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In thermal plasma, the structure of the density singularity formed in a relativistically large
amplitude plasma wave close to the wavebreaking limit leads to a refraction coefficient with
discontinuous spatial derivatives. This results in a non-exponentially small above-barrier reflection
of an electromagnetic wave interacting with the nonlinear plasma wave. © 2012 American Institute

of Physics. [http://dx.doi.org/10.1063/1.4764056]

I. INTRODUCTION

In the first part of our paper,' extending an approach for-
mulated in Ref. 2 to the relativistic limit, we have studied
systematically the structure of the singularities formed in a
relativistically large amplitude plasma wave close to the
wavebreaking in a thermal plasma. We have shown that the
electron density distribution in the breaking wave typically
has a “peakon” form with a discontinuous spatial derivative,
similar to the profiles of nonlinear water waves® > and that in
the above breaking limit the derivative becomes infinite.
This results in a finite reflectivity of an electromagnetic
(EM) wave interacting with nonlinear plasma waves. This is
an important property, in particular, because nonlinear Lang-
muir waves play a key role in the “relativistic flying mirror”
concept.®'! In this concept, very high density electron shells
are formed in the nonlinear wake wave generated by an
ultrashort laser pulse propagating in an underdense plasma
with a speed close to the speed of light in vacuum. The shells
act as mirrors flying with relativistic velocity. When they
reflect a counterpropagating electromagnetic pulse, the pulse
is compressed, its frequency is upshifted, and its intensity is
increased. It is the singularity in the electron density distribu-
tion that affords a high efficiency in the reflection of a por-
tion of the counterpropagating electromagnetic pulse. If the
Langmuir wave is far below the wave-breaking threshold, its
reflectivity is exponentially small. For a nonlinear Langmuir
wave, the singularity formed in the electron density breaks
the geometric optics approximation and leads to a reflection
coefficient that is not exponentially small.®'

In the present paper, we address the problem of the interac-
tion of an electromagnetic wave with a nonlinear plasma wave
which is of interest for the “photon accelerator” concept'*'*
and for the “relativistic flying mirror” paradigm.®™' We calcu-
late the reflection coefficients of an electromagnetic wave at the
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Russia.

DAlso at Institute of Theoretical and Experimental Physics, Moscow
117218, Russia.

1070-664X/2012/19(11)/113103/7/$30.00

19, 113103-1

singularities of the electron density in the most typical regimes
of a strongly nonlinear wave breaking in thermal plasmas.

Il. ELECTROMAGNETIC WAVE REFLECTION BY THE
ELECTRON DENSITY MODULATED IN THE BREAKING
WAVE

As we have seen in the first part of our paper,’ in a
strongly nonlinear wake wave the electron density is modu-
lated and forms thin shells (singularities or caustics in the
plasma flow) moving with velocity f3,. In the Introduction, in
a way of Refs. 611, we have discussed how a counterpropa-
gating electromagnetic wave can be partially reflected from
these density shells which play the role of relativistic mirrors.
While in the case of a cold plasma, the electron density at the
singularity tends to infinity (see Eq. (59) of Part I' and Refs. 7
and 12), in a thermal plasma the density is limited by the
expressions given by Egs. (41) and (42) of Part I.' Although
in this case the density profile is described by a continuous
function, its derivative is discontinuous. This discontinuity
results in the breaking of the geometric optics approximation
and leads to a reflectivity that is not exponentially small.

