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ABSTRACT
In this paper we set out to investigate the performances of

some of the algorithms proposed in the gear literature for iden-
tifying the machine-settings required to obtain predesigned gear
tooth surface topographies, or needed to compensate for flank
form deviations of real teeth. For the ease of comparison, the
problem is formulated as a nonlinear least-squares minimization,
and the most widely employed algorithms are derived as partic-
ular cases. The algorithms included in the analysis are: (i) one-
step methods; (ii) iterative methods; (iii) iterative methods with
step control. The performance index is devised in their ability of
returning practical solutions in the presence of: (i) strong model
nonlinearities, (ii) ill-conditioning of the sensitivity matrix, (iii)
demanding topographic shapes purposely selected. Instrumen-
tal here is an original classification of topographic modifications
as either “simple” or “complex”, based on the SVD analysis of
the sensitivity matrix. On the basis of the numerical tests doc-
umented, iterative techniques with step control seem the most
convenient, due to reliability and robustness of the solutions pro-
duced. The generation process here considered is face-milling
of hypoid gears, even though the methodology is general enough
to cope with any gear cutting method requiring only some minor
technical changes.

INTRODUCTION
Most of the literature on machine setting identification stems

from the necessity of minimizing the errors between the actual
surface (inspected by CMMs1) and the theoretical one. However,

∗Address all correspondence to this author.
1Computer Measuring Machines.

the translation of the so-called ease-off topography, which opti-
mally modifies the tooth surface microgeometry, into the corre-
sponding machine-tool setting variations, leads to the very same
problem. Therefore, this issue is a fundamental one in gear de-
sign and optimization, and has captured the attention of both in-
dustrial and academic researchers for the last 25 years.

Despite being such an active research area, the approaches
proposed to tackle the problem are quite few, with some repe-
titions and, in the authors’ opinion, with some of the methods
actually lacking the necessary theoretical underpinnings. From
a numerical optimization perspective, these approaches can be
grouped into three main categories: (i) one-step methods, where
linear regression (LR) analysis is applied, (ii) iterative methods,
where linear regression analysis is iteratively applied (LRI), and
(iii) iterative methods with step control, which actually embody
numerical techniques for nonlinear optimization well established
in other fields.

Representatives of group (i) are: [1, 2], where the error sur-
face is approximated as a quadratic one, and the correction of first
and second order terms is performed in two subsequent stages;
[3], where the subroutine DLSQRR of IMSL Math/Library [4]
is employed to solve the LR problem; [5–8], where the ill-
conditioning of the sensitivity matrix is reported, and the singular
value decomposition (SVD) is suggested as a mean to avoid nu-
merical divergence; [9], where it is showed that near dependen-
cies among machine parameters call for suitable regularization
techniques [10] in the LR scheme, in order to produce meaning-
ful solutions.

In group (ii) the following contributions can be counted:
[11], where the Surface Match algorithm is proposed. Here, five
average surface errors are defined and minimized by eventually
solving a nonlinear system of five equations in five unknown ma-
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chine settings. In [12, 13], a closed-loop correction process is
presented, which is based on the iterative application of linear re-
gression (LRI). Here, two variants of the method are proposed: in
the first, the residual vector is the physical distance between mis-
matched points, while in the second the residual is represented by
the coefficients of a polynomial interpolating the error surface.
However, motivations for the choice of either the first or the sec-
ond version seem to be lacking. Moreover, in terms of numerical
efficiency, direct application of the definitions in Eqn. (21) and
(22) in [12], or Eqn. (23) and (24) in [13], seems not advisable.

Group (iii) is comprised of contributions [14], [15], and [16].
In [14], the minimization of the real tooth surface deviations is
framed as a nonlinear minimization problem for the first time.
A cost function defined as the sum of the squared deviations
is considered, and the IMSL subroutine UMINF in [4], imple-
menting a quasi-Newton algorithm, is employed for the solution.
In [15], the multifunctional optimization system tool (MOST),
based on the sequential quadratic programming (SQP) method is
used. Here, the cost function is defined as the maximum tooth
surface deviation, and ill-conditioning is indirectly addressed by
imposing bound constraints on the design variables.

Instead, in [16], the problem of identifying the machine
settings, needed to generate a designed ease-off topography, is
framed as a nonlinear least-squares problem and solved with
the Levenberg-Marquardt method, with a trust-region approach.
This choice allows to handle the ubiquitous ill-conditioning, aris-
ing from near dependencies between the machine parameters.
This phenomenon becomes critical when a large number of them
are selected as design variables, especially in combination with
particular topographic “shapes”.

In this paper, we present a comparison between three meth-
ods from groups (i), (ii), and (iii). For the ease of classification,
machine settings identification is framed as a unique nonlinear
minimization problem, and the investigated methods are derived
as particular cases. The performance indices are devised in the
ability of returning practical solutions, despite model nonlinear-
ities and ill-conditioning, which seem intrinsic to the problem.
Instrumental in evaluating the response to ill-conditioning is the
SVD of the sensitivity matrix, which allows to classify topo-
graphic modifications as either “simple” or “complex”.

