our protection model hypothesizes a set of loosely coupled

processes that share access to a single address space. Each process holds access permissions
for a fraction of the segments in the virtual space, and these access permissions are certified by
handle possession. The sharing of a given segment between processes is obtained by means of
the transmission of a handle for this segment, which must be preceded by an action of handle
transcode (see Subsection 3.3), from the key of the process that grants the handle to the key of
the process that receives the handle. The related costs in terms of execution times are mitigated
by the low frequency of these actions, as follows from the loose degree of process coupling.
On the other hand, between two threads of the same process no transcode activity is necessary,
as both threads share the process key. In fact, from the point of view of protection, all the
threads of the same process can be considered as sharing a common pool of handles, which is
associated with the process rather than with the single thread.

We may conclude that the process keys guarantee an effective separation of the memory re-
sources of the different processes. Between the threads of the same process, mechanisms are
necessary to protect the memory regions of each thread, in application of the principle of least
privilege [15], [20] according to which at any given time each software component should be
given the smallest set of access privileges that is required at that time by that software compo-
nent to carry out its job.

— 16 —

We associate a protection domain with each thread. The protection domain of the running
thread is defined as a subset of all protection contexts whose composition is determined by the
contents of the current domain register CDR. When a new thread is generated, its father proc-
ess assigns this thread a suitable configuration for CDR. When a thread switch takes place, the
current thread relinquishes the processor and a new thread is assigned the processor, the con-
tents of CDR are replaced with the configuration corresponding to the domain of the new
thread, as part of the actions connected with the thread switch.

We do not force application programs to adhere to a ubiquitous, pre-existing protection par-
adigm that is fixed for all applications. We shall now consider a variety of common protection
paradigms, and we shall show that these paradigms are well supported by our protection sys-
tem, where they can be implemented at little effort.

Hierarchical domains
In a hierarchical domain organization, the domains form a tree structure in which each do-

main at a directly higher level to one or more child domains inherits all the access rights of the
child domains, recursively. We implement a structure of this type by reserving a protection
context for each given domain: protection context Ci contains the access privileges associated
with domain Di that are not inherited from the child domains. For a parent domain, the import
of the access privileges from the child domains is obtained by taking advantage of the current
domain register CDR, as follows: if the running thread is assigned a domain Di that has child
domains, then in CDR we set the i-th bit (corresponding to the protection context Ci) and the
bits that are asserted in the CDR configuration for each child domain; whereas if Di is a leaf in
the tree, then in CDR we set only the i-th bit.

Let us refer to domains D0 and D1 sharing a parent domain D2, for instance. Suppose that
D0 contains the READ access right for page P0, D1 contains the READ access right for page P1,
and D2 contains the WRITE access right for both pages P0 and P1 and inherits the access rights
of the child domains D0 and D1. Figure 5a shows the corresponding configuration of the pro-
tection array and CDR for the three domains. Protection context C2 is reserved for domain D2,
and similarly, contexts C1 and C0 are reserved for domains D1 and D0, respectively. In the con-
figuration of CDR for domain D0 we set only bit 0 (all the other bits are cleared); similarly, for
domain D1 we set only bit 1. For the parent domain D2, we set bit 2 corresponding to C2, and
bits 0 and 1 corresponding to the CDR configuration for the child domains D0 and D1. So do-
ing, the access rights of the child domains D0 and D1 are inherited by D2.

A salient feature of a hierarchical domain organization is that if an access right is revoked
from a child domain, revocation extends to the parent domain; this feature is well supported by
the proposed implementation.

Protection rings
A protection ring is a special case of a hierarchical organization in which each parent do-

main has a single child. Thus, a domain at a given level in the hierarchy imports the access

— 17 —

privileges of all the domains at the lower levels. An organization of this type is usually depict-

ed as a set of concentric rings; an inner ring corresponds to a domain at a higher privilege level

than the outer rings.

In our protection system, a structure of this type will be implemented by reserving a

protection context for each domain. Protection context Ci contains the access privileges

associated with domain Di that are not inherited from the outer domains. If the running thread

is assigned domain Di, then in CDR we set bit i corresponding to protection context Ci, and bits

0, 1,..., i - 1 corresponding to the protection contexts reserved for the outer domains. So doing,

Di inherits the access rights of the outer domains.

Let us refer to an organization featuring three rings, for instance. Ring D0 (the least privi-

leged) contains the READ access right for page P0. Ring D1 contains the READ access right for

page P1 and imports the READ access right for page P0 from D0. Finally, ring D2 (the most priv-

ileged) contains the WRITE access right for both P0 and P1 and imports the READ access right

for these pages from D0 and D1. Figure 5b shows the corresponding configuration of the pro-

tection array and CDR for the three domains. For domain D1, we set bits 0 and 1, for instance.

So doing, the access rights of the outer domain D0 (as included in protection context C0) will

be inherited by D1.

Figure 5. Configuration of the protection array and the current domain register CDR for a variety of
protection paradigms: (a) hierarchical domains; (b) protection rings; (c) capability lists; (d) access
control lists. The most significant bit of CDR, corresponding to the OWN protection context, is not
shown.

WR

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 0

CDR(D0)0 0 0 1

Protection array

P0

P1

CDR(D1)0 0 1 0

CDR(D2)0 1 1 1

(a)

WR

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 0

CDR(D0)0 0 0 1

Protection array

P0

P1

CDR(D1)0 0 1 1

CDR(D2)0 1 1 1

(b)

WR

0 1 0 1 0 1 0 0

CDR0 0 0 1

Protection array

P0

(d)

WR

0 1 1 1 0 0 1 0

0 0 1 1 0 0 0 0

CDR0 1 1 0

Protection array

P0

P1

(c)

0 0 1 1 0 0 0 0P1

— 18 —

Capability lists
A capability [17] is a form of protected pointer taking the form of a pair {object name, ac-

cess rights}. The holder of a capability can access the object referenced by this capability and
perform the actions that are made possible by the access rights specified by the capability. A
capability list is a collection of capabilities. In the capability paradigm, a protection domain
takes the form of a capability list; a thread running in a given domain can take advantage of all
the capabilities in the list for object access.