In order to calculate the reflection coefficient, we con-
sider the interaction of an electromagnetic wave with the
electron density shell formed at the breaking point of a Lang-
muir wave in a thermal plasma similarly to what has been
done in Refs. 6 and 12. The electromagnetic wave, described
by the z component of the vector potential A,(x,y, ), evolves
according to the linearized wave equation

OpA. — (DA + OpA:) + Q;e (x —vpnt)A. =0, (1)

where the square of the local Langmuir frequency is

fg(p,X)dp

/1 + (p/mcc)z'

The last term in the Lh.s. of Eq. (1) is the z—component of the
electric current density generated by the electromagnetic
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wave in a plasma with the electron distribution function
fe(p,X). In the limit y,,Apo < 1 for the electromagnetic
wave frequency larger than the Langmuir frequency calcu-
lated for the maximal electron density, o > wpe(Zyph
/ Apo) , we can neglect the finite temperature effects on the
electromagnetic wave dispersion, which have been analyzed
in Ref. 15, in the limit of homogeneous, stationary plasmas.
For the water-bag distribution function

fe(p, X) = no0(p — p—(X))0(p+(X) = p)/Apo, ~ (3)
2
Q. (X) takes the form
X) + /1 +pp(X)?
Q2. (x) - peAl " p+(X) p+(X) @
PO \p- () + /14 p- (%)
where w , = 4nnge? /m,, p=(X) and Ap, are normalized on
mec.

The wake wave modulates the electron density and tem-
perature increasing them in the compression regions and
decreasing them in the rarefaction regions. In Fig. 1, we illus-
trate the dependence of Q,.(X)/wp, on X for the parameters
of a wakewave corresponding to Apg = 0.1 and E,x = 2.3 at

= 15 and for f8,, = 0.992.

From Egs. (35) and (59) of Part I' in the ultrarelativistic
case, fi,, ~ 1, using Eq. (4) we find for a relatively cold dis-
tribution such that p_ < 1 that near the wavebreaking point
le,g (X) is given by

w2 CU2 +/"brVph
@, (X) m 5 = O X, ®)
Yph D0

The propagation of a sufficiently short electromagnetic
wave packet in the plasma with electron density modulated
by the Langmuir wave can be described within the frame-
work of the geometric optics approximation. The electro-
magnetic wave is represented as a particle (“photon”) with
coordinate x and momentum k (wave vector). The interaction
of a “photon” with a Langmuir wave that propagates with a
relativistic phase velocity vpp &~ ¢ can be accompanied by a
substantial frequency upshift called ‘“photon acceler-
ation.”'*!*1%17 Using the dispersion equation

35
3.0
25 3.5

Qpelope

FIG. 1. Dependence of the frequency ratio Q. /w,. on the coordinate X for
the parameters of a wakewave corresponding to Apy = 0.1 and Ep, = 2.3
at X =15 and for f;, = 0.992. In the inset, the ratio Q. (X) /), is shown in
the vicinity of the maximum.

Phys. Plasmas 19, 113103 (2012)

o(x,k;t) = \/k2C2 + len,(x — Upnl), (6)
where k? = kzl + k% with k| and k, the wave vector compo-
nents parallel and perpendicular to the propagation direction
of the Langmuir wave, we obtain the “photon” Hamiltonian
function which depends on the canonical variables X =
X — vpnt and k| (see Ref. 18) as

,/ c +Q — Bpnkyjc- (7)

The transverse component of the wave vector is constant
ki =k pand k, o = 0 is assumed for the sake of simplicity.
The phase portrait of the photon for Q,.(X) given by Eq. (4)
for the parameters corresponding to Fig. 1 is shown in Fig. 2.

Along an orbit corresponding to the value Hyhoton (X, £/|)
= Hphoton (X0, k||.0) = Hphotono Of the Hamiltonian (7), the
photon frequency is given by

tholon X k | \

QZ
o ® g

_ .2
w = Vthphoton,O liﬂph 2
thoton,()yph

Photons, for which Hhoton0 < max{€Q,./y,,} are trapped
inside the region enclosed by the separatrix. Along the orbit,
their frequency changes between wpax and @i, corresponding
to the plus and minus signs in the r.h.s. of Eq. (8) at the mini-
mum of Q,,(X). We note here that under conditions typical for
laser-plasma interaction, the time required for photon bouncing
between subsequent electron density maxima could be larger
than the laser pulse energy depletion time, as discussed at the
end of Sec. IIl. Photons with Hphoton0 > max{€Q. /7, } are
not trapped and for them the sign in the r.h.s. of Eq. (8) is “+.”
For trajectories far above the separatrix, the photon frequency
variations are relatively weak.