PRELIMINARIES
Modern methods for computing spiral bevel and hypoid gear

tooth flanks are based on mathematical models of their generat-
ing process. To cover all cases of generation, the various models
of known gear-generating machine tools (e.g. Gleason, Hurth-
Modul, Klingelnberg) can be generalized to a virtual machine
tool, see for instance [17–19]. This idea of a virtual machine
tool is commonly used by software that is designed for simu-
lation, analysis and design of gear drives [20, 21]. Typically,
a virtual machine tool incorporates approximately sixty design
parameters to determine the geometry of the manufactured gear
tooth flanks. For design parameters x (tool geometric parame-
ters and coefficients of the polynomials controlling the machine
joint functions [12]) fixed at given values x̄, we here consider the
generated tooth surface as given by the following system

p(ζ , x̄), with f (ζ , x̄) = 0, (1)

where ζ = (u,v,φ) collects the Gaussian and motion parame-
ters [16], p(ζ , x̄) is the enveloping family of tool surfaces, and
f (ζ , x̄) = 0 is the classical equation of meshing [22, 23].

TOPOGRAPHY MODIFICATION
A vector x ∈ Rn is defined that collects the n machine-tool

settings selected as optimization variables. The symbol x0 de-
notes the values of the machine-tool settings of the basic design.
The basic pinion tooth surface Γ(x0) is sampled according to a
two-dimensional grid of m points p(0)

i , (i = 1, . . . ,m). Therefore,
the initial grid on the basic tooth surface is uniquely represented
by the coordinates of its points p(0)

i and the components of its unit
normals n(0)

i , where p(0)
i := p(ζ (0)

i ,x0), and n(0)
i := n(ζ (0)

i ,x0).
The ζ (0)

i ’s are the triplets associated with the i-th initial point,
and x0 denotes the basic settings. As shown in Figure 1, the m
target points p∗

i are defined by adding the predesigned ease-off
values h(0)i to the corresponding points along the initial unit nor-
mals, as follows

p∗
i := p(0)

i +n(0)
i h(0)i (2)

It is worth noting that the vector h0 = [h(0)1 · · · h(0)m ]T is referred
to as initial residual, associated with the initial step x0, since it
can be viewed as the residual error of the approximation of the
target points with the basic ones.

The m point coordinates p(0)
i are to be selected on both the

active flank and the fillet of one side of the tooth if a single-
side cutting method is adopted, or on both the concave and con-
vex flanks, at the same time, if face-milling completing or face-
hobbing processes are employed.

For generic values x of the machine-settings, with their
associated tooth surface Γ(x), the residual vector h(x) =
[h1(x) · · · hm(x)]T and the corresponding triplets ζ i(x)’s can be
obtained by solving the following nonlinear system of four scalar
equations in the four scalar unknowns ζ i ∈ R3 and hi ∈ R

{
F1 := p∗

i −p(ζ i,x)−n(0)
i hi = 0

F2 := f (ζ i,x) = 0,
(3)

where F1 ∈ R3 and F2 ∈ R. It is worth noting that, ac-
cording to definition (3) (and differently from the one usually
adopted [12, 16]), the generic residual hi(x) is computed along
the initial normals n(0)

i . If on the one hand this choice allows to
simplify the expressions in (3), and to reduce the computational
cost (the quantities n(0)

i are constant and computed only once),
on the other it would call for a brief discussion of the existence
and differentiability of the solutions of (3) as a function of the
machine-settings x, which is here omitted for brevity. The adop-
tion of Eqn. (3) to define the residual hi influences the definition
of the Jacobian J, which is a fundamental quantity in the later
developments. It is worth recalling that J ∈ Rm×n is such that
Ji j = ∂hi/∂x j.
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FIGURE 1. Residual h(x) = [h1(x) . . .hm(x)]T . p(0)
i : initial points on

Γ(x0); p∗
i : target points on the target surface Γ(x∗); Γ(x): surface with

generic parameters x.

IDENTIFICATION ALGORITHMS
To identify the unknown parameters x∗, that is the machine

settings required to generate the target surface (p∗
i = p(ζ ∗

i ,x∗),
with i = (1, . . . ,m), and for some ζ ∗

i ’s), a minimization problem
can be set up with x as design variables, and where the objective
is to minimize the residual (ideally, to make it zero). A possi-
ble approach is to define the following nonlinear least-squares
problem

x∗ = argmin f (x), f (x) =
1
2

h(x)T h(x) (4)

In this approach, the target machine-tool settings x∗ will have the
property of minimizing the measure of misfit (cost function f (x))
defined by the sum of the squared components of the residual.

The proposed framework is chosen since it lends itself to
easily derive from it, as particular cases, the most widely used
setting identification methods proposed in the gear literature.
This helps in understanding what the methods ultimately aim at,
and to unveil possible weak points. Let us now examine the three
main categories into which such methods can be classified.