As will be shown in the next subsection, at the interprocess interaction level, handles are a
thorough replacement of capabilities. Within the boundaries of a single process, as far as inter-
actions between threads are concerned, we support the capability model at page level by taking
advantage of the protection fields and CDR, as follows: protection context Ci includes a capa-
bility for page Pj if the i-th bit of the R and/or the W fields of the protection array element for
this page are asserted. Thus, in the protection array, the capabilities in Ci correspond to the two
columns at the i-th position of the R and the W protection fields. The capability list associated
with the current protection domain is formed by the columns of the protection array corre-
sponding to the bits that are asserted in CDR.

In the configuration of Figure 5c, the current domain includes protection contexts C1 and
C2. The capability list for the current domain is formed by the columns of the protection array
at position 1 (corresponding to protection context C1) and at position 2 (corresponding to pro-
tection context C2) of the R and the W fields.

Access control lists
An access control list is a collection of pairs {domain name, access rights} that is associated

with a protected object and states the domains that hold access permissions for this object [16].
In a multithreaded, page-oriented protection environment, when a thread performs an access
attempt to a given page the access control list of this page is inspected to ascertain whether the
domain of this thread includes the access right permitting the access. In our protection system,
the access control list of a given page is specified by the element of the protection array that
corresponds to this page. In this element, the access rights of the current domain are those in
the positions of the R and the W fields corresponding to the bits of CDR that are asserted.

In the configuration of Figure 5d, the access control list for page P0 is specified by the first
element of the protection array. The current domain includes a single protection context, C0.
For P0, the corresponding access right is READ.

4.4 Capability-based addressing
In the previous subsection, we have seen how protection contexts and the current domain

register make it possible to implement forms of capability-based page protection at the level of
the threads of the same process. Now we shall consider the capability protection paradigm
from the point of view of segment protection between processes.

In a segment-oriented, capability-based protection environment, a capability is a pair {S,

— 19 —

AR}, where S is a segment identifier and AR is the specification of a set of access rights for S.
In order to access a given segment, a process submits the protection system a valid capability
for this segment, and the access rights specified by this capability must permit the access. The
main advantage of capability-based addressing is simplicity in segment sharing. A process
holding a capability for a given segment can allow another process to access this segment by a
simple action of a capability copy.

Capabilities are sensitive objects that must be segregated from ordinary data, so that proc-
esses are prevented from forging a new capability, or modifying an existing capability and ex-
tending the access rights it contains. Several approaches have been devised to segregate capa-
bilities in memory [21]. In the tagged memory approach, a 1-bit tag is associated with each
memory cell. The tag of a given cell specifies whether this cell contains a capability, or an or-
dinary data item. The processor features a set of machine instructions, the capability instruc-
tions, aimed at capability treatment. When a capability instruction is executed on a memory
cell that is tagged to contain an ordinary data item, an exception of violated protection is raised
and execution of the instruction fails [22], [23]. In sharp contrast to memory bank standardiza-
tion, the tagged memory approach relies on specialized main memory banks (e.g., the memory
banks of a 64-bit system are 65 bits wide). Time and space overheads follow from the need to
save and then restore the tags as part of the activities of page swapping between the primary
memory and the secondary memory. In order to find all capabilities, a garbage collector must
examine every single memory location [24].

In an alternative approach, capabilities are segregated in memory into capability segments
(in contrast, data segments are reserved for storage of ordinary data items) [25], [26]. In this
approach, processes are forced to adhere to a ubiquitous protection paradigm relying on com-
plex structures consisting of capability segments reserved for storage of capabilities for the da-
ta segments. Typically, capability segments are organized hierarchically into tree structures,
and the data segments are the leaf nodes.

A classical implementation of capability addressing uses a set of registers inside the proces-
sor, the capability registers, each aimed at storing a capability [25], [27]. In order to access a
given segment, a process must have loaded a capability for this segment into a capability regis-
ter. An address in memory consists of the name of a capability register and an offset in the seg-
ment referenced by the capability in this capability register. The access can be accomplished
successfully only if the capability contains the access right permitting the access. When a proc-
ess relinquishes the processor and a new process is assigned the processor, the contents of the
capability registers are saved into the descriptor of the original process and these registers are
filled with quantities taken from the descriptor of the new process. These actions are not neces-
sary when a switch occurs between two threads of the same father processes. In fact, all the
threads of the same process share a common set of access privileges, and these include the ca-
pabilities in the capability registers. A situation of this type is in sharp contrast with the princi-
ple of least privilege; a thread inherits the whole set of access permissions of its father process

— 20 —

instead of being restricted to only those access rights that are necessary for this thread to carry
out its job.

Capabilities are effective in protecting the private objects of a given process from illegal ac-
cesses originating from the other processes; the protection system guarantees that a process can
access a segment only if it holds a valid capability for this segment. On the other hand, capabil-
ity-based protection is unable to contrast attacks to the private segments of a given process pro-
duced by a program extension taking the form of a trusted routine that is accepted within the
process boundaries, e.g., a device driver or a multimedia codec. In a situation of this type, the
added code will be in the position to take advantage of all the access privileges granted by the
capabilities stored in the capability registers, thereby gaining access to the private segments of
the hosting process. Owning to the inherent tree-structured nature of capability segment organ-
izations, a single capability for a capability segment at a high position in the tree allows a
harmful code to gain access to large portions of the private data of the victim process. This
problem is especially important as extensions have been pointed out to be a major cause of op-
erating system failures [28], [29], [30].

Our protection system supports valid solutions to the problems, delineated above. Handles
can be mixed in memory with ordinary data items; the double encryption of handles in memory
guarantees that every attempt to forge a handle or take advantage of a stolen handle is destined
to fail. Furthermore, protection contexts and the current domain register allow us to restrict the
set of access privileges of each thread of a multithreaded process to a subset of the access priv-
ileges of the father process, thereby implementing the principle of least privilege effectively.
When a switch occurs between two threads of the same process, we modify the extent of the
access privileges of the new thread with respect to those of the previous thread by simply
changing the contents of the current domain register; whereas the contents of the handle regis-
ters do not change. We can limit the access privileges of a plugin to a subset of the privileges of
the main application. In a protection paradigm using protection rings, we shall reserve an outer
ring to plugins, for instance. Before starting up execution of a plugin, we shall change the con-
tents of the current domain register to a configuration restricting the extent of the current do-
main to that outer ring; on termination of the execution of the plugin, the current domain regis-
ter will be restored to the previous value.

