

AN ANALYSIS OF INTERNAL/EXTERNAL EVENT ORDERING
STRATEGIES FOR COTS DISTRIBUTED SIMULATION

Simon J. E. Taylor
Navonil Mustafee

Centre for Applied Simulation Modelling
Department of Information Systems and Computing

Brunel University
UB8 3PH, Uxbridge, England

E-mail: simon.taylor@brunel.ac.uk

KEYWORDS
COTS Simulation Packages, Distributed Simulation,
Discrete Event Simulation.

ABSTRACT

Distributed simulation is a technique that is used to link
together several models so that they can work together
(or interoperate) as a single model. The High Level
Architecture (HLA) (IEEE 1516.2000) is the de facto
standard that defines the technology for this
interoperation. The creation of a distributed simulation
of models developed in COTS Simulation Packages
(CSPs) is of interest. The motivation is to attempt to
reduce lead times of simulation projects by reusing
models that have already been developed. This paper
discusses one of the issues involved in distributed
simulation with CSPs. This is the issue of
synchronising data sent between models with the
simulation of a model by a CSP, the so-called
external/internal event ordering problem. The
motivation is that the particular algorithm employed can
represent a significant overhead on performance.

INTRODUCTION

Distributed simulation is a technique that is used to link
together several models so that they can work together
(or interoperate) as a single model. The High Level
Architecture (HLA) (IEEE 1516.2000) is the de facto
standard that defines the technology for this
interoperation. Models, or federates, interoperate
together to form a federation. Interoperation takes the
form of organised communication of data specified in a
Federate Object Model, using tables derived from the
Object Model Template (IEEE 2000b), via supporting
communication technology called a Runtime
Infrastructure (RTI) (as defined by IEEE 2000a).
Currently the HLA is most widely used in real-time
simulation of defence related training problems.

In many areas of industry, COTS Simulation Packages
(CSPs) are used to model systems in diverse domains
such as commerce, defence, health and manufacturing.
A CSP is a generic term that refers to a computer
simulation package that is a visual interactive modelling
environment that helps simulationists to build models,

perform experiments, visualise and report during
simulation projects. Although not exclusively, they are
typically based on some variant of the discrete event
simulation paradigm, i.e. models change state at discrete
points in time by scheduled or conditional events and
typically represent entities or objects (documents,
patients, parts, trains, etc.) in some form that pass
through networks of queues and workstations (work
queuing at a desk in an office, patients waiting to see a
doctor, parts buffered for machining, trains waiting at a
station, etc.) Generally, each package has a range of
basic model elements (queue, workstation, resource,
source, sink, etc.) and advanced model element
(conveyor, shift worker, warehouse, etc.) that are used
to build a model via a drag and drop visual interface.
Each model element can be modified as is required,
either by a menu system or by a package programming
language, to better represent the system being studied
(for example the queuing logic of a queue or the
behaviour of a resource). Entities or objects can be
represented and differentiated by attributes.
Terminology between packages differs as there is no
generally recognized naming convention.

The creation of a distributed simulation of models
developed in CSPs is of interest. The motivation is to
attempt to reduce lead times of simulation projects by
reusing models that have already been developed. For
example Boer, et al. (2002) discuss the use of
distributed simulation to simulate container handling at
a port, while Sudra, et al. (2000) and Taylor, et al.
(2002) discuss how distributed simulation can facilitate
the modelling of supply chains and problems in the
automotive industry. A factor that distinguishes this
work from other research in distributed simulation is
that interoperation must not only take place between
models but also the CSPs in which the models reside.
This paper discusses one of the issues involved in
distributed simulation with CSPs. This is the issue of
synchronising data sent between models with the
simulation of a model by a CSP, the so-called
external/internal event ordering problem. This is of
interest as the particular algorithm employed can
represent a significant overhead on performance. The
paper is structured as follows in section 2 we describe
the external/internal event ordering problem in more

detail. Section 3 introduces four algorithms that can be
used for this problem. Section 4 presents some results.
Section 5 ends the paper with some conclusions and
further work.

THE EXTERNAL/INTERNAL EVENT
ORDERING PROBLEM

The general problem of external/internal event ordering
can be described as follows. Generally speaking, in a
federates exchange information to perform a simulation
of a particular system. Initially this is done on the basis
of publication of information of interest and
subscription to information of interest (publish-
subscribe). A run-time infrastructure performs the
actual exchange of information. Each federate performs
the simulation of a particular model. The information

exchanged between federates is therefore dependent on
the models being simulated. Figure 1 shows a general
distributed simulation federate.