One-step methods
Let us build the second-order Taylor expansion q̄k(s) of the

objective function f (x) in Eqn. (4) at the generic value xk of the
machine setting vector x. Here, we introduced the correction
vector s := x−xk. Explicitly, the quadratic model q̄k(s) is given
by

q̄k(s) := fk +∇ f (xk)s+
1
2

sT ∇2 f (xk)s, (5)

where the gradient ∇ f (xk) ∈ R1×n and the Hessian ∇2 f (xk) ∈
Rn×n can be calculated by direct differentiation of f in (4) as

∇ f (xk) = hT
k Jk, ∇2 f (xk) =

∂
∂x

(
JT hk

)∣∣∣∣
xk

+JT
k Jk (6)

For conciseness, in Eqns. (5) and (6) the following positions were
made fk := f (xk), hk := h(xk) and Jk := J(xk). Usually, in non-
linear least-squares problems, the Hessian matrix ∇2 f (xk) can
be approximated by Hk := JT

k Jk [24]. The resulting quadratic
model qk(s) to be minimized is then

qk(s) := fk +hT
k Jks+

1
2

sT Hks (7)

To this end, we require that the partial derivative of qk(s) with
respect to s be zero, thus obtaining

JT
k hk +Hks = 0 (8)

or, by recalling that Hk = JT
k Jk, by equivalently writing

hk +Jks = 0 (9)

Since Jk ∈ Rm×n in Eqn. (9) is usually a tall matrix, i.e. m > n
(the linear system is overdetermined), a possible approach is to
use the normal equations, which stem naturally from the native
version of the problem in Eqn. (8). By selecting this option one
obtains the solution as

sGN =−H−1
k JT

k hk =−JL
k hk, JL

k :=−(JT
k Jk)

−1JT
k , (10)

where JL
k is the left-inverse of Jk. However, it is worth recalling

that H−1
k (and hence JL

k ) exists iff Jk is full column-rank (f.c.r.),
and in general it is preferable to tackle directly Eqn. (9), e.g. via
the SVD [25]. Despite the solution strategy eventually employed,
the minimization step from Eqn. (10) is defined as Gauss-Newton
step, and denoted by sGN.

If we now consider we are building the quadratic model in
the basic configuration, that is k = 0, and we are planning to find
a solution in one step only, we end up with the following linear
regression (LR) (equivalently, least-squares) problem

−J0 s = h0, (11)

where J0 and h0 denote the Jacobian matrix and the residual vec-
tor calculated in the basic machine settings x0, respectively. It
is worth noting that the vast majority of the works adopting this
method (see, e.g., [3], [5], [6], [7], [12], [8], [13]) make use of
the sensitivity matrix S0, where S0 :=−J0.
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It is worth also stressing that the very same problem is de-
rived equivalently if the following linear approximation hL of the
residual is formed

h(s)≃ hL(s) := h0 +J0 s (12)

and: either (a) the hL(s) is zeroed, or (b) hL(s) is substituted in
Eqn. (4), and the first Gauss-Newton step in Eqn. (10) is adopted
as the solution.

A fundamental aspect to stress is that the Jacobian Jk (as
well as its initial version J0) is almost always an ill-conditioned
matrix, i.e. its condition number is “high”, and the naı̈ve def-
inition of JL

k in Eqn. (10) leads to potentially meaningless nu-
merical results. Ill-conditioning is caused by redundancy of the
machine parameters, and it is worsened by increasing their num-
ber. Therefore, it is a ubiquitous problems when employing tool
and kinematic parameters of all orders, i.e. in UMC-like ma-
chines [26].

The usual remedy to this situation, as proposed in [8], is to
employ a truncated singular value decomposition (SVD), and/or
apply some regularization method [10] directly to (the equiva-
lent) problem in Eqn. (11). More insights into the possible effects
caused by ill-conditioning of the Jacobian, and the difficulty of
employing such techniques for restraining the solution norm will
be discussed later.

Iterative methods
In iterative methods, the quadratic model qk(s) of the objec-

tive function f (x) at the k-th step xk is built as in Eqn. (7), and
the sought minimum point xk+1 of qk(s) is used as the new start-
ing point; the procedure is then repeated until some convergence
criteria are met.

This perspective helps in clarifying that methods repeatedly
solving Eqn. (9) with k = 0,1, . . ., that is LRI methods in group
(ii) (for example iteratively calculating the steps by Eqn. (10)),
are basically taking Gauss-Newton steps to minimize (7), without
caring about their length. However, in the theory of numerical
optimization the latter procedure is not even envisaged, since it
is prone to instability, and better alternatives exist.

The iterative application of the Gauss-Newton step is pro-
posed in [12] as a method to sequentially refine the machine-
setting values, and it is defined as “closed-loop correction pro-
cess”. The main point here is that the hardware is “in the loop”,
and at each step the evaluation of the new residual entails: (i) the
machining of a new gear set, and (ii) the CMM inspection of the
generated flanks.

As a conclusion, it can be stated that systematic methods
should be adopted to manage unfeasible solutions caused by ill-
conditioning of the Jacobian, or by strong nonlinearities of the
cost function f w.r.t. x. Modern numerical methods exist that
possess these features and are the subject of the next section.

