
1

Object protection in distributed systems
Lanfranco Lopriore

Dipartimento di Ingegneria dell’Informazione, Università di Pisa,

via G. Caruso 16, 56126 Pisa, Italy. E-mail: l.lopriore@iet.unipi.it

Abstract — With reference to a distributed system consisting of nodes connected by a local
area network, we consider a salient aspect of the protection problem, the representation of
access permissions and protection domains. We present a model of a protection system
supporting typed objects. Possession of an access permission for a given object is certified by
possession of an object pointer including the specification of a set of access rights. We associate
an encryption key with each object and a password with each domain. Object pointers are stored
in memory in a ciphertext form obtained by using the object key and including the value of the
domain password. Each process is executed in a domain and can take advantage of a given
object pointer only if this object pointer was encrypted by including the password of this
domain. A set of protection primitives makes it possible to use object pointers for object
reference and to control the movements of the objects across the network. The resulting
protection environment is evaluated from a number of salient viewpoints including ease of
access right distribution and revocation, interprocess interaction and cooperation, protection
against fraudulent actions of access right manipulation and stealing, storage overhead and
network traffic.

Index Terms — access right; distributed system; domain; object; protection; symmetric-key
cryptography.

1. INTRODUCTION

We shall refer to a distributed architecture consisting of nodes connected by a local area

network. We make no hypothesis concerning the network topology. Collectively, the network

nodes support a common pool of typed objects, which are the elementary unit of information

movement across the network. Beside a processor, each node features memory resources for

object storage.

In an environment of this type, we shall present a model of a protection system that assigns a

protection domain to every given process; this is a collection of access permissions for the

existing objects [15], [16]. The salient aspects of the protection problem are related to the

representation in memory of access permissions and protection domains. The protection system

defines mechanisms that allow a process being executed in a given domain to certify the access

permissions it holds within the context of that domain. Furthermore, the process is prevented

from manipulating the composition of the domain, to add new access permissions, for instance.

Forms of interprocess cooperation are supported, so that a process may grant an access

permission in its own domain to a different process.

In our system, the representation of access permissions and protection domains is based on

the application of a form of symmetric-key cryptography [7], [23]. Possession of an access

permission for a given object is certified by possession of an object pointer (o-pointer from now

on, for short) referencing that object and including the specification of a set of access rights.

We associate an encryption key with each object and a password with each domain. O-pointers

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80243813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

are maintained in memory in a ciphertext form obtained by using the object key and including

the value of the domain password. Each process is executed in a domain and can take advantage

of a given o-pointer only if this o-pointer was encrypted by including the password of this

domain. A set of protection primitives forms the process interface of the protection system.

These primitives make it possible to use o-pointers for object reference and to control the

movements of the objects in the network. In particular, a process being executed in a given node

and holding access permissions on a given object may cause migration of the object to that

node. The protection system makes it possible to determine the network position of every given

object, independently of the previous migrations of this object.

The rest of the paper is organized as follows. Section 2 introduces our protection model with

special reference to the definition of domains and o-pointers, and to the ciphertext form of

o-pointers in memory. Section 3 presents a conceptual scheme for a fully-distributed

implementation of our object protection strategies. The actions involved in the execution of

each protection primitive are described with special reference to interactions between the

network nodes. Section 4 outlines the relation of our work with previous work, and discusses

the proposed protection environment from a number of salient viewpoints including ease of

access right distribution and revocation, interprocess interaction and cooperation, protection

against fraudulent actions of access right manipulation and stealing, storage overhead,

cryptographic costs and costs in terms of network traffic. Section 5 gives concluding remarks.

2. THE PROTECTION MODEL

Our local area network consists of up to 2t nodes that collectively give physical support to up

to 2v objects. The v-bit identifier B of a given object consists of two components, i.e. B = <Bnode,

Blocal>. Quantity Bnode is codified in the t most significant bits of B, and is equal to the name of

the node where the object was created. This node is called the principal of B, and is denoted by

PR(B). Thus, Bnode = PR(B). Quantity Blocal, codified in the (v - t) least significant bits of B, is

called the local object identifier. A simple strategy for the generation of local object identifiers

is a sequential allocation. This strategy hypothesizes that object identifiers are so wide (e.g. 64

bits) that identifier reuse is never necessary. In a situation of this type, we shall use a local

object counter in each node, containing the local identifier of the object to be allocated next in

that node. This counter is initialized to 0 when the system is generated, and is incremented by 1

after creation of a new object in that node.

The repository RP(B) of object B is the node reserving physical storage resources for B. This

is the only node where the contents of object B can be accessed and operations can be executed

on that object. Initially, when object B is created in a given node N, it is allocated in the physical

memory of that node. Thus, node N assumes both the functionalities of the principal and the

repository of the new object, i.e. Bnode = PR(B) = RP(B) = N. The repository may well change

later, as a consequence of movements of the object across the network, whereas the principal

never changes. The principal keeps track of the name of the present repository of B. It follows

that it is always possible to identify the physical position of B in the distributed storage, as this

3

information is maintained in the principal PR(B), and the name of the principal is part of the

object identifier.

2.1. Domains, and object pointers

A domain identifier D consists of two components, i.e. D = <Dnode, Dlocal>. Quantity Dnode is

codified in the t most significant bits of D and is equal to the name of the node where the

domain has been created. Quantity Dlocal, codified in the (v - t) least significant bits, is called the

local domain identifier. Each node maintains a local domain counter containing the local

identifier of the domain to be created next in that node. This counter is initialized to 0 when the

system is generated, and is incremented by 1 after creation of a new domain in that node.

When the operating system kernel generates a new process (i.e. the process has no parent), a

new domain D is created. A domain password wD is generated and is associated with that

domain; this password is written into the descriptor of the new process. When a process

generates a new child process, the child process is assigned the same domain as the parent

process, and the password of this domain is written into the descriptor of the child process.

Thus, the tree structure originated by subsequent actions of child process generation is entirely

confined within the boundaries of the same domain. We say that all these processes are tightly

connected, i.e. they share the same domain (and consequently, the same domain password). At

any given time, in node N, a register of the protection system, the domain password register

DPRN, contains the password of the current domain, i.e. the domain of the process being

executed at that time by the processor of that node. When a process switch takes place, the

current process relinquishes the processor and a new process is assigned the processor, the

password of the domain of the new process is copied from the descriptor of the new process into

DPRN.

Let B be an object, let T be the type of B, and let R0, R1,... be the operation defined by T.

Execution of operation Rm is made possible by possession of an access privilege for B, which is

expressed in term of a subset of the set AR0, AR1,... of the access rights defined by T. As will be

clarified shortly, a few operations, and the corresponding access rights, are part of the definition

of every object type. These operations are called the protection primitives, and form the

application program interface of the protection system.

