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Abstract

The aim of the paper is to present sequential methods for a pseudoconvex optimization problem
whose objective function is the sum of a linear and a linear fractional function and the feasible
region is a polyhedron, not necessarily compact. Since the sum of a linear and a linear fractional
function is not in general pseudoconvex, we first derive conditions characterizing its pseudoconvexity
on the nonnegative orthant. We prove that the sum of a linear and a linear fractional function
is pseudoconvex if and only if it assumes particular canonical forms. Then, theoretical properties
regarding the existence of a minimum point and its location are established, together with necessary
and sufficient conditions for the infimum to be finite. The obtained results allow us to suggest simplex-
like sequential methods for solving optimization problems having as objective function the proposed
canonical forms.
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1 Introduction

During the last decades, the topic of generalized fractional programming and in particular quadratic and
multiplicative fractional programming has attracted a sizable number of researchers, both in mathemat-
ics and in applied disciplines such as economics/management and engineering. More precisely there are
several applicative problems that can be formulated in term of optimizing the ratio between a quadratic
and a linear function or the sum of linear ratios. This happens for instance whenever we try to find
a compromise between absolute and relative terms like profit and return on investment, or return and
return/risk. Applications arise for example in portfolio theory (see among others [11, 12]), in location
theory (see for example [2]) in transportation problems ([10, 13]) and in problems of optimizing firm cap-
ital, production development fund and social, cultural and construction fund (see [15]). Both theoretical
and algorithmic aspects have been investigated as the huge number of contributes in the recent literature
witnesses (see for all the recent surveys on this topic [9, 14, 16]). Generalized fractional problems have
been studied even in the broader context of generalized convex programming. Ratios of convex and
concave functions as well as the sum of such ratios are not convex, in general, even in the case of linear
ratios. Nevertheless they are generalized convex in some sense and there are many papers related to the
problem of finding conditions under which a certain class of fractional functions verifies some generalized
convexity properties. Among the different classes of generalized convexity, the pseudoconvexity occupies
a leading position for its nice properties in optimization.
For the sake of completeness, we recall that a differentiable function g, defined on an open convex set



X ⊆ <n, is pseudoconvex if the following logical implication holds:

x, y ∈ X, g(y) < g(x)⇒ (y − x)T∇g(x) < 0.

Moreover, for a pseudoconvex function a critical point is a global minimum and a local minimum is also
global.
Beside the well known characterizations of pseudoconvexity for fractional functions ([1, 8]), there are
several contributions suggesting “operative” necessary and sufficient conditions which are useful to test
if a generalized fractional function is pseudoconvex or not (see for all [5] and references there). Pseu-
doconvexity is often characterized over the halfspace associated with the positivity of the denominator
of the function; on the other hand, in many economic applications it is crucial to study the behavior
of the objective function over a smaller set. This has lead ([4, 5]) to investigate the maximal domains
of pseudoconvexity. Since in many optimization problems decision variables are nonnegative, in this
paper we characterize the pseudoconvexity of a function f which is the sum of a linear and a linear
fractional function on the nonnegative orthant. More precisely, in Section 2, we derive “very easy to be
checked” conditions which ensure that f is pseudoconvex just on the nonnegative orthant. We get that
f is pseudoconvex if and only if it assumes particular canonical forms. According with the key role of
pseudoconvexity in optimization theory, it seems natural conceiving algorithms for generalized fractional
problems which directly benefit from the nice properties of pseudoconvex functions. For such a reason
in Section 3, we consider minimization problems whose the objective function f is pseudoconvex on the
nonnegative orthant and the feasible region is a polyhedral set, not necessarily compact. We establish
theoretical properties regarding the existence of a minimum point and its location, and we propose nec-
essary and sufficient conditions for the infimum to be finite. At last, in Section 4, we suggest simplex-like
algorithms, based on the so called optimal level solution method proposed in [3].