Iterative methods with step control
The main idea behind iterative methods with step control

strategies is that the quadratic model ought to be trusted only
within a region were it represents f with sufficient accuracy.
The quadratic model employed is always qk(s), for the follow-
ing reasons: (i) the error in neglecting the first term in ∇2 f (xk) of

Eqn. (6) is acceptable if the residual is “small”– which tends to be
increasingly true if a solution x∗ exists such that f (x∗) = 0, and
the actual xk is “approaching” to it – (ii) the computational cost
is reduced since no additional derivative evaluations are required,
(iii) with the approximation made, the Gauss-Newton step is al-
ways a descent direction for f , at least when Jk is full column
rank and the gradient hT

k J is nonzero.
The first work applying these methods to machine-setting

identification was published as early as 1991 by Litvin et al. [14].
Here, the quasi-Newton method implemented in the IMSL rou-
tine UMINF [4] was used. However, this choice does not allow
to exploit the least-squares structure of the problem, nor the fact
that the explicit expression of the gradient is available for the
problem at hand (recall expression of ∇ f (xk) in Eqn. (6)).

On the contrary, a method where the problem structure is
fully exploited is [16]. Here, the Levenberg-Marquardt (LM) al-
gorithm with a trust-region strategy is adopted. The minimiza-
tion step sk of the k−th quadratic approximation qk(s) in Eqn. (7)
is restrained within a ball of radius ∆k, that is

sk = argminqk(s), with ∥s∥ ≤ ∆k, (13)

where ∆k is adaptively modified in order to bound a region where
the quadratic model qk(s) is globally descriptive of f . Different
techniques can then be applied to solve the quadratic subproblem
in Eqn. (13): the dogleg method is one of the most used. A de-
tailed discussion of the implementation details of this particular
technique for the machine-setting identification problem can be
found in [16]. For a general discussion on numerical alternatives
and convergence properties, [24] and [27] can be consulted.

In the rest of the paper, only the results obtained with the
Levenberg-Marquardt algorithm described in [16] are presented.
The motivation is that this implementation is very efficient, due
to the profitable exploitation of the problem structure.

SOURCES OF NUMERICAL INSTABILITY
In this section we examine the main sources of numerical

instability that may arise during the machine setting identifica-
tion process. These are: (i) model nonlinearities, and (ii) ill-
conditioning of the Jacobian matrix.

Model nonlinearities
The dependance of the cost function f (x) in Eqn. (4) on the

design variables x is intrinsically nonlinear, due to the involved
trigonometric relationships between machine-tool settings and
the corresponding topographic modifications. This aspect can be
particularly critical when searching a solution by the linear re-
gression (LR) method, or by iterative methods (LRI), if the nec-
essary safeguards (essentially, a control of the step size) are not
taken in due account.

Ill-conditioned Jacobian
Here we consider the issues that the algorithms have to face

in the presence of an ill-conditioned Jacobian. The analysis is
not limited to one-step methods only, since the solution of the
linear problem in Eqn. (9) is also a basic ingredient of the itera-
tive methods.
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To simplify the notation, let us denote the Jacobian and the
residual with the symbols J and h, respectively. For the reader’s
convenience Eqn. (11) is here recalled

−Js = h (14)

The effect of ill-conditioning, i.e. the matrix condition number
K(J) is a “big” number, is that “small” relative variations in the
norm of h may cause “big” relative variations in the norm of the
solution s (but it does not always happen). This is clearer by
looking at the definition

sup
δh∈D

∥δ s∥/∥s∥
∥δh∥/∥h∥

≤ ∥J∥∥J−1∥=: K(J), (15)

where D is a set of possible values for the perturbations δh.
When the Euclidean norm is considered, the condition number
can be calculated as K(J) = σM(J)/σm(J), where σM(J) and
σm(J) are the max and min singular values of J. Culturally, ill-
conditiong is usually coupled to the risk of instability of the so-
lution s (e.g., caused by perturbations of the right-hand side h,
as in Eqn. (15)), which can occur as a consequence of truncation
errors. Therefore, the usual mean to establish if the situation can
be critical is to compare it to the machine precision ε : as a rule
of thumb, ε K(J) represents the precision preserved in the repre-
sentation of the solution. Note that in this context, the shapes of
the truncation errors are never investigated.

Now we discuss some issues of ill-conditioning not directly
related to the loss of precision of the solution, that are to be
considered as the actual source of troubles when identifying the
machine-setting corrections. For a complete understanding, a
short detour into linear algebra is necessary.

The Jacobian matrix J ∈ Rm×n, m > n, can be decomposed
via the SVD [25] as follows

J = UΣVT =
[
R N

][Σn
0
]

VT , (16)

where we assumed, as it always happens in practice, that J is
f.c.r. (i.e. rank(J) = r = n). Σn = diag(σ1, . . . ,σn) ∈ Rn×n,
with σ1 ≥ σ2 ≥ ·· · ≥ σn > 0. The n columns R ∈ Rm×n, with
R = [r1 · · · rn], represent an orthogonal basis for R(J) (the range
space of J) in Rm, while the m−n columns N ∈ Rm×(m−n), with
N = [n1 · · · nm−n], form an orthogonal basis for N (JT ) (the null
space of JT ). It is worth recalling that Rm is the space where the
residuals h are defined.