4.5 Password capabilities

Password capabilities are an important improvement to the original capability concept [5],
[6], [31], [32]. In a segment-oriented, password-capability architecture, the protection system
associates one or more passwords with each segment, and each password corresponds to a sub-
set of all access rights defined for this segment. A password capability is a pair {S, W}, where
S is a segment identifier and W is a password. If a match exists between W and one of the pass-
words associated with S, a process that presents the password-capability to the protection sys-
tem will be allowed to access segment S and perform the type of access permitted by the access

— 21 —

rights associated with the password.

Password capabilities can be freely mixed in memory with ordinary data; thus, they are an
effective solution to the problem of capability segregation. A related problem is to prevent
processes from forging valid password capabilities. If the virtual space is wide and scarcely
populated, an arbitrary segment name has a low probability of corresponding to an existing
segment. A further requirement is that passwords are large. It was argued that 64-bit passwords
guarantee that the probability of guessing a valid password is vanishingly low even if the seg-
ment identifier is known [31].

The validity of a password capability extends system-wide, and is process independent.
Suppose that process Q holds a password capability for a given segment S and a malevolent
process Q’ succeeds in accessing the memory area of Q and copying this password capability
into its own address space. So doing, Q’ acquires the access permissions for S originally held
by Q. With respect to capability systems, in a password-capability environment this problem is
complicated by the fact that password capabilities are not segregated in memory; this facilitate
successful accomplishment of fraudulent actions of a password-capability copy. Storage of
password capabilities in the stack and heap memory areas results in occasions for application
of well-known techniques for data stealing [33], [34], for instance.

In our protection system, validity of a given handle is restricted to the process for which that
handle was assembled in memory. As pointed out in Subsection 4.2, this is a consequence of
the fact that each given handle is always stored in memory in the ciphertext form that follows
from application of an encryption key, the process key, that is private to the process holding
this handle. Consequently, any handle stealing action is ineffective. Furthermore, as seen in
Subsection 4.1, we make no hypothesis on the size of the address space, and sparsity of seg-
ment allocation in the virtual space is not a requisite, as protection from handle forging is guar-
anteed by the double encryption and the handle validation field T*.

4.6 Access right revocation

Suppose that process Q granted an access permission for a given segment S to process Q’.
The protection system should include mechanisms allowing Q to review its own decision and
retract the access permission from Q’ as well as from any process that received the access per-
mission from Q’, recursively at any depth.

In capability environments, ease of access right distribution is a serious obstacle to access
right revocation; the recipient of a capability is free to transmit this capability, and this makes it
hard, if not impossible, to maintain track of all subsequent redistributions. Several proposals
were made in the past, aimed at alleviating the revocation problem. These include a propaga-
tion graph for each capability recording all successive transfers of this capability throughout
the system [35]; a reference monitor acting as a repository of the access permissions for a pro-
tected object [27]; short-lived capabilities, so that an access permission, once granted, can be
held by the recipient only if the lifetime of the corresponding capability is periodically re-

— 22 —

newed [36]. Solutions of this type tend to subvert the salient characteristic of capability-based
protection, i.e., simplicity of access right distribution. Space and time costs are added to the
original access right management mechanism, in sharp contrast with the main reason for the
introduction of the capability concept.

In our protection system, access right revocation is supported by three low-level mecha-
nisms, i.e., process encryption keys, segment encryption keys, and, for the given segment, the
protection fields of the page table of this segment. A modification of the encryption key kQ of
process Q has the effect of invalidating all the handles encrypted on behalf of this process,
thereby revoking all the access permissions held by this process. Of course, this is a drastic de-
cision that must be followed by a new distribution of handles, encrypted by using the new
process key. It is important to note that the process key change does not affect the handles con-
tained in plaintext in the handle registers. This is essential, as process execution should be al-
lowed to continue, in particular, for the acquisition of the renewed handles. After the process
key change, the process can even use the hStore protection primitive to save the handles con-
tained in the handle register and encrypt them by using the new key. In spite of its simplicity,
this revocation mechanism possesses a number of interesting properties [35]. Revocation re-
sults to be temporal, that is, its effects can be reversed by restoring the original process key us-
ing the same mechanism used for the revocation; selective, that is, we can exercise revocation
from any subset of all processes, by changing the key of each of them; and immediate, that is, a
process holding a given access privilege is prevented from taking advantage of this privilege
starting from the time when the key of this process is changed.

A modification of the encryption key kS of segment S has the effect of invalidating all the
handles referencing S (in this case, too, the handles contained in plaintext in the handle regis-
ters are not affected by the revocation). This form of revocation results to be transitive, that is,
if a process grants a handle for a given segment to other processes and these in turn transmit
the handle to further recipients, the effect of a revocation propagates to all recipients at any
transition depth; temporal, as its effects can be reversed by restoring the original segment key;
immediate, as its effects start from the time of the segment key change. The two revocation
strategies are orthogonal: a process key change is a segment-independent action that spreads
on all the handles held by the given process, whereas a segment key change is a process-inde-
pendent action that spreads on all the handles referencing the given segment, independently of
the processes that hold these handles.

Finally, a modification of the contents of the R and W protection fields of one or more en-
tries of the page table of a given segment has the effect of modifying the extent of the protec-
tion contexts defined for this segment. If we access the j-th entry of the page table of a given
segment and clear the i-th bit of the R field of this entry, we eliminate the READ access right for
the j-th page from the i-th protection context, for instance. This revocation mechanism results
to be partial, that is, the extent of the revocation can be limited to any subset of all protection
contexts; transitive, and indeed, if revocation involves a given handle, the effects of the revo-

— 23 —

cation propagate to all the copies of this handle; temporal, as its effects can be reversed by re-
storing the original contents of the protection fields; immediate, and in this case the effects of
the revocation extends even to the handles stored in plaintext in the handle registers.