Possession of an access privilege for object B is certified by possession of an o-pointer

referencing B. This is a pair <B, AR>, where AR is a bit configuration that specifies a collection

of access rights for B: if the i-th bit of AR is asserted, then the o-pointer grants access right ARi

on B. An o-pointer is always part of a domain and can be profitably used only by the processes

in that domain. This means that a process Q holding o-pointer P = <B, AR> which is part of

domain D can access object B and perform the actions permitted by the access rights in AR only

if Q is part of the same domain, D. This essential requirement is enforced by taking advantage

of cryptography, as is illustrated below.

O-pointers are never stored in memory in plaintext. Instead, the protection system associates

each given object B with an encryption key kB called the object key. Let P = <B, AR> be an

4

o-pointer in domain D. P is stored in memory in the ciphertext form that results from

application of a transformation involving both the key kB of object B and the password wD of

domain D. From now on, we shall use an underline to denote a ciphertext. Figure 1 shows the

transformation of P into ciphertext P. Let AR be the result of encrypting pair <AR, wD> by using

a symmetric key cipher with key kB. Quantity P is given by relation P = <B, AR>.

Figure 2 shows the reverse transformation of ciphertext quantity P = <B, AR> into the

corresponding plaintext o-pointer P. Object key kB associated with object B is used to convert

quantity AR into plaintext. Let <AR, w*> be the result of this conversion. Quantity w* is

compared with domain password wD to validate AR; if a match is found, validation is successful

and o-pointer P is given by pair <B, AR>.

Of course, after translation into plaintext, o-pointer P is a sensitive information item that

must be stored in a protected memory region. To this aim, the protection system reserves a

pointer table for each given process: each entry of this table is aimed at containing an o-pointer

in plaintext. Let PTi denote the i-th entry of the pointer table PT of a given process, and let <B,

AR> be the o-pointer it contains. We say that PTi references object B with access rights AR. As

will be made clear shortly, the pointer table is mainly aimed at object access; at any given time,

the entries of the pointer table of the running process contain o-pointers for the objects being

used by that process at that time.

3. THE PROTECTION SYSTEM

3.1. Protection tables

A conceptual scheme for the implementation of the object protection strategies outlined so

far takes advantage of three tables in each given node N. These tables collectively implement a

form of distribution of the protection information, as follows (Figure 3):

• the principal table PRTN of node N features one entry for each object B for which Bnode =

PR(B) N (that is, node N, as identified by Bnode, is the principal of B). The entry reserved for

B contains the local object identifier Blocal and the name RP(B) of the repository of B.

• the repository table RPTN features one entry for each object B for which RP(B) N (that is,

node N is the repository of B). The entry reserved for B contains the object key kB. When an

object is created in node N or is moved across the network to node N, a new entry is reserved

for this object in RPTN, and the object key is inserted into this entry. When an object is

deallocated from N (either as a consequence of a movement of the object to a different node,

or when the object is finally deleted) the corresponding entry of RPTN is made free.

• the domain table DMTN features one entry for each domain D for which Dnode = N (that is,

the domain has been created in node N). The entry reserved for D contains the local domain

identifier Dlocal and the password wD of that domain.

5

3.2. Protection primitives

The process interface of the protection system consists of a number of primitives, the

protection primitives. Table I summarises the effects of the execution of each of these

primitives and specifies the corresponding access right. Execution of each primitive is

completely accomplished within the boundaries of the node where the primitive has been

issued, or, for a few primitives, it causes interactions with the other network nodes (e.g. if the

primitive involves object B, interactions with the object principal PR(B) and the object

repository RP(B)). Interactions take the form of control messages and object messages. A

control message can be a request message specifying actions to be carried out by the recipient

node, or a reply message containing the results of the actions performed as a consequence of

receipt of a request message. An object message contains the value of an object, and is sent

when an object is moved or copied to a different node.

In the rest of this section we shall describe the activities involved in the execution of each

protection primitive in some detail, with special reference to interactions between the network

nodes. We shall suppose that the given protection primitive has been issued in node N. We

make no hypothesis on the hardware configuration of each node. Instead, our system is de-

signed to be implemented at software level within the framework of a conventional processor

architecture, the only requirement being the support of two usual control modes, a privileged

mode and a user mode with memory access limitations. The protection primitives will be exe-

cuted in the privileged mode, and the protection tables will be stored in reserved memory re-

gions of the protection system.

loadPtr(addr, i) is a first example of a protection primitive. Execution of this primitive in

node N converts the ciphertext quantity <B, AR> contained in memory location addr of this

node into plaintext o-pointer <B, AR>, and loads this plaintext into the i-th entry PTi of the

pointer table of the process issuing the primitive. In detail, execution is as follows:

1. A search is made in repository table RPTN to find the entry reserved for object B (if this

search fails, node N is not the repository of B; an addressing exception is raised and

loadPtr() fails). Object key kB is extracted from this entry and is used to convert quantity

AR into plaintext. Let pair <AR, w*> be the result of this conversion.

2. Password wD of the domain of the running process is read from the domain password

register DPRN and is compared with quantity w*. If wD = w*, then validation of AR is

successful and pair <B, AR> is loaded into PTi; otherwise, an exception of violated

protection is raised and loadPtr() fails.

Let <B, AR> be the plaintext o-pointer contained in the i-th entry PTi of the pointer table of

the running process, let mask be a bit configuration of the same size as the AR field, and let AR*

denote the result of the logical AND of quantities AR and mask. Execution in node N of

protection primitive storePtr(i, mask, addr) converts plaintext o-pointer <B, AR*> into a

ciphertext, and stores this ciphertext into memory location addr of N. In detail, execution

produces the actions that follow:

6

1. Password wD of the domain of the running process is read from the domain password

register DPRN.

2. A search is made in repository table RPTN to find the entry reserved for object B (if this

search fails, node N is not the repository of B; an addressing exception is raised and

storePtr() fails). Object key kB is extracted from this entry and is used convert pair <AR*,

wD> into ciphertext quantity AR. Finally, quantity <B, AR> is assembled and is stored into

memory location addr of node N.

We wish to point out that execution of both the loadPtr() and the storePtr() protection

primitives is completely accomplished within the boundaries of the node N where these

primitives are issued; execution generates no message exchange with the other network nodes.

This important result has been obtained by taking advantage of the distribution of the object

keys across the network, as is supported by the repository tables.

Let T be the type of object B, and let R0, R1,... be the operations defined by T. Furthermore,

let P = <B, AR> be a plaintext o-pointer, and suppose that P is contained in the i-th entry PTi of

the pointer table of the running process. Execution of operation Rm on B is made possible by the

operation(i, m) protection primitive. Execution of this primitive transfers control to the code of

Rm; the contents of the AR field of PTi is transmitted to Rm as an input parameter. The actions

involved in the execution of Rm will include the access right check necessary to verify whether

AR includes the access rights permitting successful execution of Rm; if this check fails, an

exception of violated protection is raised. Thus, the set of the access rights for a given object is

defined by the type of that object, according to the set of the type operations. As is specified in

Table I, a few access rights are part of all object types, and are required to execute the protection

primitives successfully. These include the OWN, COPY and MOVE access rights, which are

necessary to delete an object, move the object to a different node or creating an object copy.