Similarly, we can define an orthogonal decomposition of Rn,
which is the space where the solutions s are defined. However,
since J is f.c.r., it does not admit a null space, i.e. N (J) = 0, and
Rn = R(JT ). Therefore, this space is entirely spanned by the n
columns of V ∈ Rn×n, with V = [v1 · · · vn].

Let us now look for a solution of Eqn. (14) via the SVD. By
exploiting the orthogonality properties of U and V, one writes

−UΣVT s = h → −ΣVT s = UT h (17)

If the positions s̄ := VT s and h̄ := UT h are made the solution
obtained via the pseudoinverse of Σ is given by

s̄ =−Σ+h̄ ⇐⇒ s̄ =−[Σ−1
n 0]h̄, (18)

where Σ−1
n = diag(1/σ1, . . . ,1/σn). Therefore, in the new co-

ordinates s̄ and h̄, the equations (14) are decoupled, and it is
quite easy to “see” the effect of requiring a particular topo-
graphic modification on the least-squares solution. In fact, if
h̄ = em

1 = [10 · · · 0]T ∈ Rm (here eq
p is the p-th element of the

canonical basis in a space of dimension q), then the solution is
s̄ =−(1/σ1)en

1 =−[1/σ1 0 · · · 0]T ∈ Rn.

In the original coordinates, hence in terms of actual topog-
raphy modifications and machine setting corrections, the uni-
tary ease-off h = Uem

1 = u1 calls for machine setting correc-
tions s = −(1/σ1)Ven

1 = −(1/σ1)v1. This is true for each
i ∈ (1, . . . ,n), and a variation of the residual along the i-th col-
umn ui of U calls for a correction of the machine-settings along
the i-th column vi of V, properly scaled by the reciprocal of the
associated singular value. Adapting the general definitions [25]
to the problem at hand, the columns ui can be defined as eigen-
topographies, while the scaled columns −(1/σi)vi can be de-
fined as eigen-corrections. Then, a principled way to distinguish
between a “simple” or a “complex” eigen-topography can be de-
vised according to the length of the required correction, which is
strictly related to its practical applicability (the new settings must
be acceptable to the machine and/or the underlying mathemati-
cal model must converge). Therefore, the first eigen-topography
h = u1 requires the eigen-correction s =−(1/σ1)v1, where usu-
ally 1/σ1 ≪ 1, and has to be considered as the “simplest” one.
On the contrary, the last eigen-topography h = un has to be con-
sidered the most “complex” one, since it calls for the last eigen-
correction s = −(1/σn)vn, where usually 1/σn ≫ 1, which is
likely to be of no practical use. As evident, the more the Jaco-
bian is ill-conditioned, the more eigen-topographies associated
to small singular values cause divergence in the solution.

As clearly evidenced by the SVD decomposition, N (JT )
denotes that portion of Rm which is unreachable by the linear
model, that is the space of the unreachable topographic modifi-
cations. Residuals belonging to N (JT ) cannot be compensated
at all, and the corresponding corrections are set to zero, that is
s = 0.

On the basis of the above considerations, it will be shown
that ill-conditioning (which is always present when many param-
eters are considered) is critical when it is associated to “complex”
topographic corrections (i.e., eigen-topographies of higher order,
or their combinations).

With x = x0 in Table 1, the topographic modifications ui
associated with the i-th singular value σi (i = 1, . . . ,20), are de-
picted in Figure 2 in increasing order of “complexity”. Quite
interestingly, the columns u1 to u3 resemble first-order ease-off
corrections, u4 to u9 recall second-order corrections, while ui
with i ≥ 10 get increasingly wavy and progressively similar to
random noise.
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FIGURE 2. Eigen-topographies ui, with (i = 1, . . . ,20).

NUMERICAL TESTS
In this section a comparison of the three methods LR, LRI,

and LM belonging to groups (i), (ii), and (iii), respectively, is
presented. The performance index is devised in the ability of
the methods to return practical solutions in the presence of: (i)
model nonlinearities, (ii) ill-conditioning of the Jacobian matrix,
when either “simple” or “complex” eigen-topographies have to
be obtained. It worth observing that, in general, nonlinearities
and ill-conditioning are usually coupled.

In the following numerical experiments, the tooth active
flank is sampled according to a typical 9×5 grid (9 points length-
wise and 5 profilewise): therefore h ∈ R45. The parameter types
and their basic values are reported in the first two columns of
Table 1.

Model nonlinearities
To highlight the effect of the sole nonlinearity, the follow-

ing test is conceived. The spherical radius R1 is assigned the new
value R∗

1 = 150.00 mm, and the corresponding ease-off h̄, associ-
ated with this modification, is computed with respect to the basic
configuration (with R(0)

1 = 350.897 mm) in Table 1. Then, start-
ing from the basic configuration R(0)

1 , and given h̄, the (un)known
global minimum point R∗

1 has to be identified by changing only
R1. In other words, the design variable is x = x = R1 ∈ R, its
initial value is x0 = 350.897 mm, and the initial residual is h̄.