A sufficiently strong wakefield can reflect a counterpro-
pagating photon, ko <0 due to above-barrier reflection

250

100

50

-10

FIG. 2. Photon phase portrait for the parameters of a nonlinear Langmuir
wave corresponding to Fig. 1. The dashed line corresponds to the trajectory
of photons that have appeared due to the over-barrier reflection at the crest
of the breaking wave. In the inset, the photon trajectories in the vicinity of
the saddle point are shown.
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(this trajectory is shown in Fig. 2 by a dashed line). Such a
photon acquires a frequency

©)

according to the Einstein formula for the frequency of the
electromagnetic wave reflected by a relativistic mirror.'” The
geometric optics approximation fails when the wakefield is
close to wave breaking and this provides the appropriate con-
ditions for a not exponentially weak wave scattering.

lll. SCATTERING OF AN ELECTROMAGNETIC WAVE
AT THE BREAKING WAKE WAVE

A. Reflectivity of nonlinear wake wave

In order to find the reflectivity of the nonlinear wake
wave, we perform a Lorentz transformation to the frame of
reference moving with the phase velocity of the Langmuir
wave. In the boosted frame, for the electromagnetic wave
interacting with the nonlinear Langmuir wave Eq. (1) can be
written as

d*a({) ) B
i +q (Da(l) =0 (10)
with
A.
a() = n‘;C“z exp[—i(w'! — kyy)]. (11)

In the neighbourhood of the breaking point, ¢*>({) can be
written as

() = s>+ v(0). (12)
Here,

2=2 _ k§ and v({) = 0?2, (0)/c?, (13)

pe

{=Xpp, !, k', & are the coordinate, time, the wave num-
ber, and frequency in the boosted frame of reference.

We seek for the solution to the above-barrier scattering
problem represented by Eq. (10) writing its solution in the
form (see Refs. 12, 20, and 21)

(beexp(iW(0)) + b_exp(—W()],  (14)

1
Va(0)

where the phase integral is defined as
¢
WO = [ altar. (15)

The above-barrier scattering geometry is illustrated in
Fig. 3. For constant b, and b_, Eq. (14) corresponds to the
“WKB” solution.?? In the following, the coefficients b, and
b_ are considered as functions of W instead of {, because, as
explained in Ref. 23, the mapping between W and ( given by

Phys. Plasmas 19, 113103 (2012)

p

]

A, o =

——

S 422%

FIG. 3. Scattering geometry.

Eq. (15) is one-to-one on the real axis. Far from the breaking
point, i.e., formally for { — *oo the function ¢*({) — s>
reduces to a constant and the solutions (14) are exact, so that
b+ — constas W — *oo.

In other words, the boundary conditions at { — *oco are

bi(—0) =1, b_(—) = p,
bi(+00) =1, b_(400) =0. (16)

Since in the representation (14), the single unknown
function a({) has been replaced by the two unknown func-
tions b+ ({), an additional condition is necessary. We shall

impose the condition
da . iw (o) —iW(0)
T ivq(0) <b+e b_e ) 17

Differentiating Eq. (14) with respect to { and taking into
account the constraint (17), we find

db+ iW(() db_ —iW(0) dln\/q( iW(C o
o+ = 0 — bV L p lW(s))
ac e + ac e R Le +b_e ,

(18)

while differentiating Eq. (17) with respect to { and substitut-
ing d?a/d¢* into Eq. (10) yields

b w40 i) _
d d dt

o) _ 4Inveg (boe O — b)),
(19)

The system of Egs. (18) and (19) is equivalent to Eq. (10). It
can be rewritten in the form

()= (aen ME)(E).

with
S(W) = 5——=Inq({(W)). (1)

Integrating both sides of Eq. (20) and using the above
formulated boundary conditions for b (*00), we can obtain
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the reflection coefficient p in the form of the infinite
series”*?

o) +00 ) m  W,—1 .
PZ—Z(—I)’”J a’WoS(Wo)ez’W“HJ AV, S(V,)e s

m=0 n=1v-°

—+00 )
X J dw,S(W,)e* ", (22)
Vi

where for m =0 the product is assumed to be unity.