4.7 Single address space

As seen in the Introduction, in a single address space environment the meaning of an ad-
dress extends to all processes and is independent of the process generating the address. This fa-
cilitates information sharing between processes. On the other hand, in the absence of mecha-
nisms for private data protection, an erroneous or deliberately harmful process could access the
private data items of a different process for both read and write, by simply using the addresses
of these data items; the address translation circuitry is unable to prevent or ever reveal illegiti-
mate accesses of this type. Thus, the addition of private data protection features is mandatory.

Several single address space systems have been designed and actually implemented in the
past, and solutions to the protection problem have been devised at both the hardware and the
software levels. In the rest of this subsection, we shall consider three important examples of
single address space systems, namely Mungi, Arias and Opal. For each of them, the protection
environment embedded in the system design will be discussed in some depth.

Mungi

In the Mungi single address space operating system [6], [32], a protected object takes the
form of a collection of contiguous pages. Protection is enforced by taking advantage of pass-
word capabilities. A password capability consists of an object address and a password. When
an object is created, an owner password is associated with that object, and a capability contain-
ing the owner password, called owner capability, is returned to the creator process. The owner
password is a system-generated random number. The owner capability allows successful ac-
complishment of any operation on the object it references. The protection system defines four
access modes, read, write, execute and destroy. A password derivation scheme based on one-
way (hard to invert) functions makes it possible to derive less powerful capabilities (with re-
stricted access rights) from the owner capability.

In the Mungi design, the password capability protection scheme was chosen instead of other
sparse pointer schemes taking advantage of cryptography. This design choice was motivated
by the need to avoid the costs connected with decryption in the validation of each object ac-
cess. In contrast, in our system we avoid these costs by taking advantage of handle registers.
Handle decryption and validation take place in the execution of the hLoad protection primitive,
when a handle is loaded into a handle register. Afterwards, the handle register will be used for
object access. No further actions of handle decryption is necessary unless the handle register is
reused to contain a different handle; in the presence of an adequate set of handle registers, re-
use will be arguably rare.

— 24 —

Arias
In the Arias Distributed Shared Memory System [37], protection is aimed at controlling ac-

cesses of system entities called agents to system controlled entities called objects. Each object
is associated with a set of operations. For each agent, the protection mechanisms control the
objects this agent can access and the operations it can execute on these objects. Protection
takes advantages of capabilities. A capability identifies an object and grants a set of access
rights on this object. Arias was actually implemented on top of an existing UNIX system. In
this implementation, capability segregation was obtained by storing capabilities in kernel
structures maintained by a kernel extension, thereby making them inaccessible to processes be-
ing executed with user privileges.

In Arias, when an agent creates an object, a capability referencing this object is returned to
the agent including full access rights. The agent can then pass the capability to other agents,
possibly with reduced access rights. A protection domain is itself an object; it consists of a col-
lection of capabilities for other objects. At any given time, each agent is executed in a protec-
tion domain that states the objects that can be accessed by that agent at that time and the oper-
ations the agent may perform on these objects. An agent may move from its present domain to
a different domain by performing a cross-domain invocation. To this aim, the domain of the
agent must include a capability for an entry point of the new domain.

Opal
In the Opal operating system [5], [38], segments are the basic unit of storage allocation and

protection. Each thread is executed in a protection domain that restricts the possible accesses
of that thread to a subset of all segments. Access control is based on an implementation of the
password capability concept. A thread wishing to access a given segment uses a password ca-
pability referencing that segment to explicitly attach the segment to its own protection domain;
an action of this type allows all threads being executed in that domain to access the segment.

In Opal, protection is coarse-grained at the operating system level. A segment may well in-
clude several objects and even a heap for allocation of new objects. If a segment is attached to
the domain of a given process, the process is free to access this segment and modify (and pos-
sibly corrupt) the objects it contains and even the heap. If two or more threads share a given
segment, they can access all the objects allocated in that segment, and it is impossible to re-
strict sharing to a subset of these objects. Fine-grained protection relies on strongly-typed lan-
guages and the compiler. In contrast, our system supports a form of fine-grained protection at
the level of the single pages that form a segment. This is made possible by protection contexts
and the protection array. Being supported at the hardware level, the concept of a protection do-
main defined in terms of a subset of all protection contexts makes it possible to associate a pro-
tection domain with each thread while preserving efficiency in thread switching.

4.8 External protected memory
Trusted computing [39] is a recent design technology aimed at increasing data protection

— 25 —

and security in a wide class of computing platforms that includes, in particular, embedded sys-
tems designed to resist malicious attacks. At the hardware level, an essential component of a
trusted execution environment is an authenticated non-volatile memory integrating storage
protection and typically implemented as a cryptographic chip [39], [40]. An example of one
such device is the Intel Authenticated Flash memory [41], which includes a standard flash
memory and integrates security circuitry aimed at controlling memory accesses at the hard-
ware level. This result is obtained by relying on the HMAC and the RSA signature protocols.
A set of authenticated key management commands makes it possible to associate address rang-
es with RSA keys, so that all subsequent commands involving a range will require a valid sig-
nature to terminate successfully. This is the case, for instance, for the authenticated modify
commands (write, replace, erase), and for the authenticated read that can be used to read enable
or read disable a range (in the read enabled state, the contents of the range can be read by the
host processor). If the host system is able to generate signatures in a secure fashion, Intel rec-
ommends utilization of a single protection range and the HMAC protocol, for better perform-
ance and simplified configuration.

The protection approach presented in this paper is well suited for systems that require a
strong protection of all memory references that go off-chip. In a possible implementation of an
external protected memory, a single segment, the external segment, will be assigned to this
memory. This segment is divided into pages, and the page table is supported by the external
memory hardware. The page table includes the protection array of the external segment, which
specifies the read and write access rights for each page and each context (see Figure 1). A
process is allowed to access the external memory only if it possesses a handle for the external
segments. The port of this handle will specify the access privileges in terms of one or more
protection contexts, as has been illustrated in Subsection 2.1. In a configuration of this type, let
ES denote the identifier of the external segment. Let us suppose that a handle H = {ES, T} ref-
erencing the external segment has been loaded into handle register hReg, and address <hReg,
d> is generated by the processor. A modified port value obtained as the result of the bitwise
AND of port T and the current domain register CDC (or, if the OWN bit of port T is set, an all-1’s
bit pattern) is sent to the external protected memory together with displacement d. In the exter-
nal memory, the most significant bits of the displacement specify a page P in the external seg-
ment, and the least significant bits specify the offset f of the referenced information item in this
page. Quantity P is used to identify an entry of the external page table. The bitwise AND of the
modified port value and the R protection field of this entry (or, if the access is for write, the W
protection field) is evaluated; if the result is 0 an exception of violated protection is raised, oth-
erwise the memory access is finally accomplished.