Object allocation and deletion

Protection primitive newObject(T, i) allocates a new object B of type T in node N where the

primitive is issued. This means that node N assumes both the functionalities of the principal and

the repository of the new object, and quantity N will be codified in the Bnode component of the

identifier B of the new object, i.e. Bnode = PR(B) = RP(B) = N. Execution deposits an o-pointer

with full access rights into the i-th entry PTi of the pointer table of the process issuing the

primitive. Execution is completely accomplished within the boundaries of node N, and is as

follows:

1. A storage area is reserved for the new object in node N. The specification of the size of this

area is part of the definition of type T.

2. The local identifier Blocal of the new object is generated, and identifier B is assembled by

using relation B = <Bnode, Blocal> where Bnode = N. An entry is reserved for B in the principal

table PRTN. This entry is filled with quantity Blocal and node name N to indicate that N is the

repository of the new object.

7

3. A new object key kB is generated and an entry is reserved for B in the repository table

RPTN. This entry is filled with quantities B and kB to associate kB with B.

4. A plaintext o-pointer is assembled that references object B and specifies full access rights.

This o-pointer is stored into PTi.

Of course, after allocation, the new object will need to be initialized. This result will be

obtained by taking advantage of the operation() primitive to execute the initialization

operation, as is defined by the object type.

Let <B, AR> be the plaintext o-pointer contained in the i-th entry PTi of the pointer table of

the running process. Protection primitive deleteObject(i) destroys object B. This primitive can

be successfully accomplished in node N only if B is stored in memory in this node, i.e. RP(B) =

N. Execution of this instruction requires access right OWN in AR. The actions produced by

execution of deleteObject() can be easily imagined, and will not be described in detail.

Object migration

Let P = <B, AR> be the o-pointer contained in the i-th entry PTi of the pointer table of the

running process. If executed in node N, the moveObject(i) protection primitive causes the

migration of object B referenced by PTi from its present position in the network to node N. On

termination, RP(B) = N, that is, node N becomes the repository of object B. Execution produces

the actions that follow:

1. Node N inspects the o-pointer P = <B, AR> contained in PTi to ascertain whether the access

right field AR of this o-pointer specifies access right MOVE (if this is not the case, an

exception of violated protection is raised and moveObject() fails).

2. Node N extracts quantity Bnode from object name B to identify the principal PR(B) of B.

Then, a request message is sent to PR(B). On receipt of this message, PR(B) performs a

search in its own principal table PRTPR(B) for an entry reserved for B (if this search fails, B

has been deleted; a negative reply message is returned to N and moveObject() fails). The

name RP(B) of the repository of B is extracted from this entry and is returned to N in a reply

message.

3. Node N sends a request message to RP(B). On receipt of this message, RP(B) accesses the

entry reserved for B in its own repository table RPTRP(B) and extracts the key kB of object B

from this entry. A reply message is assembled containing key kB and the value of object B;

this message is returned to N. The entry reserved for B is deleted from RPTRP(B) and the

storage area reserved for B is made free.

4. On receipt of the reply message from RP(B), node N reserves a free storage area for object

B and copies the value of this object from the reply message into this area. Then, an entry is

reserved for B in the repository table RPTN; key kB is copied from the reply message into

this entry.

5. Node N sends a request message to the principal PR(B) of object B. On receipt of this

message, PR(B) accesses its own principal table PRTPR(B) and inserts node name N into the

8

table entry reserved for object B, to indicate that N is now the repository of B. Finally,

PR(B) sends a positive reply message to N.

Creating an object copy

Let i and j be the indexes of two entries, PTi and PTj, of the pointer table of the running

process, and let P = <B, AR> be the o-pointer contained in PTi. If executed in node N, protection

primitive copyObject(i, j) creates a new object in this node and leaves an o-pointer for this

object, with full access rights, into PTj. The new object has the value of object B referenced by

P. Successful execution of this instruction is permitted by access right COPY in the AR field of P.

The actions caused by execution of copyObject() involve message exchanges with the principal

PR(B) and the repository RP(B) of object B. These actions can be easily imagined by

considering those described previously, and involved in the execution of the newObject() and

moveObject() protection primitives; we shall not discuss these actions any further.

Limiting access privileges

O-pointers are stored in memory in ciphertext as ordinary data items; consequently, they can

be freely moved and duplicated. Let us consider a process Q1 that is part of domain D and holds

ciphertext o-pointer P = <B, AR>. Suppose that Q1 transmits a copy of P to a process Q that is

part of the same domain D. Q and Q1 share the same domain password. Consequently, Q will be

in the position to issue the loadPtr() protection primitive and convert P into plaintext. So doing,

Q will gain access to object B.

Let us now suppose that process Q1 wishes to transmit only a subset of the access rights it

possesses on B to process Q. To this aim, Q1 will take advantage of the protection primitive

storePtr(i, mask, addr). By using a suitable value for the mask argument, process Q1 will be in

the position to produce a copy of P with reduced access rights. This copy will be transmitted to

Q.

Inter-domain o-pointer conversion

Let Q and Q1 be processes belonging to two different domains D and D1, and let w and w1 be

the passwords of these domains. Let P = <B, AR> be a ciphertext pointer referencing an object

B, and suppose that Q1 transmits a copy of P to Q. On receipt, if Q issues loadPtr() to convert P

into plaintext, loadPtr() will use the password of domain D instead of the password of domain

D1 that was originally used to encrypt P. Consequently, the validation process illustrated in

Figure 2 and involved in the execution of loadPtr() will fail.

In fact, transmission of an o-pointer between processes of different domains must be

preceded by an inter-domain conversion of the o-pointer, from the domain of the granting

process to the domain of the recipient process. In our example, Q1 must preventively convert P

to domain D. To this aim, Q1 translates P into plaintext and loads the result P = <B, AR> into an

entry, say the i-th entry PTi, of its own pointer table. This action will be carried out by executing

loadPtr() and will terminate successfully, as P is codified using the password w1 of domain D1.

Then, Q1 issues protection primitive convertPtr(i, D, addr). Execution of this primitive in node

9

N encrypts the plaintext o-pointer contained in PTi by using the domain password wD of domain

D, and stores the resulting ciphertext o-pointer into memory location addr of node N. This

ciphertext o-pointer will be transmitted to Q. Execution of convertPtr() produces the actions

that follow:

1. Node N extracts quantity Dnode from domain identifier D; as seen in Subsection 2.1, this

quantity is equal to the name of the node, say node M, where domain D was created. Then,

node N sends a request message to node M. On receipt of this message, M performs a

search in its own domain table DMTM for the entry reserved for D (if this search fails, D

does not correspond to an existing domain, a negative reply message is returned to N and

convertPtr() fails). The password wD of domain D is extracted from DMTM and is returned

to N.