In distributed simulation with CSPs, a federate contains
a CSP which in turn contains a model. Data is
generally on the basis of timestamped event messages.
Event messages arriving at a federate from another are
notionally organised by some causal ordering protocol
and are introduced to the CSP and then the model being
simulated by the CSP in timestamp order. These
external events are ordered with the CSP/model’s
internal events according to some algorithm. Figure 2
shows these relationships.

To investigate the implications of this problem in a CSP

Federation

Federate

P
ublish

S
ub

sc
rib

e

Model

Federate

Model

P
ublish

S
ub

sc
rib

e

Run-time Infrastructure

Figure 1: A Distributed Simulation Federation

Federation

Distributed Simulation Middleware

Federate

COTS SP

Model
(Internal
Events)

Causal Ordering
Protocol (External

Events)

Internal/External Event
Ordering Algorithm

Output Event
Messages

Input Event
Messages

Federate

COTS SP

Model
(Internal
Events)

Internal/External Event
Ordering Algorithm

Output Event
Messages

Input Event
Messages

Causal Ordering
Protocol (External

Events)

Figure 2: Distributed Discrete Event Simulation

federate, consider the following. A CSP typically
possesses a simulation executive, an event list, a clock,
a model state and a number of event routines (this is a
gross simplification as these packages have many
variants of this). The model state and the event routines
represent the state of the model at a particular time and
he logic by which it changes and are derived from the
model that is implemented in the package (and therefore
represent the model). Initialising the simulation, events
are placed on the event list (typically modelling entities
arriving in the model, e.g. raw materials arriving in a
factory). If we assume that the simulation executive
uses some form of the three phase approach (TPA), the
simulation first advances clock time to the time of the
next event (the A Phase) and then executes that event
(the B Phase) according to its event routine. This may
result in a change in the simulation state, the scheduling
of new events on the event list and the sending of new
timestamped event messages. The simulation executive
then determines if the changed state has enabled any
conditional events (the C Phase). If any have been
enabled, these events are executed in some priority
order and again may result in a change in the simulation
state, the scheduling of new events on the event list and
the sending of new timestamped event messages. The
simulation executive then makes a new cycle of the
three phases. Algorithm 1 describes this (note that we
assume that Update event list, Update simulation state,
and Send event messages are conditional on the results
of the B/C Phase).

while not terminated do
 Advance to time of next event (A Phase)
 Execute event (B Phase)
 Update event list
 Update simulation state
 Send event messages
 Test conditional events (C Phase)
 Update event list
 Update simulation state
 Send event messages
endwhile

Algorithm 1 The Three Phase Approach

The problem of external/internal event ordering is
therefore as follows. If a federate consisting of a CSP
and its model has an event list that contains internal
events, and a causality ordering protocol has ordered the
external events messages arriving from other CSPs, how
can the simulation executive of the CSP determine the
next event to process? Is the next event an internal one
taken from the event list or an external one represented
by the timestamped event message offered by the
protocol? In the next section we review several
algorithms that could be used to perform this ordering.

EXTERNAL/INTERNAL EVENT ORDERING
ALGORITHMS

There are several possible algorithms that can be used to
order external events with internal events. Each
algorithm is defined on the basis of a relationship
between a modified from of the CSP TPA and an
external body that orders external events via a causality
ordering protocol (the external event manager EEM).
Each of these with their assumptions are now discussed.

Event List Externalisation

A simple solution to this is to remove the event list from
the CSP and treat all events as external events. Events
scheduled within the simulation package are
externalised and ordered with the external events, i.e.
any internal event becomes an event message. Get next
external event represents the action of taking the next
external event that has been identified by the EEM and
introducing it to the CSP. Algorithm 2 describes this.

while not terminated do
 Get next external event
 Advance to time of next event (A Phase)
 Execute event (B Phase)
 Update simulation state
 Send event messages
 Test conditional events (C Phase)
 Update simulation state
 Send event messages
endwhile

Algorithm 2: Event List Externalisation

Permission request

In this approach, the CSP’s TPA is modified to request
permission from the EEM. Prior to the A phase, time
advance, the modified form of the TPA asks permission
from the EEM to advance to the time of the next event
on its event list by performing Request (permission
(Next_Event_Time)). This sends the time of the next
event Next_Event_Time to the EEM. The TPA would
then wait until the EEM responds with a Reply Message
where Message can be advance(Time), event(Time) or
wait. The actions dictated by the reply from the EEM
are either (a) to grant permission to advance to a given
time Time by message advance(Time), (b) to pass a
timestamped external event event with timestamp Time
by message event(Time), or (c) to request the simulation
executive to wait by message wait. In the case of (a),
the timestamp of the next external event is greater than
the scheduled time of the next (internal) event; the TPA
would therefore execute phase A by advancing to the
time of the next event and then perform phases B and C
as normal before making a new cycle of the modified
TPA. If the timestamp of the next external event is less
than the scheduled time of the next (internal) event (b),
the external event would be passed to the simulation
executive. The TPA would then carry on by executing
phase A, i.e. advancing to the time of the newly
scheduled event. Phases B and C would be executed as

normal. If the EEM could not determine the earliest
safe timestamped message (as is possible with causal
ordering protocols), when the TPA next asked
permission it would be requested to wait (as in case (c)).
The TPA would then be suspended until the EEM
indicated a change of circumstances. Algorithm 3
describes this.