2 Statement of the problem and preliminary results

Consider the following problem

P : inf
x∈S

[
f(x) = aTx+

cTx+ c0
dTx+ d0

]
where a, c, d ∈ <n, d 6= 0, c0, d0 ∈ <, d0 6= 0 and S ⊆ H = {x ∈ <n : dTx+ d0 > 0} is a polyhedral set.
First of all we study the pseudoconvexity of f on the nonnegative orthant. With this aim we recall the
following theorem (see [5]) which characterizes the maximal domains Dmax of pseudoconvexity of f , in
the sense that f is pseudoconvex on a convex set C with nonempty interior if and only if C ⊆ Dmax.

Theorem 1 Consider the function f . The following conditions hold:
i) if a = αd, α ≥ 0, then f is pseudoconvex on H;
ii) if c = γd, c0 − γd0 ≥ 0, then f is pseudoconvex on H;
iii) if a = αd, α < 0, and c = γd, c0 − γd0 < 0, then f is pseudoconvex on every open convex set C such
that:

C ⊆ {x ∈ <n : dTx+ d0 > d∗0} or C ⊆ {x ∈ <n : 0 < dTx+ d0 < d∗0}

where d∗0 =

√
c0 − γd0

α
;

iv) if c = βa + γd, β > 0 and rank[a, d] = 2, then f is pseudoconvex on every open convex set C such
that:

C ⊆ {x ∈ <n : βaTx+ c0 − γd0 > 0, dTx+ d0 > 0};
v) if c = βa+γd, β < 0 and rank[a, d] = 2, then f is pseudoconvex on every open convex set C such that:

C ⊆ {x ∈ <n : βaTx+ c0 − γd0 > 0, dTx+ d0 + β > 0}



or
C ⊆ {x ∈ <n : βaTx+ c0 − γd0 < 0, 0 < dTx+ d0 < −β}.

In any other case f is not pseudoconvex on C ⊆ H whatever the open convex set C is.

Specifying the previous result we get the following characterization of the pseudoconvexity of f on the
nonnegative orthant.

Theorem 2 The function f(x) = aTx + cT x+c0
dT x+d0

is pseudoconvex on <n+ if and only if d ∈ <n+ \ {0},
d0 > 0 and one of the following conditions holds:
i) a = αd, α ≥ 0;
ii) c = γd, c0 − γd0 ≥ 0;

iii) a = αd, α < 0, c = γd, c0 − γd0 < 0 and d0 >
√

c0−γd0
α ;

iv) c = βa+ γd, β > 0, rank[a, d] = 2, a ∈ <n+ and c0 − γd0 > 0;
v) c = βa+ γd, β < 0, rank[a, d] = 2, a ∈ <n−, c0 − γd0 > 0 and d0 + β > 0.

Proof. It is sufficient to note that a halfspace {x ∈ <n : vTx+ v0 > 0} ⊃ <n+ if and only if v ∈ <n+ \ {0}
and v0 > 0.

Let us note that when i) or ii) holds f is pseudoconvex on the whole halfspace H; theoretical properties
and sequential methods for Problem P in such cases have been already established in [7]. Therefore, we
limit ourselves to deal with the following problems corresponding to the cases iii)-v) of Theorem 2.

• Case iii) Function f assumes the form f(x) = αdTx + γdT x+c0
dT x+d0

, so that Problem P is equivalent
to Problem

P1 : inf
x∈S

[
f1(x) = αdTx+

c∗0
dTx+ d0

]
where d ∈ <n+ \ {0}, d0 > 0, α < 0, c∗0 < 0, d0 >

√
c∗0
α and S ⊆ <n+.

• Case iv) Function f assumes the form f(x) = aTx+ (βa+γd)T x+c0
dT x+d0

, so that Problem P is equivalent
to Problem

P2 : inf
x∈S

[
f2(x) = aTx+

βaTx+ c∗0
dTx+ d0

]
where d ∈ <n+ \ {0}, d0 > 0, β > 0, rank[a, d] = 2, a ∈ <n+, c∗0 > 0 and S ⊆ <n+.