2. Node N accesses its own repository table RPTN to find the entry reserved for object B.

Object key kB is extracted from this entry and is used convert pair <AR, wD> into ciphertext

quantity AR (see Figure 1). Finally, quantity <B, AR> is assembled and is stored into

memory location addr of node N.

4. DISCUSSION, AND RELATION TO PREVIOUS WORK

4.1. Capabilities and password capabilities

A classical approach to the representation of access privileges and protection domains in

memory is based on the concept of a capability [14]. This is a pair <B, AR> where B identifies

an object and AR codifies a set of access rights on this object. Capabilities can be freely copied.

A process holding a capability for a given object and wishing to grant an access privilege

included in this capability to another process will simply transfer a capability copy to the other

process, possibly with reduced access rights.

Of course, we must prevent a process that holds a given capability from modifying this

capability, for instance, by adding new access rights and extending the access privileges it

grants. Similarly, we must prevent processes from forging new capabilities for existing objects

from scratch, thereby gaining access to these objects. Several solutions to this segregation

problem [4], [12] have been devised and actually implemented in existing systems. In a tagged

memory environment, a one-bit tag can be associated with each memory cell specifies whether

this cell contains a capability or an ordinary data item [8], [11], [21]. In an alternative approach,

a specific object type, that we shall call the capability object, is reserved for storage of

capabilities (in contrast, data objects will be reserved for storage of ordinary data items) [6],

[13], [26]. This approach is prone to object proliferation. The internal representation of an

object consisting of several data objects assumes a hierarchical structure where one or more

capability objects store the capabilities for the data objects. In a distributed system, migration of

a compound object of this kind across the network implies the marshalling of the compound

object into linear form for transmission to the recipient node where the hierarchical structure of

the object will be reconstructed.

10

Password capabilities are an important improvement to the original capability concept [1],

[3], [10], [20]. The password-capability paradigm associates one or more passwords with each

given object. Each password corresponds to a subset of the set of all the access rights defined by

the type of that object. A password capability is a pair <B, w>, where w is a password. If a match

is found between w and one of the passwords associated with object B, then the password

capability grants the access rights corresponding to that password on B. If the password size is

so large as to discourage fraudulent attempts to forge passwords, then password capabilities can

be freely mixed in memory with ordinary data items and as such, they are an effective solution

to the segregation problem.

In our approach, o-pointers are segregated in memory by taking advantage of cryptography

[4]. We associate an encryption key with each object and a password with each protection

domain. An o-pointer referencing a given object is always part of a domain, and is stored in

memory in ciphertext form. The encryption scheme involves both the object key and the

domain password. The identifier B of the referenced object is not altered by the transformation

of the o-pointer between plaintext and ciphertext. In fact, knowledge of quantity B is only

necessary to determine the object key. It follows that the position of B in memory is irrelevant.

In particular, it is not necessary that the object name and the access right specification be stored

in contiguous memory cells. A process holding two or more o-pointers referencing the same

given object may well maintain a single copy of the object identifier, for instance; the process

will reconstruct the association of the object identifier with the access rights just before issuing

the loadPtr() primitive, in view of a subsequent object access.

The duality of plaintext and ciphertext o-pointers allows us to preserve the simplicity of

access privilege representation and access right distribution that characterizes capability and

password-capability systems, without incurring the hardware design problems and storage

management complications connected with memory tagging, e.g. support by specialized

memory banks. We avoid the complex software structures that ensue when capabilities are

segregated into capability objects. With respect to both the original capabilities and the

password capabilities, further advantages follow from encryption in terms of protection against

o-pointer stealing.

4.2. O-pointer manipulation and stealing

O-pointers are stored in memory together with ordinary data item, in indistinct form. It

follows that a process may well alter an o-pointer by using the machine instructions for ordinary

data manipulation. An action of this type will be aimed at access privilege amplification, for

instance, by modifying the access right field of the o-pointer. In fact, any such attempt to

o-pointer forging is destined to fail.

Let us consider ciphertext o-pointer P = <B, AR>, let kB be the key of the object B referenced

by this o-pointer, let D be the domain of P and let wD be the password of this domain. The AR

field is the result of a symmetric-key encryption using kB and involving plaintext quantities AR

and wD (see Figure 1). We shall hypothesize that the encryption algorithm producing AR

11

guarantees a careful mixing of the bits of AR and wD. In this hypothesis, suppose that process Q

holding P modifies AR to amplify the access permissions it contains, and let P* = <B, AR*> be

the ciphertext o-pointer resulting from the modification. In order to take advantage of P* and

access object B, Q will issue the loadPtr() protection primitive. Execution of loadPtr() uses key

kB to transform quantity AR* into pair <AR*, w*> (see Figure 2). Of course, quantity w* will not

match the password wD of domain D that was used to codify the access right field in the original

form, AR. This means that the validation of AR*, performed as part of execution of loadPtr(), is

destined to fail, and execution of loadPtr() will terminate with an exception of violated

protection.

Let us now suppose that process Q generates a ciphertext o-pointer P = <B, AR> for an

existing object B from scratch. In order to take advantage of P and access B, Q will issue the

loadPtr() protection primitive. Execution of loadPtr() uses key kB to transform quantity AR into

pair <AR, w*>. Of course, w* will be an arbitrary quantity. The subsequent validation involves

a comparison of w* with the password wD of the domain D of process Q. The probability of a

match is determined by the size of wD. For large passwords, e.g. 64 bits, this probability is

vanishingly low. This means that loadPtr() will terminate with an exception of violated

protection. The consequences of an exception of this type are part of the protection system

design. If a delay is forced on the process generating the exception, the time cost of a force brute

attack tends to become prohibitive.

A serious security hole of capability-based protection is that the access permission granted

by a given capability (as specified by the access right field or, in a password capability, by the

password) is independent of the capability origin. This means that a process that steals a given

capability may well exercise all the access rights included in that capability. The consequences

of an action of this type may well extend to a large fraction of the protected resources. For

instance, consider a system that segregates capabilities into capability objects. In a system of

this type, a process that steals a capability granting even read-only access permission to a

capability object will be in the position of taking advantage of all the capabilities contained in

that capability object, and recursively, in all the capability objects referenced by these

capabilities [22].