The results of the identification process by applying differ-
ent methods are reported in Figure 3. As evident from this plot,
the solution xGN := x0 + sGN returned by the linear regression
method (i) (i.e., the minimum point of the quadratic approxima-
tion q0(s) of f (x) around x0, computed as in Eqn. (10)) is not
satisfactory due to the highly non-quadratic behavior of the cost
function f (x) “far” from x0. Since the value xGN is not prac-
ticable, also the methods of type (ii) would fail, as they would
re-start from an out-of-range setting.

On the contrary, iterative methods of type (iii), by wisely
controlling the step length, return the solution x6 = x∗, after just
six iterations.

Ill-conditioning
In the tests that follow, we consider a design vector x ∈ R20

which collects 20 variables chosen among tool geometric param-
eters and coefficients of the polynomial functions (up to the third
order) that control the machine motions.

Simple ease-off topography. As the first test case, we iden-
tify the machine-settings needed to obtain the lengthwise crown-
ing depicted in Figure 4. By virtue of the eigen-topography clas-
sification in Figure 2, this ease-off definitely rates among the
“easy” ones. It has been defined by purposely perturbing Rp,
S0 and q0 according to Stadtfeld’s formulas (5.9) in [28], p.80.
The residual h0 is computed according to the definition, with re-
spect to the tooth geometry associated to x0. This choice guaran-
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FIGURE 3. Effects of model nonlinearities on the solution. Black
solid: nonlinear cost function f (x); blue dashed: quadratic model q0(s);
xGN solution obtained by linear regression; x6 = x∗ global solution ob-
tained with iterative methods with step control.

tees that a global solution x∗ ∈ R20 exists (h(x∗) = 0), is known,
and can be used as a reference to properly assess the converge
properties of the algorithms to be tested. The values of the pre-
designed corrections are ∆Rp =+5.01127 mm, ∆S0 =+2.23637
mm, and ∆q0 =+3.5083 deg, and corresponding new values are
R∗

p = 84.0242 mm, S∗0 = 74.3764 mm, and q∗o = 63.2453 deg.
It is worth remarking that the other parameters are kept fixed at
their basic values, as shown in Table 1.

In the basic configuration x0, K(J0) = 1.8874 · 108. If we
perform calculations with a machine epsilon ε ≃ 10−16 (which
is a standard value for double precision) we are guaranteed to
preserve an accuracy of at least 8 digits when solving Eqn. (11)

PARAMETER BASIC VALUE x0 KNOWN SOLUTION x∗
Cutter point radius Rp (mm) 79.0130 84.0242
Spherical radius R1 (mm) 350.8970 same
Blade angle αp (deg) 17.4200 same

Radial setting S0 (mm) 72.1400 74.3764
Blank offset E0 (mm) −5.0800 same
Sliding base B0 (mm) −1.5192 same
Cradle angle q0 (deg) 59.7369 63.2453
Machine root angle γ0 (deg) 33.6731 same
Ratio of roll m0 1.7066 same
2C 0.0226 same
6D −0.0329 same
24E 0.0000 same
120F 0.0000 same
Mach. center to back D0 (mm) 2.7184 same
B1 (mm/rad) 0.0000 same
B2 (mm/rad2) 0.0000 same
B3 (mm/rad3) 0.0000 same
E1 (mm/rad) 0.0000 same
E2 (mm/rad2) 0.0000 same
E3 (mm/rad3) 0.0000 same

TABLE 1. Basic settings x0 and predefined global solution x∗ used
for the numerical tests.

TIPTO
E

pre-designed ease-off

FIGURE 4. Lengthwise crowning defined by variation of Rp, S0 and
q0 through Stadtfeld’s formulas [28].

by the SVD. Therefore, if the proper safeguards are taken, loss of
precision due to ill-conditioning is not a critical issue here. How-
ever, since K(JT

0 J0) = 3.5619 · 1016, adopting the naı̈ve method
in Eqn. (10), with direct calculation of the left-inverse of J0, one
faces the risk of getting meaningless results, since not a single
significant digit may be correct in the solution.

Now we turn to iterative methods without step control. If
we apply the algorithm suggested in [12], which is the iterative
calculation and application of the Gauss-Newton step, we get the
solutions reported in Table 2. Already at the fourth iteration x4
the residual h(x4) is very small and the overall result can be con-
sidered satisfactory. However, by looking at the evolution of the
residual norm ∥h(xi)∥, with (i = 0, . . . ,4), it can be argued that
the method has been “lucky” to retrace its steps. In fact, after
the first step, the direction taken was not a descending one (the
residual norm increased and no safeguard was provided by the
method): this fact, in other circumstances, may have caused di-
vergence.

The solution returned by one-step methods would be x1
which is clearly a terrible choice (the residual increased).

If we employ the iterative method with step control based on
a trust region strategy proposed in [16], we obtain the first four
steps reported in Table 3. Here the residual norm ∥h(xi)∥ de-
creases apparently more slowly compared to the iterative method
in Table 2: but, at least, it proceeds in a safe and predictable man-
ner, since the decrease is monotonic. However, there is no reason
to stop iterating just after a specified number of steps. In fact, if
the iterations are repeated until reasonable convergence criteria
are met (here 16 steps are needed), one ends up with the solution
x16 in the last column of Table 3, which allows to identify ex-
actly the predesigned topography (as confirmed by the residual
norm value). The actual residual obtained is exactly overlapped
to the pre-designed one, and its figure is omitted since it would
be identical to Figure 4.