• Case v) Function f assumes the form f(x) = aTx+ (βa+γd)T x+c0
dT x+d0

, so that Problem P is equivalent
to the Problem

P3 : inf
x∈S

[
f3(x) = aTx+

βaTx+ c∗0
dTx+ d0

]
,

where d ∈ <n+ \ {0}, d0 > 0, β < 0, rank[a, d] = 2, a ∈ <n−, c∗0 > 0, d0 + β > 0 and S ⊆ <n+.

3 Theoretical properties

In this section we establish some theoretical properties for problems P1−P3 which will allow us to suggest
suitable sequential methods.
In general, when the minimum is not attained, problem P may have finite or not finite infimum. In any
case there exists an extreme direction of the polyhedral feasible set S on which f reaches the infimum,
as it is stated in the following theorem whose proof can be found in [7].



Theorem 3 Let ` be the infimum of problem P .
i) ` is attained as a minimum if and only if there exists a feasible point x0 belonging to an edge of S such
that f(x0) = `.
ii) If ` is not attained as a minimum, then there exist a feasible point x0 and an extreme direction u such
that ` = lim

t→+∞
f(x0 + tu).

iii) The infimum ` is not finite if and only if there exist a feasible point x0 and an extreme direction u
such that lim

t→+∞
f(x0 + tu) = −∞.

Remark 4 Recall that u ∈ <n is an extreme direction for S if and only if for every x0 ∈ S we have
x0 + tu ∈ S, ∀t ≥ 0. Consequently, since dTx+ d0 > 0,∀x ∈ S, necessarily we have dTu ≥ 0.

The particular structure of the pseudoconvex objective function f allows us to specify the properties of
an extreme direction along which the infimum is reached.
As regards to problem P1 we have the following results.

Theorem 5 Consider Problem P1.
i) A feasible point x0 is a minimum for Problem P1 if and only if x0 is a maximum point for the linear
problem max

x∈S
dTx.

ii) inf
x∈S

f1(x) = −∞ if and only if there exists an extreme direction u such that dTu > 0 or, equivalently,

sup
x∈S

dTx = +∞.

Proof. It is sufficient to prove that a feasible direction is a decreasing direction for function f1 if and
only if it is an increasing direction for the linear function dTx. With this aim, consider the restriction
ϕ(t) = f1(x0 + tu) where x0 ∈ S and u is a feasible direction.

We have: ϕ′(t) = dTu

[
α− c∗0

(dTx0 + tdTu+ d0)2

]
, ϕ′(0) =

αdTu

(dTx0 + d0)2

((
dTx0 + d0

)2 − c∗0
α

)
.

The assumptions α < 0 and d0 >
√

c∗0
α imply

(
dTx0 + d0

)2 − c∗0
α > 0. Consequently, we have ϕ′(0) < 0 if

and only if dTu > 0. The thesis follows.

Regarding Problem P2 note that f(x) > aTx ≥ 0 ∀x ∈ S ⊆ <n+. This allows us to prove that if the
infimum is not attained as a minimum, then it coincides with the minimum value of the linear function
aTx. To get this result we first establish the following theorem.

Theorem 6 Consider Problem P2. The infimum is not attained as a minimum if and only if there
exists an extreme direction u such that aTu = 0 and dTu > 0.

Proof. From ii) of Theorem 3, there exist an extreme direction u and x0 ∈ S such that:

` = lim
t→+∞

f2(x0 + tu) = lim
t→+∞

[
aTx0 + taTu+

βaTx0 + tβaTu+ c∗0
dTx0 + d0 + tdTu

]
.

Since f2 is lower bounded, the limit ` is finite so that necessarily we have aTu = 0 and dTu > 0. Con-
versely, let u be an extreme direction such that aTu = 0 and dTu > 0. For every x ∈ S it results
f2(x) > f2(x+ tu), ∀t > 0 and, consequently, f2 does not assume minimal value on S.

Theorem 7 Consider Problem P2. The infimum is not attained as a minimum if and only if inf
x∈S

f2(x) =

min
x∈S

aTx.