Our encryption scheme is able to contrast any fraudulent action of o-pointer copy. This is a

consequence of the fact that the validity of a given o-pointer is limited to the domain of that

o-pointer. Let Q1 and Q2 be two processes, let D1 and D2 be their domains, and let w1 and w2 be

the passwords of these domains. Suppose that process Q2 steals o-pointer P = <B, AR> from

process Q1. Being part of domain D1, this o-pointer was generated by using password w1. In

order to take advantage of P and access B, Q2 will issue the loadPtr() protection primitive.

Execution of loadPtr() will use key kB to transform quantity AR into pair <AR, w1>. Validation

of the access right field, as involved in the execution of loadPtr(), will compare w1 with the

password w2 of Q2, and is destined to fail.

12

4.3. Storage requirements

Let us consider a medium-scale network consisting of up to 216 nodes, and suppose that the

size of an object name is 64 bits. In a configuration of this type, the size of the Bnode component

of an object name B is 16 bits, and the size of the Blocal component is 48 bits. Thus, the memory

requirement of a principal table entry is 8 bytes (6 bytes for the Blocal field and 2 bytes for the

RP(B) field). Furthermore, in the hypothesis of 64-bit object keys, the memory requirement of a

repository table entry is 16 bytes (8 bytes for the B field and 8 bytes for the kB field). This means

that the total memory requirement of the protection table entries for the generic object is 24

bytes (here, we do not consider the storage requirement for the domain table, as each domain is

intended to include several objects and the resulting per-object cost is negligible). Let us now

define the memory overhead for storage of the protection information for a given object as the

ratio between the size of this information and the object size. For small-sized, 1-KByte objects

the memory overhead is 2.3%.

We shall now consider two alternative, significant configurations, that is, a distributed

system concentrating all the information for the management of object protection in a single

node that we shall call the master node, and a single processor machine. In the master node

configuration, a single table, which we shall call the master table, features one entry for each

existing object. The entry for a given object contains the name of the object repository and the

object key, for a total memory requirement of 18 bytes (8 bytes for the object identifier, 2 bytes

for the name of the object repository and 8 bytes for the object key). For 1-KByte objects the

memory overhead is 1.8%. As will be shown in the next subsection, if compared with the fully

distributed case, the resulting small memory savings correspond to significantly higher costs in

terms of the network traffic generated by the execution of the protection primitives. In the case

of a single processor machine, for each object the protection system will have to maintain the

association between the object name and the object key, with a total memory requirement of 16

bytes. For 1-KByte objects, the memory overhead decreases to 1.6%.

We may conclude that in our system the global memory requirements of the protection

information are a negligible fraction of the overall memory requirements for object storage.

Distribution of the protection information produces a marginal increase in memory cost with

respect to both a configuration with a master node and a single-processor machine.

4.4. Network costs

Table II shows the network cost of each protection primitive, expressed in terms of the

number of the control and object messages transmitted during execution of that primitive. The

costs can be easily derived from the analysis of the actions involved in the execution of each

primitive, presented in Subsection 3.2. Let N be the node where a given protection primitive is

issued, and let PR(B) and RP(B) be the principal and the repository of the object B involved in

the execution of this primitive. The figures in the table are relevant to the case of N, PR(B) and

RP(B) being distinct nodes. This is a worst-case analysis, corresponding to the highest network

traffic. For instance, the moveObject() and copyObject() primitives need to know the name of

13

the repository of object B. To this aim, two control messages are necessary, a request message

from N to PR(B) and a reply message from PR(B) to N. If N = PR(B) (i.e. node N is the principal

of B), these two messages are saved. If N =PR(B) =RP(B) (by far the commonest situation,

corresponding to the case of an object that is used in the node where it was created), no network

traffic is generated at all. This important aspect of the network behaviour of our memory

protection system follows from the full distribution of the memory protection information

among the network nodes.

In terms of the network costs, the protection system is highly scalable. The number of

messages that are required to retrieve the protection information for a given object in the

distributed protection tables is fixed and does not increase if new nodes are added to the

network. These costs are independent of the past movements of the object in the network. The

network position of an object is determined without resorting to a message broadcast.

Master node

Let us now consider the network costs connected with execution of the protection primitives

in the aforementioned configuration featuring a master node where all the information

concerning object protection is kept. We shall hypothesize that the protection primitives are

issued in a node N which is not the master node. Of course, less messages are required with

respect to the full distributed case when execution of the given primitive needs to know the

names the object principal and the object repository. This is the case for moveObject() and

copyObject(); for these primitives, the master node configuration leads to a saving of 2

messages with respect to the fully-distributed case (see Table II).

On the other hand, in the presence of a master node, memory traffic follows even for those

protection primitives whose execution in the fully distributed configuration is entirely confined

within the boundaries of the node where the primitives are issued. This is the case for loadPtr(),

storePtr(), newObject() and deleteObject(). For all of them, the presence of a master node

implies the transmission of two messages to access the object key (in the fully distributed

configuration, the object key is stored locally, in the repository table). We may conclude that

the configuration with a master node increases the network costs of the protection primitives

that are executed more frequently. For all protection primitives, the network costs can be kept to

a minimum even in the fully distributed case by introducing forms of caching of the contents of

the principal tables.

Repository cache

Let us refer, for instance, to execution in node N of the moveObject() protection primitive. In

a first execution phase (at step 2 in the description given in Subsection 3.2), node N sends a

request message to the principal PR(B) of object B to identify the object repository. On receipt

of this message, PR(B) extracts repository name RP(B) from its own principal table PRTPR(B)

and returns this quantity to N. A similar situation takes place in the execution phase of the

14

copyObject() primitive. The total network cost of these actions is 2 messages. This network cost

can be eliminated, as follows.

In each given node N we maintain a table that we call the repository cache KN. Each entry of

the cache contains the name of the repository of an object whose principal is not node N (this is

in contrast with principal table PRTN). In the execution of a protection primitive, if node N

needs to know the name of the repository of an object whose principal is a different node, cache

KN is inspected first, and, if a hit is found, the repository name is taken from the cache. Of

course, if the cache access produces a miss, interaction with the object principal PR(B) becomes

mandatory; in this case, the repository name returned by PR(B) is added to the cache, thereby

becoming available for any subsequent protection primitive involving B.

It may well be the case that the information contained in KN be outdated, for instance, for a

given cache entry, if the object corresponding to this entry has been moved to a different node.

The protection primitives should be able to comply with situations of this type. Let us refer

again to moveObject(), and let us suppose that the name of the repository of object B contained

in KN is outdated. Consequently, at execution step 3, the message asking for the object value is

sent to the wrong node, say RP(B)old. On receipt of this message, node RP(B)old inspects its own

repository table in search for object name B. Of course, this search will fail, and a negative reply

message will be returned to N. In this way, node N ascertains lack of coherency between the

contents of cache KN and the real situation of object allocation. Consequently, N interrogates

principal PR(B) for the correct repository name and uses this name to update the cache.