4.9 HP’s Precision Architecture

The Hewlett-Packard’s Precision RISC Architecture (PA-RISC) [42], [43] incorporates a
sophisticated set of hardware mechanisms for access protection into the storage unit, as part of

— 26 —

the address translation mechanisms. The processor architecture defines four privilege levels; at
any given time, a process is assigned a privilege level, which can change as a consequence of
the process activity (the privilege level is increased by ad-hoc instructions called gateways and
is decreased by several branch instructions). Three access types are defined for pages, read,
write, and execute. Each page is associated with an access right specification encoded in 7 bits
that are divided into three sub-fields, a type sub-field that specifies the type of the accesses that
can be successfully accomplished on this page, and two privilege level sub-fields PL1 and PL2

that specify bounds for the required privilege levels (a read access must be at least as privi-
leged as PL1, a write access must be at least as privileged as PL2, and an execute access must
be at least as privileged as PL1 and no more privileged than PL2). The type field can also spec-
ify promotion to a new privilege level, as occurs in the execution of a gateway instruction.

Furthermore, each page has a form of protection key called the access identifier. The proc-
essor includes four control registers each aimed at storing a protection key associated with the
running process. A memory access to a given page can be successfully accomplished only if a
match occurs between the contents of one of these control registers and the access identifier of
that page. The union of the protection keys associated with the given process forms its current
protection domain.

The protection system proposed in this paper defines two access rights for pages, READ and
WRITE. Of course, the system may well be extended to support the EXECUTE access right; to
this aim, the protection array will be enlarged to include a third protection field for the EXE-
CUTE access right, of the same size as the R and W fields and a similar meaning. The concept
of a privilege level is supported as follows. Let us refer to a system featuring n privilege levels
numbered from 0 (the most privileged) to n - 1 (the least privileged). We shall reserve a protec-
tion context for each privilege level. Protection context Ci includes the access privileges asso-
ciated with the i-th privilege level that are not part of the lower levels. If the running thread is
assigned privilege level i, then in the current domain register CDR we set bit i corresponding to
protection context Ci, as well as bits i + 1, i + 2,..., n - 1 corresponding to the protection con-
texts reserved for the lower levels. So doing, we cause Ci to inherit the access privileges of the
lower levels. Promotion to a new privilege level corresponds to a change in the contents of
CDR. When a thread switch takes place, the contents of CDR are replaced with a configuration
corresponding to the privilege level of the new thread. Finally, at any given time, the memory
regions that can be accessed by the running thread at that time are stated by the contents of the
handle registers; a page can be actually accessed only if it is part of a segment referenced by
one of these registers.

4.10 Considerations concerning performance

In our system, a virtual memory address has the form <hReg, d>, where hReg is the name of
a handle register and d is a displacement in the segment referenced by this handle register; that
is, with respect to an architecture featuring flat addresses, the address is extended to contain the

— 27 —

name of a handle register. In a possible implementation of the instruction set, the most signifi-
cant bits of the displacement will be reserved to codify quantity hReg. In this implementation,
the instruction size is not increased with respect to flat addresses; positive effects ensue on the
complexity of the decode logic, for instance. Of course, in this approach fewer bits are availa-
ble for the displacement; in a 64-bit architecture, the resulting size of the address space is still
really large, and this is true even if a single address space is shared by all processes.

On the other hand, a close analogy exists between an instruction set in which each address
includes the name of a handle register and the instruction set of a classical segmented memory
architecture, in which each address includes the name of a segment register. Furthermore, in
the address translation circuitry, the path from the handle registers to the primary memory is
not more complex than the typical path from the segment registers to the primary memory in
an architecture featuring a form of segmentation with paging. With respect to an architecture of
this type, we may conclude that the addition of the handle registers and the <hReg, d> address
format have no negative impact on system performance.

Cryptographic handles

Handles are double-encrypted using a symmetric key cipher. Double encryption enhances
security only marginally [44]; in our design, we take advantage of a double encryption to sup-
port different forms of access right revocation, at both levels of all the handles held by a given
process and all the handles referencing a given segment. This issue has been investigated in
depth in Subsection 4.6.

In the transformation of plaintext handle H = {S, T} into the ciphertext form H = {S*, T, T*}
the cipher should guarantee a careful mixing of the bits in the S* and T field to form the valida-
tion field T* (see Figure 2). This is essential to prevent tampering with the portion of the vali-
dation field that corresponds to port T and increasing the strength of the port. In this respect the
XOR cipher is an example of a bad choice, which is subject to forms of known-plaintext at-
tacks, for instance. A solution based on the DES cipher has a much higher computational cost,
which can be supported by ad-hoc hardware [45].

A ciphertext handle is transformed into plaintext in the execution of the hLoad protection
primitive, which loads a handle register with the result of the transformation. The handle regis-
ter can be subsequently used for a potentially unlimited sequence of accesses to the segment
referenced by that handle, unless the register is reused to contain a different handle. In the pres-
ence of an adequate number of handle registers, the necessity of handle register reuse is a rela-
tively rare event. Thus, the cost in terms of execution times of an action of handle decrypt cor-
responds to more object accesses, and is comparatively low.

The inverse transformation of a plaintext handle into a ciphertext occurs in the execution of
the hStore, hReduce and hTranscode protection primitives. hStore is used after a process key
change to save the handles contained in the handle registers and encrypt them by using the new
key. hReduce is aimed at limiting the access privileges contained in a given handle in view of

— 28 —

the transfer of this handle to a different thread of the same process. hTranscode is necessary to
codify a handle by using the key of a different process in view of the transfer of the handle to a
thread of this process. Of course, all these actions are relatively infrequent.