In the case of weak reflection, |p| < 1, which requires
s? > v({) in Eq. (12), the reflected wave can be found
within the framework of perturbation theory. This corre-
sponds to the known approximation in quantum mechanics
considering the potential energy in the Schrodinger equation
as a perturbation.?® This approximation has also been used
for describing acoustic and electromagnetic wave propaga-
tion in layered media.*”*® This yields

i 400 »
I J v({)e ?stdg. (23)

:2—s .

B. Reflection at the wave close to the wavebreaking
threshold

As an example of the calculation of the reflection coeffi-
cient, we consider a typical dependence of the electron den-
sity in the vicinity of the wavebreaking threshold' in a cold
plasma. It can be approximated by the expression

noGay3
nX)=—r—"-—-. (24)
k§/3(12 —|—X2)]/3

Here, Gy/3 is the dimensionless coefficient and the pa-
rameter / shows how close the wave is to the wavebreaking
limit, for which /= 0. In the boosted frame of reference, this
results in

_ 82/3
ul) = (62 + Cz>1/3 (25)
4/3

with ¢ = k,/ and g,/3 = 2/9)'*(1 + afn)l/ﬁk;/3yp,1 (see Eq.
(44) in Ref. 1). Calculating the integral (23) for the integrand
given by Eq. (25), we find

po s oy 26
P23(s, )—m 1/6(2s1). (26)
Here, I'(z) and K, (z) are the Euler gamma function and the
modified Bessel function,? respectively.

p(s)

0

v© 2

o4
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In the limit of relatively large /, when s/>> 1, the
above-barrier reflection is exponentially weak,

Inga/3 —2sl

)~ ——t—— 27

p2/3(S, ) 85/312/3F(1/3) ( )

In the opposite case, when s/ — 0, we have a non-
exponentially small reflection coefficient'?

i3'20(1/3)g23

§) R . (28)

,02/3( (2s)2

This yields the reflection coefficient
3I%(1/3)g3
/3

Ryjs(s) m ————. (29)

2 (25)*

In Fig. 4, we show the normalized amplitude of the
reflected EM wave, p(s) as a function of the normalized
wavenumber s calculated for different electron density v/({)
profiles depending on the parameter ¢ which is equal to 0.05,
0.1, 0.2, 0.3, 0.4, 0.5 — from the upper to bottom curves,
respectively. The smaller the parameter ¢ is, i.e., closeness
of the wakewave to the breaking limit, the higher is the
reflection. In the short wavelength limit, so > 1, the reflec-
tion is exponentially weak.

In thermal plasmas in the neighbourhood of the point
where the wave breaks, ¢*({) in Eq. (12) can be written as

7(0) =" + g1l (30)
i.e., the function v({) is equal to g_;|{|. The coefficient g_;

is equal to

CU2 Npr

pe
g = reVTr G1)
8 APOCZ\/Vph

For ¢({) given by Eq. (30), we have

wm=5§«f+&ﬂwﬂ—ﬂm@m, (32)

where sign({) = —1if { < 0 and sign({) = 1 for { > 0, and

3¢, 1/3
q<w):( 5 Wsign<c)+s3) (33)

so that

b)

FIG. 4. (a) Normalized electron density v({) =1/
(6® + Cz)]/ . (b) normalized amplitude of the
reflected EM wave, p(s) = in'/2s77/°65/5T(1/3)
Kyj6(2s0), for ¢=0.05,0.1,02,03,04,0.5 —

from the upper to bottom curves, respectively.