Proof. Since f2(x) > aTx, ∀x ∈ S, the equality inf
x∈S

f2(x) = min
x∈S

aTx implies that the infimum is not

attained. Conversely, from Theorem 6, there exist x0 ∈ S and an extreme direction u with aTu = 0,
dTu > 0. Let x∗ be the minimum point for min

x∈S
aTx and consider the restriction of f on the feasible

half-line x∗ + tu. We have aTx∗ ≤ ` = lim
t→+∞

f2(x0 + tu) ≤ lim
t→+∞

f2(x∗ + tu) = aTx∗, so that the thesis

follows.

Unlike problem P2, problem P3 may have finite or not finite infimum as it is stated in the following
theorem.

Theorem 8 Consider Problem P3.
i) We have inf

x∈S
f3(x) = −∞ if and only if there exists an extreme direction u, such that aTu < 0 and

dTu ≥ 0 or, equivalently, if and only if inf
x∈S

aTx = −∞.

ii) The infimum is finite and not attained as a minimum if and only there exists an extreme direction u,
such that aTu = 0 and dTu > 0 or, equivalently, if and only if inf

x∈S
f3(x) = min

x∈S
aTx.

Proof. Let u be an extreme direction u and x0 ∈ S; we have lim
t→+∞

f3(x0 + tu) = lim
t→+∞

taTu if dTu > 0,

lim
t→+∞

f3(x0 +tu) = lim
t→+∞

taTu(dTx0 +d0 +β) if dTu = 0. Consequently, inf
x∈S

f3(x0 +tu) = −∞ if and only

if aTu < 0 and dTu ≥ 0, while inf
x∈S

f3(x0 + tu) is finite if and only if aTu = 0, dTu > 0. Moreover, with

a proof similar to the one given in Theorem 7, we get inf
x∈S

f3(x) = min
x∈S

aTx and the proof is complete.

4 Sequential methods

Taking into account Theorem 5, problem P1 can be solved by means of any linear programming algorithm.
In particular an optimal solution, if one exists, is attained at a vertex of S.
Regarding Problem Pi, i = 2, 3, the idea of the sequential method that we are going to describe, is to
transform the problem into a linear parametric one where the parameter denotes the level of the linear
function dTx+ d0.
More exactly, set dTx + d0 = θ, S(θ) = S ∩ {x ∈ <n : dTx + d0 = θ}, Θ̄ = {θ ∈ < : S(θ) 6= ∅} and
consider the following parametric problem

Pi(θ) : inf
x∈S(θ)

fi(x), i ∈ {2, 3}.

Obviously we have inf
x∈S

fi(x) = inf
θ∈Θ̄

zi(θ), where zi(θ) is the optimal value function of the parametric

problem Pi(θ), i.e., zi(θ) = inf
x∈S(θ)

fi(x).

The pseudoconvexity of fi allows us to state a basic relationship between the optimal solution for problem
Pi and a local minimum point of zi(θ).

Theorem 9 If θ0 is a local minimum for zi(θ), then an optimal solution for problem Pi(θ0) is a global
minimum for Problem Pi.

Proof. By assumption there exists ε > 0 such that zi(θ0) ≤ zi(θ), ∀θ ∈ (θ0 − ε, θ0 + ε). Let x0 be an
optimal solution for Pi(θ0), so that fi(x0) = zi(θ0). Assume, by contradiction, that x0 is not a local
minimum for fi. Consequently, ∀δ > 0, there exists x∗ ∈ (x0 + δB) ∩ S, with fi(x∗) < fi(x0), where B is
the unit ball.