When execution of a given process is suspended as part of the actions involved in a process
switch, the current state of the process is saved into the process descriptor, and this includes the
contents of the handle registers. When execution of the process is subsequently resumed, the
process state is restored with quantities taken from the process descriptor. No action of handle
transformation from/to ciphertext is involved in the process switch.

We may conclude that the actions of handle encryption and decryption are comparatively
rare, and the computational cost of the cipher is not a critical factor.

Cache implementation
As seen in Subsection 3.1, in our architecture address translation takes advantage of two

caches, a segment table cache STK and a page table cache PTK. STK is aimed at storing re-
cently-used segment table entries; this is similar to PTK for the page table entries. We hypoth-
esized that both caches are managed at the hardware level. This is only a simplifying assump-
tion that is neither required nor implied by the overall design of our MMU. In an alternative,
program-controlled configuration, the caches are managed at the software level. In this ap-
proach, the instruction set of the processor includes special instructions that are directed to the
caches; these instructions are aimed at instructing the caches to load the address translation in-
formation that will be used in the near future. The compiler will insert these special instruc-
tions at appropriate points of the object code. Let us refer to the segment table, for instance.
The program logic contains explicit information concerning utilization of the contents of this
table. When a handle register is loaded with a handle referencing a given segment, the segment
table entry for this segment is likely to be used in the near future, and can be pre-loaded into
the cache. An approach of this type may lead to important reductions in power consumption,
with positive effects on the cooling and packaging requirements, for instance [46].

Storage requirements
Let us consider an implementation of the handle-based memory protection paradigm out-

lined in the previous sections within the framework of a 264-byte single address space. Let us
hypothesize that a 64-bit address is partitioned into a 32-bit segment name and a 32-bit dis-
placement. If the page size is 4 Kbytes, the displacement consists of a 20-bit page number and
a 12-bit offset. As far as the port size is concerned, we aim at a form of fine-grained memory
protection [47] that follows a small protection domain approach [48]. Small protection do-
mains can be an important support in the debugging phase of program development. At run
time, they facilitate fault detection, recovery and retry. A port size of 8 bits makes it possible to
define 7 different protection contexts (one bit being reserved for the OWN context). In this hy-
pothesis, an effective implementation of the small domain approach is possible, e.g., a protec-
tion structure featuring up to 127 protection domains or 7 privilege levels.7

— 29 —

In an environment of this type, the size of a plaintext handle H = {S, T} is 5 bytes (4 bytes
for segment name S and 1 byte for port T), and the size of a ciphertext handle H* = {S*, T, T*}
is 10 bytes (4 bytes for S*, 1 byte for T and 5 bytes for the validation field T*). The total stor-
age requirement of the handles referencing segment S depends on the sharing factor sf, i.e., the
number of processes that share access to this segment, and is given by 10 · sf (one ciphertext
handle for each process). Let s denote the size (in pages) of segment S. In the page table of S,
the storage requirement of the protection information is connected with the protection fields R
and W, and is equal to 2 · s bytes. If the size of the segment encryption key is 8 bytes, the total
storage requirement ρ for segment protection is given by ρ = 10 · sf + 2 · s + 8. Let us define
the memory overhead τ as the ratio between the size of the protection information for a seg-
ment and the segment size; for 4-Kbyte pages we have τ = ρ / (4096 · s). Let us now refer to
one-page segments (s = 1, a worst-case analysis). For a private segment (sf = 1) the memory re-
quirement ρ is 20 bytes, and the memory overhead τ is 0.5 per cent. For a segment shared by
two processes (sf = 2), ρ is 30 bytes and τ increases to 0.7 per cent. At a higher degree of shar-
ing, sf = 10, τ is 2.7 per cent. Of course, τ decreases for larger segments, e.g., for a highly-
shared, 10-page segment (sf = 10 and s = 10) we have τ = 0.3 per cent.

We may conclude that the total storage requirements of the information for memory protec-
tion are a fairly negligible fraction of the overall requirements for segment storage.

5. CONCLUDING REMARKS

We have considered a single-address-space system that implements a form of segmentation
with paging within the framework of the multithreaded model of application programming. We
have presented a paradigm for memory protection that is based on the application of tech-
niques of symmetric-key cryptography. A salient feature of our paradigm is that the protection
system interface, as defined by the protection primitives, hides cryptography from application
programs, in the implementation level. In fact, cryptography is functional to handle protection
rather than to handle utilization for memory reference; application programs do not need to be
aware of the duality of plaintext and ciphertext handles, for instance. We have obtained the fol-
lowing results:

• A handle held by a given process in memory is encrypted by using the key of this process.
An attempt made by a different process to decrypt the handle into a handle register for sub-
sequent memory access will use a different key, thereby resulting in a meaningless plaintext
handle. In this way, process keys prevent handle stealing.

• Segment sparsity in the virtual space and a low-density of virtual space allocation are not
requisites. Even in the presence of a high number of segments, when the probability of
guessing a valid segment identifier is not evanescent, it is realistically impossible to con-
struct a correct validation field for a ciphertext handle referencing a given segment, as this

7. In contrast, for example, the HP’s PA-RISC is limited to 4 privilege levels [42].

— 30 —

action requires knowledge of the segment key. In this way, segment keys prevent handle
forging.

• Access privilege transfer between processes requires an action of handle transcode that
implies the transformation of the handle to plaintext using the key of the granting process
and the subsequent transformation of the same handle back to ciphertext using the key of
the recipient process. The cost of the transcode in terms of processing time is mitigated by
the fact that interactions between different processes are relatively infrequent. Conversely,
all the threads of the same given process use the encryption key of this process, and access
right transmission between these threads can be accomplished by a simple action of handle
copy at low processing time costs.

• The mechanism of protection contexts and the current protection domain make it possible to
grant each thread a fraction of the access rights of its father process. The only processing
time cost connected with a domain switch between the threads of the same process is that of
a change of the contents of the current domain register. We have seen how protection con-
texts make it possible to implement a number of well-known protection paradigms, includ-
ing hierarchical domains, protection rings, capability lists and access control lists.