while not terminated do
 Request (permission(Next_Event_Time))
 if Reply (advance(Time)) then
 Advance to time of next event

(A Phase)
 Execute event (B Phase)
 Update event list
 Update simulation state
 Send event messages
 Test conditional events (C Phase)
 Update event list
 Update simulation state
 Send event messages
 else if Reply (event(Time)) then
 Advance to Time (Modified A Phase)
 Execute event (B Phase)
 Update event list
 Update simulation state
 Send event messages
 Test conditional events (C Phase)
 Update event list
 Update simulation state
 Send event messages
 else if Reply (wait)
 wait until notified
 endif
endwhile

Algorithm 3 Permission Request

Incremental advance

Rather than controlling the advancement of time in the
CSP though the TPA, this algorithm assumes that is it
not possible to obtain access to the “next event time.”
Here we must advance time by the smallest possible
time unit of the CSP. Before each time advance the
TPA performs Request permission(Time_Increment).
This sends the time of the next time increment
Time_Increment to the EEM. The TPA must then wait
until the EEM responds with a Reply Message, where
Message can be granted, event or wait. The actions
dictated by the reply from the EEM are either (a) to
grant permission to advance by a single time increment
by message granted, (b) to pass a timestamped external
event event and to grant the time increment advance by
message event, or (c) to request the simulation executive
to wait by message wait.

The consequence of these messages are that if the EEM
is aware of the next safe external event, and the
timestamp of this greater than the next incremented

time, the CSP is allowed to make another incremented
advance (a). If the timestamp of the next external event
is equal to the next incremented time, the external event
will be introduced for execution at the next incremented
time and the TPA is a allowed to make another
incremented advance (b). Finally, if the EEM cannot
identify the next safe external event the incremental
time advance will be halted until a new message arrives
(c).

while not terminated do
 Request (permission(Time Increment))
 if Reply (granted) then
 Advance by Time Increment

 (A Phase)
 if next event then

Execute event (B Phase)
 Update event list
 Update simulation state
 Send event messages
 Test conditional events

(C Phase)
 Update event list
 Update simulation state
 Send event messages
 endif
 else if Reply (event) then
 Execute event (B Phase)
 Update event list
 Update simulation state
 Send event messages
 Test conditional events (C Phase)
 Update event list
 Update simulation state
 Send event messages
 else if Reply (wait)
 wait until notified
 endif
endwhile

Algorithm 4 Incremental Advance

External control

An alternative to making the TPA request permission is
to effectively make the CSP a slave of the EEM. The
EEM first determines the course of action and then
externally controls the behaviour of the CSP’s time
advancement. Depending on the status of the external
events, the EEM may makes the CSP wait on Wait
(instruction). The possible values of instruction are
advance(Time) and event(Time). When the value of
instruction is instantiated, the modified TPA may, if
instruction equals advance(Time) execute as normal
until Next_Event_Time is greater than Time (a), or if
instruction is event(Time) execute as normal until
Next_Event_Time is greater than Time and then execute
the new event event (b). In the case of (a) the EEM has
determined that it is safe for the CSP to advance to a
given time. The CSP cycles through the TPA,

advancing time until this “safe” time. If the EEM has
identified a new safe external event, it orders the CSP to
advance until the timestamp of the event message and
then introduces the new (external) event to the CSP to
be processed (as in (b)). If neither is the case then the
CSP waits until an instruction is sent by the EEM, i.e.
the EEM cannot identify a safe course of action.

while not terminated do
 Wait (instruction)
 if instruction = advance(Time) then
 while Next_Event_Time < Time do
 Advance to time of next event

(A Phase)
 Execute event (B Phase)
 Update event list
 Update simulation state
 Send event messages
 Test conditional events (C Phase)
 Update event list
 Update simulation state
 Send event messages
 endwhile
 else if instruction = event(Time) then
 insert event(Time) in event list
 while Next_Event_Time <=

event(Time)
 Advance to time of next event

(A Phase)
 Execute event (B Phase)
 Update event list
 Update simulation state
 Send event messages
 Test conditional events (C Phase)
 Update event list
 Update simulation state
 Send event messages
 endwhile
 endif
endwhile

Algorithm 5 External Control

Summary

This section has introduced four algorithms to solve the
external/internal event ordering problem. The next
section reports on some results obtained from
experimentation with programs based on the algorithms.