Incidentally, it is worth noting that the returned solution x16
is a global one (the residual is numerically zero), and it is distinct
from x∗. This means that the identification problem, at least for
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PARAMETER BASIC VALUE x0 1-ST STEP x1 2-ND STEP x2 3-RD STEP x3 4-TH STEP x4
Cutter point radius Rp (mm) 79.0130 83.1011 83.6974 83.68 83.7016
Spherical radius R1 (mm) 350.8970 350.663 351.731 351.577 351.772
Blade angle αp (deg) 17.4200 18.3686 17.5145 17.358 17.2803

Radial setting S0 (mm) 72.1400 71.544 72.098 71.9588 72.1196
Blank offset E0 (mm) −5.0800 −6.85149 −6.66925 −6.69913 −6.55853
Sliding base B0 (mm) −1.5192 −2.40518 −1.37992 −1.17066 −1.15384
Cradle angle q0 (deg) 59.7369 63.6728 64.0183 64.1896 64.2011
Machine root angle γ0 (deg) 33.6731 34.6085 33.8799 33.7575 33.6957
Ratio of roll m0 1.7066 1.65746 1.66576 1.66476 1.66859
2C 0.0226 0.0141076 0.0138691 0.0137685 0.012635
6D −0.0329 0.0018602 −0.0284836 −0.0213934 −0.0289352
24E 0.0000 −0.00233724 0.0371361 −0.00591707 0.00185444
120F 0.0000 0.468629 −0.181301 0.0703083 −0.0830065
Mach. center to back D0 (mm) 2.7184 0.0966167 0.365558 0.0945179 0.192392
B1 (mm/rad) 0.0000 −1.56298 −0.349604 −0.128212 −0.03856
B2 (mm/rad2) 0.0000 2.99858 0.897106 0.0125777 −0.0667912
B3 (mm/rad3) 0.0000 −5.06704 −7.15252 −6.6867 −7.19538
E1 (mm/rad) 0.0000 −0.819061 −1.09494 −1.33243 −1.34861
E2 (mm/rad2) 0.0000 −1.98245 −1.39852 −1.29431 −1.09975
E3 (mm/rad3) 0.0000 0.0953315 −0.560977 −0.0427466 −0.284481

RESIDUAL NORM ∥h(xi)∥ 709.566 ·10−3 816.299 ·10−3 32.6796 ·10−3 0.5572 ·10−3 0.38313 ·10−3

TABLE 2. Lengthwise crowning. Iterative method without step control: iterations and cost function.

PARAMETER BASIC VALUE x0 1-ST STEP x1 2-ND STEP x2 3-RD STEP x3 4-TH STEP x4 SOLUTION (x16)
Cutter point radius Rp (mm) 79.0130 83.3295 83.4645 83.4893 83.4385 83.4415
Spherical radius R1 (mm) 350.8970 349.803 349.624 349.678 349.627 349.645
Blade angle αp (deg) 17.4200 18.51 17.58 17.10 17.04 17.03

Radial setting S0 (mm) 72.1400 73.0076 73.2475 73.3533 73.4683 73.6778
Blank offset E0 (mm) −5.0800 −6.16832 −6.21415 −6.0840 −5.9888 −5.7866
Sliding base B0 (mm) −1.5192 −2.85704 −3.18557 −3.06747 −3.26836 −3.30598
Cradle angle q0 (deg) 59.7369 62.7654 62.9805 63.1028 63.089 63.1203
Machine root angle γ0 (deg) 33.6731 34.6319 34.0202 33.6714 33.648 33.6411
Ratio of roll m0 1.7066 1.6765 1.67739 1.6809 1.68336 1.6887
2C 0.0226 0.02734 0.0332917 0.0319936 0.0322285 0.0304488
6D −0.0329 0.008652 0.00833984 0.000554519 −0.00112532 −0.0116756
24E 0.0000 0.033772 0.013159 0.0187673 0.0173679 0.0242835
120F 0.0000 0.631915 0.638027 0.45208 0.438806 0.287625
Mach. center to back D0 (mm) 2.7184 2.1616 2.33659 2.36549 2.45289 2.52707
B1 (mm/rad) 0.0000 −1.61065 −0.557492 0.0211364 0.0552485 0.0532945
B2 (mm/rad2) 0.0000 3.4023 0.892103 0.322951 0.142047 −0.0005663
B3 (mm/rad3) 0.0000 −3.60877 −3.29018 −3.09186 −3.11647 −3.33488
E1 (mm/rad) 0.0000 0.502459 0.365106 0.203197 0.22442 0.181836
E2 (mm/rad2) 0.0000 −1.84221 −1.58254 −1.39418 −1.27365 −0.972905
E3 (mm/rad3) 0.0000 2.05357 2.98662 2.46194 2.59446 2.1657

RESIDUAL NORM ∥h(xi)∥ 709.566 ·10−3 132.259 ·10−3 92.6702 ·10−3 12.7768 ·10−3 0.7655 ·10−3 4.31 ·10−12

TABLE 3. Lengthwise crowning. Iterative method with step control: iterations and cost function.

such a large number of design variables, admits multiple global
solutions.