• The two encryption keys, the process key and the segment key, allow us to implement tech-
niques of access right revocation at little effort. By modifying the encryption key of the
given segment we revoke all the handles referencing this segment, independently of the
processes that hold these handles. Orthogonally, by modifying the key of a given process
we revoke all the handles held by this process, independently of the segments they refer-
ence. Furthermore, by modifying the contents of the protection array of a given segment we
can limit access permissions at the level of the single pages that form the segment, and by
modifying the contents of the current domain register we can exercise access privilege rev-
ocation at the level of the single thread of a multithreaded application.

The idea of protecting pointers by means of cryptographic techniques is not new [49], [50].
In the protection system presented in this paper, we take advantage of protection contexts de-
fined at the page level, and the separate encryption of the name of a segment and the specifica-
tion of the access privileges for this segment, to obtain a level of flexibility in access privilege
management well suited to memory protection in multithreaded applications and single ad-
dress space environments.

REFERENCES

[1] Cekleov, M. and Dubois, M. (1997) Virtual-address caches. Part 1: problems and solutions in uniproces-
sors. IEEE Micro, 17, 5, 64–71.

[2] Qiu, X. and Dubois, M. (2008) The Synonym Lookaside Buffer: a solution to the synonym problem in vir-
tual caches. IEEE Transactions on Computers, 57, 12, 1585–1599.

[3] Zhou, X. and Petrov, P. (2006) Low-Power Cache Organization Through Selective Tag Translation for
Embedded Processors With Virtual Memory Support. Proceedings of the 16th ACM Great Lakes Sympo-
sium on VLSI, Philadelphia, PA, USA, April, pp. 398–403. ACM, New York, NY, USA.

— 31 —

[4] Witchel, E., Cates, J. and Asanovic, K. (2002) Mondrian Memory Protection. Proceedings of the 10th
International Conference on Architectural Support for Programming Languages and Operating Systems,
San Jose, California, USA, October, pp. 304–316. ACM, New York, NY, USA.

[5] Chase, J. S., Levy, H. M., Feeley, M. J. and Lazowska, E. D. (1994) Sharing and protection in a single-
address-space operating system. ACM Transactions on Computer Systems, 12, 4, 271–307.

[6] Heiser, G., Elphinstone, K., Vochteloo, J., Russell, S. and Liedtke, J. (1998) The Mungi single-address-
space operating system. Software — Practice and Experience, 28, 9, 901–928.

[7] Miller, D. S., White, D. B., Skousen, A. C. and Tcherepov, R. (2006) Lower Level Architecture of the
Sombrero Single Address Space Distributed Operating System. Proceedings of the 8th IASTED Interna-
tional Conference on Parallel and Distributed Computing and Systems, Dallas, Texas, USA, November.
IASTED, Calgary, Alberta, Canada.

[8] Kleiman, S., Shah, D. and Smaalders, B. (1996) Programming With Threads. Prentice Hall, Upper Saddle
River, NJ, USA.

[9] Lewis, B. and Berg, D. (1996) Threads Primer: A Guide to Multithreaded Programming. Prentice Hall,
Upper Saddle River, NJ, USA.

[10] Chiueh, T., Venkitachalam, G. and Pradhan, P. (1999) Integrating Segmentation and Paging Protection for
Safe, Efficient and Transparent Software Extensions. Proceedings of the Seventeenth ACM Symposium on
Operating Systems Principles, Charleston, South Carolina, USA, December, pp. 140–153. ACM, New
York, NY, USA.

[11] Lohmann, D., Streicher, J., Hofer, W., Spinczyk, O. and Schröder-Preikschat, W. (2007) Configurable
Memory Protection by Aspects. Proceedings of the 4th Workshop on Programming Languages and Oper-
ating Systems, Stevenson, Washington, USA, October. ACM, New York, NY, USA.

[12] Ferguson, N. and Schneier, B. (2003) Practical Cryptography. John Wiley & Sons, New York, NY, USA.
[13] Trappe, W. and Washington, L. C. (2005) Introduction to Cryptography with Coding Theory, Second Edi-

tion. Prentice Hall, Upper Saddle River, NJ, USA.
[14] Lopriore, L. (2002) Access control mechanisms in a distributed, persistent memory system. IEEE Transac-

tions on Parallel and Distributed Systems, 13, 10, 1066–1083.
[15] Saltzer, J. H. and Schroeder, M. D. (1975) The protection of information in computer systems. Proceed-

ings of the IEEE, 63, 9, 1278–1308.
[16] Sandhu, R. S. and Samarati, P. (1994) Access control: principle and practice. IEEE Communications Mag-

azine, 32, 9, 40–48.
[17] Levy, H. M. (1984) Capability-Based Computer Systems. Digital Press, Bedford, Mass., USA.
[18] Huck, J., Morris, D., Ross, J., Knies, A., Mulder, H. and Zahir, R. (2000) Introducing the IA-64 architec-

ture. IEEE Micro, 20, 5, 12–23.
[19] Swaminathan, S., Patel, S. B., Dieffenderfer, J. and Silberman, J. (2005) Reducing Power Consumption

During TLB Lookups in a PowerPC™ Embedded Processor. Proceedings of the Sixth International Sym-
posium on Quality of Electronic Design, San Jose, CA, USA, March, pp. 54–58. IEEE Computer Society,
Washington, DC, USA.

[20] Schneider, F. B. (2003) Least privilege and more. IEEE Security & Privacy, 1, 5, 55–59.
[21] de Vivo, M., de Vivo, G. O. and Gonzalez, L. (1995) A brief essay on capabilities. SIGPLAN Notices, 30,

7, 29–36.
[22] Houdek, M. E., Soltis, F. G. and Hoffman, R. L. (1981) IBM System/38 Support for Capability-Based

Addressing. Proceedings of the 8th Annual Symposium on Computer Architecture, Minneapolis, Minne-
sota, USA, May, pp. 341–348. IEEE Computer Society Press, Los Alamitos, CA, USA.

[23] Neumann, P. G. and Feiertag, R. J. (2003) PSOS Revisited. Proceedings of the 19th Annual Computer
Security Applications Conference, Las Vegas, NV, USA, December, pp. 208–216. IEEE Computer Society
Press, Los Alamitos, CA, USA.