-2 2(;

L
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S(W) = —>—L_sign(0). (34)
43 (L(W))
It follows that S(W) is discontinuous at { — 0 (W — 0)
S(W =0) = %sign((). (35)

This corresponds to the fact that the function ¢({) defined by
Eq. (30) has a discontinuous first derivative at { = 0. In the
vicinity of the singularity point, it can be represented in the
form q({) =~ qo +q:|{| with go=s and ¢ =g 1/2s.
Expanding W({) and S(W) in powers of { and substituting
them into Eq. (22), we can find (see Eq. (27) of Ref. 23) that
the first term yields the dominant contribution to the reflec-
tion coefficient, with the result

—igq1 _ —ig—
~ = 36
" sqo 453 (36)
and
2
Ro=lo P =52 (37)

Applicability of the WKB theory implies that g | < s°.

If we pay attention to the thermal broadening of the
edges of the water-bag distribution, we shall see a smoothing
of the singularity in the spatial derivative of the density. A
rough estimate of the effect of this factor on the reflectivity
can be made within the framework of the approximation sim-
ilar to that used above for consideration of the wakewave
below the breaking limit. We replace v({) = g_|{| with

V(C) = —8-1 \/ Cz + 0-2’

where ¢ is a measure of the thermal broadening of the edges of
the water-bag distribution or/and its value characterizes how
close the wave is to the singularity. Using expression (23), it is
easy to obtain for the amplitude of the reflected wave

(38)

oK, (2s0)
252

p(s)] = - (39)

8-1
Asymptotic expansions of the modified Bessel function
K (z) at z — 0 and z — oo yield the reflectivity in the long
wavelength limit, [p(s)| =~ g1 /4s® for so < 1 (in accordance
with Eq. (36)), and |p(s)| ~ g1(v/7a/4s%/?)e=>7 in the short
wavelength limit, when so > 1.

v(©)

Phys. Plasmas 19, 113103 (2012)

In Fig. 5, we show the normalized amplitude of the
reflected EM wave, p(s) as a function of the normalized
wavenumber s calculated for different electron density v/({)
profiles depending on the parameter ¢ which is equal to 0.05,
0.1, 0.2, 0.3, 0.4, 0.5 — from the upper to bottom curves,
respectively. The smaller the parameter o is, i.e., the small-
ness of the thermal broadening of the electron distribution
or/and closeness of the wakewave to the breaking limit, the
higher is the reflection. In the short wavelength limit,
so > 1, the reflection is exponentially weak.

C. Reflectivity in the above breaking regime

Similarly, we can find the reflection coefficient at the
electron density singularity formed in the above breaking re-
gime discussed in Part I.' In this case, the electron density
distribution is given by Eq. (63) of Part I. Using this relation-
ship, we obtain

_4ig(l’l) —+00
O Jx exp[2isd]
X (G(C)\/E —0(C-A) V- AC)dC, (40)
where
2 Emax e
8 =R A o

k, = c¢/wpe and Al = Apg/eEna. Calculating the integral
(40), we find

B ) exp(isA{)sin(sAL)
Consequently, we write
2 sin’ (sA{)
_ _ 2
Ry = o] =y 23 @

From Eqs. (37) and (43), we can see that in thermal plasmas
the reflection coefficient is s > 1 times larger in the above
breaking regime than for a wake wave approaching the
wavebreaking threshold.

Generalizing Eqs. (63) and (65) of Part L' we can write
the electron density dependence on the coordinate { in the
form

LG

2:5

b)
FIG. 5.(a) Normalized electron density
() =1-(c®+ )", (b) normalized amplitude
of the reflected EM wave, p(s) = oK, (2sa)/2s?, for
¢ =0.05,0.1,0.2,0.3,0.4,0.5 — from the upper to
bottom curves, respectively.
S 5
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2]’!0

ne(0) ~ 2 [P = 0@

with {+ = {*=A{/2 and m an even number, and

o

T
— 0 ) " 0L @)

ne(Q) ~ 5 [0 "+ 0= ) (=)

for m an odd number.
It is easy to show that for the reflection coefficient,

R(,}—wi) = ‘p(ﬁ)‘z, we have
2
o ¢ | T(1 + 1/m) sin(sAQ)
R(##) N g(#yl) 2 (zs)lJrl/m sAL ) (46)

if m is even, and

T
8@;) 27 (1 + cos %)

/—\%
I

(1 + 1 /m)sin(sA0)]
(Zs)1+1/m YAC ’

(47)

if m is odd.