Complex ease-off topography. As the second test case, we
consider the problem of finding the machine-setting corrections
to obtain the topographic modification h̄ = 0.25u12. This is a
scaled (reduced) version of the eigen-topography u12 of Figure 2,
which is shown more clearly in Figure 5.

As previously noted, this topography is known to be quite
unpleasant. In fact, it is associated to the “small” singular
value σ12 = 1.1552 · 10−4, and it calls for a correction s =
−(1/σ12)(0.25v12), which may not be compatible with machine
and tool physical limits. In more detail, the corrections for the
design variables x ∈ R20 obtained by one-step methods are re-
ported in Table 4. It is easy to note that this solution is practi-
cally meaningless, since many of the suggested corrections are
out of range. However, a policy based on the truncated SVD
(the singular values below a certain threshold are omitted in the
decomposition) is completely useless here, and would suggest a

null correction. This because the effect of discarding the singu-
lar values below σ12 is to augment the null space of JT

0 by all the
ui’s, with i ≥ 12. This approach does not allow to move further
in the identification process and it sounds like a surrender.

Note that the iterative methods without step control would
face exactly the same problem, since they are not able to over-
come the first step.

For such a complex task, also when considering the iterative
methods with step control, we are faced with the unavoidable
technological limitations. However, since these methods tackle
the problem really as a nonlinear one, at least they are able to
“move beyond” the linear approximation. As shown in Table 5,
the iterative method with step control reduces the residual norm
by 19%, already after six iterations. More importantly, also in
this case the method is capable of managing the ill-conditioning
with ease, returning a practical answer.

The designed and the obtained topographies are shown in
Figure 6.
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FIGURE 5. Complex ease-off. Modification proportional to the 12-th
eigen-topography u12, i.e. h(x0) = 0.25u12.

CONCLUSIONS
Some widely recognized but seldom investigated issues have

been analyzed in detail. By accurately tailoring some numerical
tests in which these obstacles come noticeably into play, the per-
formances of some of the most popular algorithms for machine-
setting identification have been assessed. Algorithms based on
iterative approximations of the residual, where the step length is
adaptively controlled, seem the most effective in returning practi-
cal and robust solutions. Therefore, as a final suggestion, the use
of routines based on the Levenberg-Marquardt algorithm is cer-
tainly recommended for the solution of the identification prob-
lem.

PARAMETER BASIC VALUE x0 SUGGESTED VARIATION s
Cutter point radius Rp (mm) 79.0130 +170.898
Spherical radius R1 (mm) 350.8970 −16.7091
Blade angle αp (deg) 17.4200 +411.76

Radial setting S0 (mm) 72.1400 −252.1
Blank offset E0 (mm) −5.0800 −640.058
Sliding base B0 (mm) −1.5192 −63.6513
Cradle angle q0 (deg) 59.7369 −635.158
Machine root angle γ0 (deg) 33.6731 +293.57
Ratio of roll m0 1.7066 −13.9546
2C 0.0226 +21.1555
6D −0.0329 −12.4575
24E 0.0000 +232.423
120F 0.0000 +179.569
Mach. center to back D0 (mm) 2.7184 +581.482
B1 (mm/rad) 0.0000 −801.452
B2 (mm/rad2) 0.0000 −1043.54
B3 (mm/rad3) 0.0000 −22.3089
E1 (mm/rad) 0.0000 +942.141
E2 (mm/rad2) 0.0000 −851.776
E3 (mm/rad3) 0.0000 −636.897

TABLE 4. Complex ease-off. Basic settings x0 and corrections s ob-
tained by the (complete) SVD.

TIPTO
E

pre-designed ease-off

obtained ease-off

FIGURE 6. Complex ease-off. Predesigned and obtained topogra-
phies after six steps of the Levenberg-Marquardt algorithm [16]: itera-
tive method with step control.

PARAMETER BASIC VALUE x0 SOLUTION x6
Cutter point radius Rp (mm) 79.0130 79.0311
Spherical radius R1 (mm) 350.8970 736.434
Blade angle αp (deg) 17.4200 17.9601

Radial setting S0 (mm) 72.1400 72.1419
Blank offset E0 (mm) −5.0800 −5.07302
Sliding base B0 (mm) −1.5192 −1.57686
Cradle angle q0 (deg) 59.7369 59.7859
Machine root angle γ0 (deg) 33.6731 33.6573
Ratio of roll m0 1.7066 1.67457
2C 0.0226 0.506831
6D −0.0329 -13.4053
24E 0.0000 34.0435
120F 0.0000 480.525
Mach. center to back D0 (mm) 2.7184 2.74793
B1 (mm/rad) 0.0000 −5.04039
B2 (mm/rad2) 0.0000 −20.6893
B3 (mm/rad3) 0.0000 2669.31
E1 (mm/rad) 0.0000 3.44381
E2 (mm/rad2) 0.0000 −31.0423
E3 (mm/rad3) 0.0000 −1992.94

TABLE 5. Complex ease-off. Basic settings x0 and new setting x6
obtained by the Levenberg-Marquardt algorithm.
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