Table II gives the number of control messages involved in the execution of the protection

primitives in a system configuration featuring the repository caches in the hypothesis of cache

hits (of course, the caches have no influence on the number of object messages). It is worth

noting that, for all protection primitives, the network costs become equal to or smaller than the

costs in the master node configuration. Positive effects follow from the presence of the caches

in terms of node throughput, as a consequence of the fewer context switches that are necessary

in the execution of the protection primitives to suspend process execution after sending a

request message and resume execution later, on receipt of the reply.

4.5. Cryptographic costs

As seen in Subsection 3.2, a single protection primitive, the loadPtr() primitive, produces a

cryptographic transformation of a ciphertext o-pointer into plaintext form. This primitive then

loads the plaintext into an entry of the pointer table of the issuing process. Afterwards, the

contents of this entry will be used in all subsequent accesses by that process to the object

referenced by that o-pointer, and these accesses will be performed by taking advantage of the

operation() protection primitive. Thus, the cost in terms of execution times of this

cryptographic o-pointer transformation corresponds to a potentially unlimited sequence of

object accesses; comparatively, this cost is low. The pointer table acts as a form of

software-controlled cache of the cryptographic transformations. This table eliminates the need

15

to translate an o-pointer into plaintext at each object access, in the execution of the operation()

primitive.

The inverse transformation of a plaintext o-pointer into ciphertext form is performed as part

of the actions involved in the execution of two protection primitives, namely storePtr() and

convertPtr(). storePtr() is mainly used after creation of a new object to deposit a ciphertext

o-pointer for this object into memory. It is also used to generate a copy of a given o-pointer with

reduced access rights, in view of the distribution to a different process in the same domain. Of

course, these actions are relatively infrequent. convertPtr() is the only protection primitive that

crosses the domain boundaries. Utilization of this primitive is restricted to the conversion of an

o-pointer for transmission to a process of a different domain. The cryptographic cost is that of a

single o-pointer transformation, from plaintext into ciphertext.

We may conclude that in our system the cryptographic cost of o-pointer transformations is

not a critical factor (on the other hand, hardware support to these transformations may be easily

devised [5]).

The implementation of the protection system should guarantee the necessary degree of

security in the exchange of messages between the nodes. This aspect of overall system security

can be approached by ad-hoc solutions including forms of cryptography in internode

communication. The consequent costs in terms of execution times are inherent in distributed

system organizations, and are not connected with the cryptographic form of o-pointers in

memory. Indeed, if a protection primitive is issued in a given node, any cryptograph

transformation involved in the execution of that primitive occurs within the boundaries of that

node, and no network cost is connected with the transformation.

4.6. Cryptographic pointers

The utilization of cryptographic techniques in the implementation of forms of protected

memory pointers is certainly not a new idea. These techniques have been used, for instance, in

the design of a protection system for a single-processor computer architecture in which the

protected entities are the memory segments [17]. In this system, a segment pointer contains a

segment identifier and the specification of a set of access rights, and is stored in memory in a

form resulting from application of a cryptographic transformation. The protection problem is

approached by taking advantage of ad-hoc hardware. The processor features a number of

registers, the protection registers, which are reserved to contain information concerning

memory addressing and protection. Examples of protection registers are the segment registers,

each of which is aimed at containing a segment pointer in plaintext. The segment registers are

mainly used to reference segments in memory. A memory address has the form <<sr>> f, where

sr denotes a segment register and f is an offset in the segment referenced by this register. The

instruction set of the processor is designed to comply with this address format. The protection

primitives operate on internal processor resources; as such, they are intended to be implemented

as machine instructions (in certain cases, software-level support is necessary, e.g. when a new

segment is allocated in memory). A protection domain is a collection of segment pointers. A

16

cryptographic key is associated with each domain, and all segment pointers encrypted by using

a given domain key are part of the corresponding domain. At any given time, a register of the

processor, the current domain register, contains a pointer to the current domain. In the

execution of a given process, the current domain may well change, and a result of this type is

obtained by simply loading a pointer for the new domain into the current domain register.

In [18] the cryptographic approach to protected pointer implementation has been applied to a

protection system for a single-processor environment in which the protected entities are the

typed objects. In this system, the type of each given object defines the operations that can be

applied on this object and, for each operation, the access rights that are necessary to accomplish

this operation successfully. A protected reference contains the name of an object and the

specification of a set of access rights on this object. An encryption key, the object key, is

associated with each object and a further encryption key, the domain key, is associated with

each domain. A complex cryptographic transformation is used to convert object references to a

protected form. This transformation takes advantage of a double encryption using both the

object key and the domain key.

In contrast, the system presented in this paper takes advantage of cryptographic techniques

for pointer protection in the context of a fully distributed environment. In an environment of

this type, a peculiar problem is to identify the node reserving storage for every given object; the

concepts of the object principal and the object repository have been introduced to solve this

problem. The system does not rely on an ad-hoc processor, and no special requirement exists

for the hardware configuration of each node. Instead, the system can be implemented within the

framework of a conventional processor architecture, at software level. This is especially true for

the protection primitives. The concept of a protection domain is tightly connected with that of a

process. When a process is generated, it is assigned a new domain or, if it was generated by an

existing process, it is assigned the same domain as its father process. O-pointer transmission

between processes in the same domain corresponds to a simple action of o-pointer copy in

memory, whereas for processes in different domains a form of cryptographic o-pointer

conversion is necessary.

We may conclude that the previous works [17], [18] demonstrate the possibility to take

advantage of cryptographic techniques for pointer protection in single-processor systems. In

this paper we show that these techniques can be successfully used in a fully-distributed

environment, but a thorough redesign of the protection system is necessary to solve the new

problems connected with the management of the distributed information concerning memory

addressing and protection.

In the following, we shall consider three important examples of protected systems

incorporating forms of cryptographic pointers, namely Amoeba, ICAP and MSSA. For each of

them, a few aspects of the protection environment embedded in the system design will be

discussed, with special reference to the cryptographic pointer transformations.

17

Amoeba

Amoeba [24], [25] is an object-oriented, distributed operating system that uses capabilities

for object naming and protection. The system takes advantage of cryptography to prevent

processes from tampering with existing capabilities or forging new capabilities. A capability

referencing a given object consists of: (i) a server port that identifies the server managing this

object; (ii) an object field whose value is an index in an internal table of the server, the object

table, and identifies the table entry reserved for the object; (iii) a rights field specifying the

access rights granted by the capability on the object; and (iv) a check field aimed at protecting

the object.

When a client asks a server for creation of a new object, the server reserves an entry for the

new object in its own object table and inserts a random number into this entry. Then, the server

assembles an owner capability for the new object by inserting the random number into the

check field. When an owner capability is presented to the server, the server compares the value

of the check field with the random number. If a match is found, the capability is considered

genuine, and all operations on the named object are allowed.