Comparing Egs. (43), (46), and (47) for the reflection
coefficient with the corresponding coefficients obtained in
Ref. 12, we find that the effects of a finite temperature enter
Egs. (43), (46), and (47) as a form-factor [sin(sA{)/sA{]*. In
the limit Apyg — 0, this form factor tends to unity.

Since the frequency, w,, and the number of reflected
photons, N,, are related to that incident on the relativistic
mirror, g and Ny, as @, = wo(1 + f)/(1 = ) = wodyy,
and N, = RN, the energy of the reflected photon beam is
given by &, ~ 5S4y§hR, where & is the energy of the laser
pulse incident on the mirror. Comparing &£, with the energy
of the electrons in the first period of the wake wave (e.g., see
Ref. 30), &, ~ Eias a(wpe/ wo)z, where &), g is the laser driver
energy, we find that the photon back reaction (the pondero-
motive pressure) on the wake wave can be neglected pro-
vided & < Slas_d/4y3hR. As a typical reflection coefficient
value, we can take R ~ 0.1 /ygh (see Refs. 9 and 12) and
obtain the condition of relative weakness of the incident laser
pulse & < Ejysq- As we see owing to the weakness of the
photon-wakewave interaction, the incident pulse energy can
be of the order of that in the driver laser pulse.

The wake wave can be typically comprised of a sequence
of spikes with some spatial period as discussed in Part-I.' The
above-barrier reflectivity from such the structures has been an-
alyzed in Refs. 12 and 31 and demonstrated with computer
simulations in Refs. 32 and 33. The counterpropagating pulse
experiences multiple reflections giving rise to a train of ultra-
short pulses. While the number of photons reflected at each
layer, N, = RN, where N is the number of photons in the
counterpropagating pulse, is small, the multiple spikes can
reflect almost all incoming photons, N, — N, when the num-
ber of spikes, N, is large enough, N, > 1/R. The total
reflected energy tends to £, = 4y>&; in this limit. Here, the
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interaction of the outgoing wave with the density spikes is
neglected, because the reflecting structure moves with relativ-
istic velocity. During the first reflection, a portion of the
(counter-propagating) source pulse is shortened by a factor
~ 47’;2)}1’ e.g., under the conditions of the experiments®'® by a
factor about 100, and typically the reflected pulse becomes
much shorter than the wake wave wavelength, which is equal
to the distance between subsequent peaks. The time for the
outgoing wave to reach the next peak is of the order of
e /(1 = Bw) = 20,13, which is of the order of the driver
laser pulse energy depletion time. Due to this, the time
required for reflections of the outgoing wave from the density

spikes is well above the laser pulse energy depletion time.

IV. CONCLUSION

In the first Part of our paper,’ we found the structure of
the typical singularities that appear in the electron density
during the wave breaking in a thermal plasma. The singular-
ity in the electron density, moving along with the wake wave
excited by a high intensity ultra-short pulse laser, can act as
a flying relativistic mirror for counterpropagating electro-
magnetic radiation, leading to coherent reflection accompa-
nied by the upshift of the radiation frequency. This process
implies finite (not exponentially small) reflectivity at the
electron density singularities. This is provided by the struc-
ture of the singularity formed in a relativistically large am-
plitude plasma wave close to the wavebreaking limit that
leads to a refraction coefficient with discontinuous spatial
derivatives. We found the reflection coefficients of an elec-
tromagnetic wave at the singularities of the electron density
in the most typical regimes of strongly nonlinear wave
breaking in thermal plasmas. The efficiency of the photon
reflection can be substantially increased using the above
breaking limit regimes which lead to the formation of high-
order singularities.
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