Choosing δ = ε
2‖d‖ , we have x∗ ∈ (x0 + δB) ∩ S ⊂ {x : θ0 − ε < dTx + d0 < θ0 + ε}. In fact

dTx∗ = dTx0 + ε
2‖d‖d

Tu and hence dTx0 − ε < dTx∗ < dTx0 + ε, or, equivalently, θ0 − ε < θ∗ < θ0 + ε,
where θ∗ = dTx∗ + d0.
We have zi(θ0) = f(x0) > fi(x∗) ≥ min

x∈S(θ∗)
fi(x) = zi(θ∗) ≥ zi(θ0) and we get a contradiction. Conse-

quently, x0 is a local minimum for fi and the thesis follows from the pseudoconvexity of the function fi.

As a consequence of Theorem 9, an optimal solution for problem Pi can be found by looking for a
local minimum for the function zi(θ). The following theorem points out that a local minimum for zi(θ),
if one exists, belongs to the half-line [θ0,+∞), where θ0 is the level of the denominator corresponding to
an optimal solution for the linear problem min

x∈S
aTx.

Theorem 10 Let x0 be an optimal solution for the linear problem min
x∈S

aTx and set θ0 = dTx0 + d0. We

have inf
x∈S

fi(x) = inf
θ≥θ0

zi(θ).

Proof. Since inf
x∈S

fi(x) = inf
θ∈Θ̄

zi(θ), we must prove that fi(x) < fi(x0) implies θ > θ0. We have

fi(x)− fi(x0) =
θ + β

θ
(aTx− aTx0) +

θ0 − θ
θ0θ

(βaTx0 + c∗0).

Taking into account that
θ + β

θ
=
dTx+ d0 + β

dTx+ d0
> 0, βa ∈ <n+, c∗0 > 0, fi(x) − fi(x0) < 0 necessarily

implies θ > θ0.

For every fixed feasible level θ of the parameter, we have fi(x) =
θ + β

θ
aTx +

c∗0
θ

. Since
θ + β

θ
> 0,

an optimal solution for Pi(θ) is found by solving the linear parametric problem

P ∗i (θ) : min
x∈S(θ)

aTx

With this regard, let S = {x ∈ <n : Ax = b, x ≥ 0} be the feasible region of problem Pi, where A

is a m × n matrix, rank A = m < n, b ∈ <m and set A∗ =
[
A
dT

]
, b∗ =

(
b
−d0

)
+ θem+1, where

em+1 ∈ <m+1 is the unit vector having the (m+ 1)-th component equal to 1 and all others equal to 0.
We have S(θ) = {x ∈ <n : A∗x = b∗, x ≥ 0}.
Note that rank A∗ = rank A if and only if there exists λ ∈ <n such that d = λTA. This implies
dTx = λTAx = λT b, ∀x ∈ S, so that problem Pi reduces to a linear programming problem. For such a
reason in what follows we will assume rank A∗ = m+ 1.
We will use the following standard notations.
Let B be the basis corresponding to a basic feasible solution x(θ) ∈ S(θ) which is also a vertex of S. We
will partition the matrix A∗ and the vectors a, x, as A∗ = [A∗B |A∗N ], aT = (aTB , a

T
N ), xT = (xTB , x

T
N ).

Now we are able to find a relationship between an optimal basic solution x(θ̄) = (x̄B , 0) for problem
P ∗i (θ̄) and the optimal value function zi(θ) evaluated on the stability interval F = {θ ∈ < : xB(θ) =
xB + θuB ≥ 0} = [θmin, θmax], where uB = (A∗B)−1em+1, xB(θ̄) = x̄B and θmax may be also +∞.
We have

zi(θ) =
θ + β

θ
aTB (xB + θuB) +

c∗0
θ
, θ ∈ F

z′i(θ) =
1
θ2

(
aTBuBθ

2 − c∗0 − βaTBxB
)
, θ ∈ F .

The idea of the sequential method that we are going to describe is the following.
Let x0 be an optimal solution for min

x∈S
aTx, set θ0 = dTx0 + d0 and let x(θ0) be an optimal basic



solution for P ∗i (θ0). Starting from θ0, we will consider increasing level θ of the denominator up to find
a local minimum of zi(θ). More precisely, by applying sensitivity analysis, we find the stability interval
F = [θmin, θmax], θmin = θ0, associated with x(θ0). If zi(θ) has a critical point θ̂ ∈ F , then x(θ̂) is a
global minimum for problem Pi; if zi(θ) is decreasing on F , the feasibility is lost for θ > θmax, and it is
restored by applying a dual simplex iteration. In this last case we find a new stability interval and we
repeat the analysis.
With respect to a stability interval F = [θmin, θmax], taking into account that c∗0 + βaTBxB > 0, we have
the following exhaustive cases.