[24] Meyer, M. (2004) A novel processor architecture with exact tag-free pointers. IEEE Micro, 24, 3, 46–55.
[25] England, D. M. (1974) Capability Concept Mechanisms and Structure in System 250. Proceedings of the

International Workshop on Protection in Operating Systems, Paris, France, pp. 63–82. IRIA, Paris, France.
[26] Wilkes, M. V. and Needham, R. M. (1979) The Cambridge CAP Computer and Its Operating System.

North Holland, New York, NY, USA.
[27] Shapiro, J. S., Smith, J. M. and Farber, D. J. (1999) EROS: A Fast Capability System. Proceedings of the

Seventeenth ACM Symposium on Operating Systems Principles, Kiawah Island Resort, SC, USA, Decem-
ber, Operating Systems Review 34, 5, pp. 170–185. ACM, New York, NY, USA.

[28] Chou, A., Yang, J., Chelf, B., Hallem, S. and Engler, D. (2001) An Empirical Study of Operating Systems
Errors. Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles, Banff, Alberta,
Canada, October, pp. 73–88. ACM, New York, NY, USA.

— 32 —

[29] Swift, M. M., Bershad, B. N. and Levy, H. M. (2005) Improving the reliability of commodity operating
systems. ACM Transactions on Computer Systems, 23, 1, 77–110.

[30] Tanenbaum, A. S., Herder, J. N. and Bos, H. (2006) Can we make operating systems reliable and secure?.
Computer, 39, 5, 44–51.

[31] Anderson, M., Pose, R. D. and Wallace, C. S. (1986) A password-capability system. The Computer Jour-
nal, 29, 1, 1–8.

[32] Vochteloo, J., Russell, S. and Heiser, G. (1993) Capability-Based Protection in the Mungi Operating Sys-
tem. Proceedings of the Third International Workshop on Object Orientation in Operating Systems, Ashe-
ville, NC, USA, December, pp. 108–115. IEEE Computer Society, Washington, DC, USA.

[33] Tuck, N., Calder, B. and Varghese, G. (2004) Hardware and Binary Modification Support for Code Pointer
Protection from Buffer Overflow. Proceedings of the 37th International Symposium on Microarchitecture,
Portland, Oregon, USA, December, pp. 209–220. IEEE Computer Society, Washington, DC, USA.

[34] Younan, Y., Piessens, F. and Joosen, W. (2009) Protecting Global and Static Variables From Buffer Over-
flow Attacks. Proceedings of the Fourth International Conference on Availability, Reliability and Security,
Fukuoka, Japan, March, pp. 798–803. IEEE Computer Society, Washington, DC, USA.

[35] Gligor, V. D. (1979) Review and revocation of access privileges distributed through capabilities. IEEE
Transactions on Software Engineering, SE-5, 6, 575–586.

[36] Leung, A. W. and Miller, E. L. (2006) Scalable Security for Large, High Performance Storage Systems.
Proceedings of the Second ACM Workshop on Storage Security and Survivability, Alexandria, Virginia,
USA, October, pp. 29–40. ACM, New York, NY, USA.

[37] Hagimont, D., Mossière, J., Rousset de Pina, X. and Saunier, F. (1996) Hidden Software Capabilities. Pro-
ceedings of the 16th International Conference on Distributed Computing Systems, Hong Kong, China,
May, pp. 282–289.

[38] Chase, J. S., Levy, H. M., Lazowska, E. D. and Baker-Harvey, M. (1992) Lightweight Shared Objects in a
64-Bit Operating System. Proceedings of the Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, Vancouver, BC, Canada, October, pp. 397–413. ACM, New York, NY, USA.

[39] Schellekens, D., Tuyls, P. and Preneel, B. (2008) Embedded Trusted Computing with Authenticated Non-
Volatile Memory. Trusted Computing – Challenges and Applications, Lecture Notes in Computer Science
4968, pp. 60–74. Springer, Berlin.

[40] Ekberg, J.-E. and Asokan, N. (2010) External Authenticated Non-Volatile Memory with Lifecycle Man-
agement for State Protection in Trusted Computing. Trusted Systems, Lecture Notes in Computer Science
6163, pp. 16–38. Springer, Berlin.

[41] Alves, T. and Rudeli, J. (2007) ARM Security Solutions and Intel Authenticated Flash – How to Integrate
Intel Authenticated Flash with ARM TrustZone for Maximum System Protection. Design & Reuse, Octo-
ber. http://www.design-reuse.com/articles/16975

[42] Wilkes, J. and Sears, B. (1992) A comparison of protection lookaside buffers and the PA-RISC protection
architecture. HP Laboratories Technical Report HPL–92–55, Palo Alto, CA, USA.

[43] Lee, R. B. (1989) Precision architecture. Computer, 22, 1, 78–91.
[44] Gaži, P and Maurer, U. (2009) Cascade Encryption Revisited. Proceeding of the 15th International Con-

ference on the Theory and Application of Cryptology and Information Security, Tokyo, Japan, December,
Lecture Notes in Computer Science 5912, pp. 37–51. Springer, Berlin.

[45] Eisenbarth, T. and Kumar, S. (2007) A survey of lightweight-cryptography implementations. IEEE Design
& Test of Computers, 24, 6, 522–533.

[46] Kadayif, I., Nath, P., Kandemir, M. and Sivasubramaniam, A. (2007) Reducing data TLB power via com-
piler-directed address generation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 26, 2, 312–324.

[47] Shen, J., Venkataramani, G. and Prvulovic, M. (2006) Tradeoffs in Fine-Grained Heap Memory Protection.
Proceedings of the 1st Workshop on Architectural and System Support for Improving Software Dependa-
bility, San Jose, California, USA, October, pp. 52–57. ACM, New York, NY, USA.

[48] Gehringer, E. F. (1982) Capability Architectures and Small Objects. UMI Research Press, Ann Arbor, MI,
USA.

[49] Lopriore, L. (2012) Encrypted pointers in protection system design. The Computer Journal, 55, 4, 497–
507.

[50] Tanenbaum, A. S., van Renesse, R., van Staveren, H., Sharp, G. J. and Mullender, S. J. (1990) Experiences
with the Amoeba distributed operating system. Communications of the ACM, 33, 12, 46–63.