EXPERIMENTS

As the purpose of the experiments are to investigate the
external/internal event ordering problem, not external
event ordering, we shall assume that there is no wait
time, i.e. all external events have been produced and the

EEM has ordered them. This is an artificial but valid
assumption as the results of these experiments will give
us a base line on performance which will degrade under
conditions where algorithms are forced into their wait
state caused by the EEM being under populated with
event messages (or other). Timestamps of internal and
external events were arbitrarily selected to suit the
experiments and are deterministic. Experiments were
be performed on the basis of event density, D, which is
the ratio of the number of external events X to the
number of internal events I, i.e. defined as D = X/I. The
number of internal events were held constant at 1000.
The processing time for an event executed by the
artificial CSP was held at 5ms. The data points on the
graph are for an average based on 10 runs. The data
points on the graph are for values of D against average
time to process 1000 internal event messages. 0.001,
0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 4, 5. The
program was implemented as a client-server system in
Java under Microsoft Windows 2000 using sockets.
The computer was an Intel Pentium III processor 744
MhZ with 256Mb RAM running Windows 2000.
Figure 3 shows these results. Note that the results for
the incremental advance algorithm are excluded as they
are a magnitude greater than results for the other
algorithms.

CONCLUSIONS

Of our four algorithms, external control appears to be
the “winner.” Event list externalisation and permission
request give similar results, while incremental advance
gives a magnitude worse performance. This is
unsurprising as external control allows the CSP to
proceed with the least interaction. However, the
selection of the “best” solution to our problem cannot be
made just on performance. The problem faced by
interoperating CSPs is that many of the features that are
required for the ordering of external and internal events
are sometimes not obtainable. For example, some CSPs
have COM controls that make all data structures
(including the event list) easily accessible. Others have
little in the way of accessibility – even the time of the
next event is hidden. For example, even though
external control may appear to be the best ordering
algorithm, only incremental advance may be possible as
there is no method of advancing the simulation clock to
a given timestamp. Further work will investigate this
problem of compatibility.

It is hoped that the work presented in this paper will
stimulate other external/internal event ordering
algorithms. This ordering represents a major
performance overhead and attempts to reduce this
overhead can only make distributed simulation a more
attractive possibility.

REFERENCES

Boer, C.A., A. Verbraeck and H.P.M. Veeke. 2002.
Distributed Simulation of Complex Systems:
Application in Container Handling. In Proceedings of
SISO European Simulation Interoperability Workshop.
Simulation Interoperability Standards Organisation,
Orlando, Florida.
IEEE 2000a. IEEE Standard for Modelling and
Simulation (M&S) High Level Architecture (HLA) –
Federate Interface Specification. IEEE Std 1516.1-2000.
IEEE Computer Society, New York, NY.
IEEE 2000b. IEEE Standard for Modelling and
Simulation (M&S) High Level Architecture (HLA) –
Object Model Template (OMT) Specification. IEEE Std
1516.2-2000. IEEE Computer Society, New York, NY.
Sudra R., S.J.E Taylor and T. Janahan. 2000.
Distributed Supply Chain Management in GRIDS. In
Proceedings of the 2000 Winter Simulation Conference.
356-361. Association for Computing Machinery Press,
New York, NY.
Taylor, S.J.E., R. Sudra, T. Janahan, G. Tan and J.
Ladbrook. 2001. Towards COTS Distributed
Simulation Using GRIDS. In Proceedings of the 2001
Winter Simulation Conference. 1372-1379. Association
for Computing Machinery Press, New York, NY.
Taylor, S.J.E., A. Bruzzone, R. Fujimoto, B.P. Gan, S.
Strassburger and R.J. Paul. 2002a. Distributed
Simulation and Industry: Potentials and Pitfalls. In
Proceedings of the 2002 Winter Simulation Conference,
San Diego, CA. 688-694. Association for Computing
Machinery Press, New York, NY.
Taylor, S.J.E., R. Sudra, T. Janahan, G. Tan and J.
Ladbrook 2002b. GRIDS-SCS: An Infrastructure for

Distributed Supply Chain Simulation. SIMULATION.
78(5): 312-320.

0.0

10000.0

20000.0

30000.0

40000.0

50000.0

60000.0

70000.0

0.001 0.25 0.5 0.75 1 1.25 1.5 1.75 2 3 4 5

D

Ti
m

e

EEL PR EC

Figure 3: Comparison of External/Internal Event Ordering Strategies

	c0: Proceedings 15th European Simulation Symposium
Alexander Verbraeck, Vlatka Hlupic (Eds.)
(c) SCS European Council / SCS Europe BVBA, 2003
ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD)