A client can create a capability for a given object with restricted access rights by passing the

owner capability for that object back to the server, together with a bit mask for the new access

rights. The new capability is constructed by evaluating the logical XOR of the original random

number and the new access rights, and running the result through a one-way function (a

function that is easy to apply, but hard to invert [23]). The server then creates a new capability

featuring the same value as the original capability in the object field, the new access rights in

the rights field and the result of the one-way function in the check field.

When a restricted capability is returned to the server for validation, the server ascertains that

it is not an owner capability as at least one bit in the rights field is cleared. The server evaluates

the logical XOR of the original random number and the contents of the rights field and runs the

result through the one-way function. The capability is valid if the result matches the contents of

the check field.

ICAP

ICAP [9] is a capability-based protection system aimed at a distributed environment. In

ICAP, much attention is paid to the propagation problem, to separate the right to exercise access

permissions from the right to grant access permissions. To this aim, capabilities incorporate the

identity of the owners.

In ICAP, the data segments are the protected objects to which access is controlled. When a

server creates a new object B on behalf of a given client C1, an internal capability is created

consisting of pair <B, r0>, where r0 is a random number that is kept secret. This capability is not

sent to the client. Instead, C1 is assigned an external capability in the form of a triplet <B, AR,

r1>, where AR is the specification of a set of access rights, r1 is the result of running f(C1, B, AR,

r0) and f is a one-way function. When the server receives an access request incorporating a

18

capability, it executes the one-way function again and compares the result with the r1 field; if a

match is found, then the capability is validated and the access is granted.

If C1 wants to pass external capability <B, AR, r1> to a different client C2, the request must be

explicitly presented to the server that decides whether to allow the propagation according to the

intended security policy. If this is the case, the server uses the secret random number r0 to create

external capability <B, AR, r2>, where r2 is the result of running f(C2, B, AR, r0). This capability

is then transmitted to C2. The rationale is that the number of actions of capability propagation is

much less than the number of capability uses, and consequently it is much more efficient to

control propagation than checking the security policy at access time.

MSSA

In the Multi-Service Storage Architecture (MSSA) [2], [19], the files are the protected

objects, and the clients capable of performing access attempts to the files are called principals.

A capability list is associated with each principal and specifies the access permissions held by

that principal in the form of a collection of capabilities.

An MSSA capability for a given file can only be used by a specific principal and is only valid

for a limited period of time. It consists of the name of the principal, the specification of a set of

access rights, the expiry time, a signature and an optional comment. The signature is generated

by applying a one-way function to the rest of the capability, to the file identifier and to a secret

number that is associated by the storage server to the file. The file identifier is not part of the

capability; it must be presented as a separate argument by the principal to the storage server.

The storage server evaluates the signature again by using the secret number; if a match is found,

the capability is validated. Of course, any forged capability will have an incorrect signature.

This protects capabilities from tampering.

A principal holding a given capability is free to ask the storage server for a copy of that

capability on behalf of a different principal. The expiry time guarantees that the new capability

will not remain valid indefinitely. Furthermore, the storage server can revoke all the capabilities

associated with a given file immediately by changing the secret number, but this mechanism

cannot be used for a selective revocation.

5. CONCLUDING REMARKS

With reference to a distributed system consisting of nodes connected by a local area

network, we have considered a salient aspect of the protection problem, the representation of

access permissions and protection domains. We have presented a model of a protection system

that is based on the application of techniques of symmetric-key cryptography. We have

obtained the following results:

• O-pointers can be freely mixed in memory with ordinary data items. It is practically

impossible to forge a valid o-pointer for an existing object. These results have been obtained

by taking advantage of cryptography without incurring the hardware costs connected with

memory tagging, while maintaining simplicity and effectiveness of access right distribution.

19

• The protection system supports two different models of process interaction, corresponding

to different mechanisms of transmission of access permissions. Between processes of the

same domain, a simple action of an o-pointer copy does not need to be mediated by the

protection system, whereas between processes of different domains, the o-pointer copy must

be preceded by a conversion of the o-pointer from the domain of the granting process to the

domain of the process that receives the o-pointer. The two models correspond to different

degrees of cooperation between processes. For mutually trustworthy processes, a common

protection domain improves efficiency in access right transfers. For mutually suspicious

processes, domain separation and the cryptographic mechanism connected with domain

passwords guarantee a high degree of protection against o-pointer stealing: a process of a

different domain will not be able to decrypt a stolen o-pointer and use it for object access.

This is in sharp contrast with capability and password capability systems, which cannot

prevent fraudulent actions of this type. A salient feature of our domain paradigm is that two

or more processes can be part of the same domain even if they are hosted on different

network nodes. Rather than being based on the physical allocation of the processes in the

network, the paradigm defines process grouping at the logical level of process interactions.

• The memory requirements for storage of the information for object protection are a

negligible fraction of the total memory requirements for object storage. These memory costs

are fixed and independent of the network size. Distribution of the protection information

produces a marginal increase in memory cost with respect to a configuration concentrating

all this information in a single master node. Memory overhead is low even if compared with

a single-processor machine with a small memory capacity equal to that of a single node.

• The memory traffic originated by the execution of the protection primitives is low and is

independent of the number of nodes that form the network. No network cost is connected

with protection in the common case of an object that is used in the same node where it was

created and allocated in memory. This important result has been obtained by taking

advantage of a full distribution of the information concerning memory protection. The

number of messages exchanged in the execution of the protection primitives can be reduced

further by introducing forms of caching of the distributed information concerning object

allocation.

The interesting properties of the protection system presented in the foregoing sections

suggest that the utilization of cryptography in the segregation of the information concerning

protection can be a valid solution to the problem of domain and access right representation in a

fully distributed environment.

REFERENCES

[1] M. Anderson, R. D. Pose, C. S. Wallace, “A password-capability system,” The Computer Journal, vol. 29,
no. 1 (February 1986), pp. 1–8.

[2] J. Bacon, R. Hayton, S. Lai Lo, K. Moody, “Extensible access control for a hierarchy of servers,” Operating
Systems Review, vol. 28, no. 3 (July 1994), pp. 4–15.

20

[3] J. S. Chase, H. M. Levy, E. D. Lazowska, M. Raker-Harvey, “Lightweight shared objects in a 64-bit
operating system,” Proceeding of the Conference on Object-Oriented Programming Systems, Languages,
and Applications, Vancoover, October 1992; in SIGPLAN Notices, vol. 27, no. 10 (1992), pp. 397–413.

[4] M. de Vivo, G. O. de Vivo, L. Gonzalez, “A brief essay on capabilities,” SIGPLAN Notices, vol. 30, no. 7
(July 1995), pp. 29–36.

[5] T. Eisenbarth, S. Kumar, “A survey of lightweight-cryptography implementations,” IEEE Design & Test of
Computers, vol. 24, no. 6 (November – December 2007), pp. 522–533.