• If aTBuB ≤ 0, then zi(θ) is non-increasing on F .

• If aTBuB > 0, then θ̂ =

√
c∗0 + βaTBxB

aTBuB
is a strict local minimum for zi(θ). If θ̂ ∈ F , then x(θ̂) is a

global minimum for problem Pi, otherwise zi(θ) is decreasing on F .

Now we are able to state the main steps of the algorithm.

Step 0 Solve min
x∈S

aTx. If there do not exist solutions, STOP: inf
x∈S

f3(x) = −∞, otherwise let x0 be an

optimal solution, calculate θ0 = dTx0 + d0 and let x(θ0) be an optimal basic solution for P ∗i (θ0)
(see Remark 11). Set θ0 = θmin and go to Step 1.

Step 1 Determine the stability interval F = [θmin, θmax] associated with the optimal solution x(θmin) =

(xB + θminuB , 0) of P ∗i (θmin). If aTBuB ≤ 0, then go to Step 2, otherwise compute θ̂ =
√

c∗0+βaT
BxB

aT
BuB

.

If θ̂ ∈ F , then x(θ̂) is an optimal solution for problem Pi. If θ̂ > θmax, go to Step 3, otherwise
STOP: x(θmin) is an optimal solution for Pi.

Step 2 If θmax = +∞, STOP: inf fi(x)
x∈S

= min
x∈S

aTx; otherwise go to Step 3.

Step 3 Let k be such that xB
k

+ θmaxuBk
= 0. Perform a pivot operation by means of the dual simplex

algorithm, set θmax = θmin and go to Step 1; if such pivot operation cannot be performed, STOP:
x(θmax) is an optimal solution for Pi.

Remark 11 In order to find x(θ0), we must extend the basis associated with x0. With respect to such a
basis, let A = [AB |AN ], āTN = aTN −aTBA

−1
B AN , d̄TN = dTN −dTBA

−1
B AN . The new variable which enters the

basis, corresponding to the parametric constraint, is xNk
, where Nk is such that

āNk

d̄Nk

= min
d̄Nj

>0

{
āNj

d̄Nj

}
.

The following example shows the main steps of the algorithm.

Example 12 Consider problem P2 where f(x) = 2x1 + 3x2 +
4x1 + 6x2 + 76
x1 + x2 + 1

and the feasible region is

S =
{
x ∈ <4 : 22x1 − 9x2 + x3 = 44, 2x1 + x2 + x4 = 1, xi ≥ 0, i = 1, .., 4

}
.

The vertex x0 =
(

1
2 , 0, 33, 0

)T is the minimum for aTx = 2x1 + 3x2 on S; by introducing the parametric
constraint x1 + x2 = θ − 1, we get x(θ) = (−1 + θ, 0, 66− 22θ,−3 + 2θ)T , so that the stability interval is
F =

[
3
2 , 3
]
. The critical point of the optimal value function z(θ) is θ̂ = 6; since θ̂ /∈ F , z(θ) is decreasing

on F . For θ > 3 the fesibility is lost and it is restored by means of an iteration of the dual simplex

algorithm. We have x(θ) =
(

35
31

+
9
31
θ,−66

31
+

22
31
θ, 0,−27

31
+

40
31
θ

)T
, F = [3,+∞]. The critical point

of z(θ) is θ̂ = 5, since θ̂ ∈ F , then the optimal solution for P2 is x̄ =
(

80
31
,

44
31
, 0,

173
31

)T
obtained by

setting θ = 5 in x(θ). Note that x̄ belongs to an edge of S.
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