[6] D. M. England, “Capability concept mechanisms and structure in System 250,” Proceedings of the
International Workshop on Protection in Operating Systems, IRIA, Paris, 1974, pp. 63–82.

[7] N. Ferguson, B. Schneier, Practical Cryptography. Indianapolis, Indiana: Wiley, 2003.

[8] K. Ghose, R. M. Stewart, “The capability mechanism of a VLSI processor,” Proceedings of the 1988 IEEE
International Conference on Computer Design: VLSI in Computers and Processors, Rye Brook, NY, USA,
October 1988, pp.106–109.

[9] L. Gong, “A secure identity-based capability system,” Proceedings of the 1989 IEEE Symposium on
Security and Privacy, Oakland, CA, USA, May 1989, pp. 56–63.

[10] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, J. Liedtke, “The Mungi single-address-space operating
system,” Software – Practice and Experience, vol. 28, no. 9 (July 1998), pp. 901–928.

[11] M. E. Houdek, F. G. Soltis, R. L. Hoffman, “IBM System/38 support for capability-based addressing,”
Proceedings of the 8th Annual Symposium on Computer Architecture, Minneapolis, Minnesota, USA, May
1981, pp. 341–348.

[12] R. Y. Kain, C. E. Landwehr, “On access checking in capability-based systems,” IEEE Transactions on
Software Engineering, vol. SE-13, no. 2 (February 1987), pp. 202– 207.

[13] G. Klein et al., “seL4: formal verification of an OS kernel,” Proceedings of the 22nd ACM Symposium on
Operating Systems Principles, Big Sky, MT, USA, October 2009, pp. 207–220.

[14] H. M. Levy, Capability-Based Computer Systems. Bedford, Mass.: Digital Press, 1984.

[15] T. A. Linden, “Operating system structures to support security and reliable software,” ACM Computing
Surveys, vol. 8, no. 4 (December 1976), pp. 409–445.

[16] L. Lopriore, “Access privilege management in protection systems,” Information and Software Technology,
vol. 44, n. 9 (June 2002), pp. 541–549.

[17] L. Lopriore, “Encrypted pointers in protection system design,” The Computer Journal, vol. 55, no. 4 (April
2012), pp. 497–507.

[18] L. Lopriore, “Reference encryption for access right segregation and domain representation,” Journal of
Information Security, vol. 3, no. 2 (2012), pp. 86–90.

[19] K. Moody, J. Bacon, J. Bates, S. L. Lo, Z. Wu, “OPERA: storage, programming and display of multimedia
objects,” Proceedings of the Fourth Workshop on Future Trends of Distributed Computing Systems,
Lisbon, Portugal, September 1993, pp. 442–448.

[20] D. Mossop, R. Pose, “Information leakage and capability forgery in a capability-based operating system
kernel,” Proceedings of the Workshop On the Move to Meaningful Internet Systems, Montpellier, France,
October 2006; in Lecture Notes in Computer Science, vol. 4277 (2006), pp. 517–526.

[21] P. G. Neumann, R. J. Feiertag, “PSOS revisited,” Proceedings of the 19th Annual Computer Security
Applications Conference, Las Vegas, NV, USA, December 2003, pp. 208–216.

[22] J. S. Shapiro, J. M. Smith, D. J. Farber, “EROS: a fast capability system,” Proceedings of the Seventeenth
ACM Symposium on Operating Systems Principles, Kiawah Island Resort, SC, December 1999; in
Operating Systems Review, vol. 34, no. 5 (December 1999), pp. 170–185.

[23] M. Stamp, Information Security: Principles and Practice, 2nd Edition, Wiley, 2011.

[24] A. S. Tanenbaum, S. J. Mullender, R. Van Renesse, “Using sparse capabilities in a distributed operating
system,” Proceedings of the Sixth International Conference on Distributed Computer Systems, Cambridge,
MA, USA, May 1986, pp. 558–563.

[25] A. S. Tanenbaum, M. F. Kaashoek, R. van Renesse, H. E. Bal, “The Amoeba distributed operating system –
a status report,” Computer Communications, vol. 14, no. 6 (July-August 1991), pp. 324–335.

[26] M. V. Wilkes, R. M. Needham, The Cambridge CAP Computer and Its Operating System. New York:
North Holland, 1979.

21

Figure 1. Transformation of o-pointer P = <B, AR> into ciphertext quantity P = <B, AR> as part
of domain D with password wD. AR is the result of encrypting pair <AR, wD> by using a
symmetric key cipher and key kB of object B.

Figure 2. Transformation of ciphertext quantity P = <B, AR> into the corresponding plaintext
o-pointer P = <B, AR>, and validation of the result. Key kB of object B is used to convert
quantity AR into plaintext pair <AR, w*>. Quantity w* is compared with domain password wD:
if a match is found, P is valid.

Figure 3. Protection tables in node N. For each object B whose principal is N, the principal table
PRTN contains its local identifier Blocal and the name RP(B) of its repository. For each object B
whose repository is N, the repository table RPTN contains its object key kB. For each domain D
created in node N, the domain table DMTN contains its local identifier Dlocal and its password
wD.

22

Table I. Protection primitives.1

loadPtr(addr, i)
Decrypts the ciphertext o-pointer stored in memory location addr of node N, and deposits the resulting
plaintext into PTi.

storePtr(i, mask, addr)
Eliminates access rights from the plaintext o-pointer contained in PTi, as is specified by mask, encrypts the
result and deposits the ciphertext into memory location addr of node N.

operation(i, m)
Executes the m-th operation on the object referenced by PTi, as is defined by the type of this object.

newObject(T, i)
Allocates a new object of type T in node N, and deposits an o-pointer for this object, with full access rights,
into PTi.

deleteObject(i)

Deletes the object referenced by PTi. Requires access right OWN in PTi.
moveObject(i)
Moves the object referenced by PTi from its present network position to node N. Requires access right
MOVE in PTi.

copyObject(i, j)
Creates a new object in node N and deposits an o-pointer for this object, with full access rights, into PTj. The
new object has the value of the object referenced by PTi. Requires access right COPY in PTi.
convertPtr(i, D, addr)
Encrypts the plaintext o-pointer contained in PTi by using the password of domain D, and deposits the
resulting ciphertext into memory location addr of node N.
1 Each protection primitive is supposed to be issued in node N. PTi denotes the i-th entry of the pointer table of the
process executing the primitive.

Table II. Network traffic generated by the execution of the protection primitives.

Primitive
Object

message

 Control messages

 Fully
distributed

Cache Master node

loadPtr() – – – 2
storePtr() – – – 2
operation() – – – –
newObject() – – – 2
deleteObject() – – – 2
moveObject() 1 5 3 3
copyObject() 1 5 3 3
convertPtr() – 2 2 2

